Synchrotron Radiation: II. Spectrum

Size: px
Start display at page:

Download "Synchrotron Radiation: II. Spectrum"

Transcription

1 Synchrotron Radiation: II. Spectrum Massimo Ricotti University of Maryland Synchrotron Radiation: II. Spectrum p.1/18

2 ds=v dt_em dt=ds cos(theta)/c=v/c cos(theta)dt_em Synchrotron Radiation: II. Spectrum p.2/18

3 Spectrum. I. Mono-energetic CRs Effect of beaming: Opening angle δθ = 2/γ dt em = (δθ/ω B ) 1/γω B ω L Thus the frequency of the pulse is shorter by a factor of γ Synchrotron Radiation: II. Spectrum p.3/18

4 Form cyclotron to synchrotron time frequency Synchrotron Radiation: II. Spectrum p.4/18

5 Form cyclotron to synchrotron time frequency Synchrotron Radiation: II. Spectrum p.4/18

6 Form cyclotron to synchrotron time frequency Synchrotron Radiation: II. Spectrum p.4/18

7 Relativistic effects make the frequency higher by another factor γ 2 In the observer frame of reference: δt rec = δt em (1 β cos θ) where θ δθ is the viewing angle Thus, dt rec = dt em (1 β + βδθ 2 /2) = = dt em (1/2γ 2 + 1/2γ 2 ) = dt em /γ 2 Similarly can derive superluminal motions proposed by M.J. Rees: v obs dsδθ/dt rec v em γ, that can be > c. Including the pitch angle: ω c = 3/2γ 3 ω B sinα = 1.5γ 2 ω L sinα where ω L = qb 0 mc Larmor freq. Synchrotron Radiation: II. Spectrum p.5/18

8 Spectrum. I. Mono-energetic CRs Details of the spectral shape are not important as we will see later. x 1/3 for x 1 F(x) x 1/2 exp( x) for x 1 where x = ω/ω c. Maximum of F(x) at x = 0.29 What is the normalization of P(ω)? dp dω P (2/3)γ2 β 2 sin 2 α(q 4 /m 2 c 3 )B0 2 ω c (3/2)γ 2 (qb 0 /mc) sinα = 4 9 B 0 q 3 sinα mc 2 Indeed consedering the correct normalization of F(x) we have, dp(ω) dω = 3 2π B 0 q 3 sin α F(x) mc 2 Synchrotron Radiation: II. Spectrum p.6/18

9 Spectrum. II. Power-law distribution of CRs with p 2.5. n γ dγ = n 0 γ p dγ P 1 P(γ)n γ dγ where P(γ) γ 2. Assume for simplicity F(x) = δ(x 1). Set ν = ν c = γ 2 ν L, dν = 2γdγν L, P(ν) ( ) (1 p)/2 ν δ(ν ν dν ) ν (p 1)/2 2ν L ν L Thus, Synchrotron is characterized by a power law spectrum with slope (p 1)/ The flux now depends on the combination of n 0 and B 0. Need more info to measure the magnetic field! Synchrotron Radiation: II. Spectrum p.7/18

10 Synchrotron self-absorption We have seen the synchrotron emission mechanism: what about absorption? and stimulated emission? We can have both: absorption is important at low frequencies. Why? For synchrontron the source function is S ν B 1/2 0 ν 5/2. Here is the qualitative derivation. For BB: S ν = 2ν2 c 2 ( hν e hν/kt 1 ) 2ν2 c 2 KT kt is energy of thermally excited harmonic oscillator. Replace kt with appropriate energy. ǫ = γm e c 2 = me 2 c(ν/ν L ) 1/2. Thus, S ν B 1/2 0 ν 5/2. What is the flux in the optically thick regime? Synchrotron Radiation: II. Spectrum p.8/18

11 First of all we have I ν = S ν in optically thick regime. F max ν = πi ν (R source /dist) 2 B 1/2 0 ν 5/2 max(r source /dist) 2 Can break the degeneracy n 0 B 0 and measure magnetic field. Synchrotron Radiation: II. Spectrum p.9/18

12 In addition there seems to be a maximum flux of synchrotron radiation from compact radio sources. Why? Synchrotron Radiation: II. Spectrum p.10/18

13 Inverse Compton losses T b = c2 I ν 2k B ν 2 brightness temperature In 1969 Kellermann and Pauling-Tohth noted that in compact radio sources T b (max) < K (clearly this is non-thermal emission) How can this observation be explained? Recall that L c L s = U ph U B where U ph F ν ν For B 0 = 10 3 Gauss, γ = 10 3 γ 2 ω L 10 9 Hz Compton scattering with ultra-rel electrons of GHz photons γ 2 ν Hz (optical wavelengths) Synchrotron Radiation: II. Spectrum p.11/18

14 Astrophisical sources of synchrotron radiation Pulsars SN remnants (for example, the Crab nebula) Gamma ray bursts Radio Galaxies (jets from AGN) Synchrotron Radiation: II. Spectrum p.12/18

15 Synchrotron Radiation: II. Spectrum p.13/18

16 Synchrotron Radiation: II. Spectrum p.14/18

17 Synchrotron Radiation: II. Spectrum p.15/18

18 Synchrotron Radiation: II. Spectrum p.16/18

19 Application to Radio Galaxies In 1959 Burbidge noticed a problem with the energetic requirements of radio galaxies In radio galaxies synchrotron dominates the entire spectrum from 10 meter to mm wavelengths Near equipartition of U CR and U B minimizes the energy requirement to produce the observed luminosity R lobes 30 kpc, B Gauss (from peak of spectrum near optically thick synchrotron) E tot = E CR + E mag 2E mag = (4π/3)R 3 lobes B 2 0 8π 1058 ergs This is an enormous amount of energy: about energy generated by 10 7 SN explosions Synchrotron Radiation: II. Spectrum p.17/18

20 In addition synchrotron cooling of lobes is extremely short: m e c 2 γ = P Sync = 2β 2 γ 2 cσ T U B sin 2 α t cool = γ γ m e c 2σ T U B γ sin 2 α t cool 10 7 yrs forγ = 10 4 andb 0 = 10 5 Gauss Need engine that keeps pumping energetic electrons: SMBH at the center of galaxy. However, our assumption of γ = const in the derivation of the sychrotron radiation is valid because the period of gyration is typically of the order of seconds: t cool. Synchrotron Radiation: II. Spectrum p.18/18

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 11. Synchrotron Radiation & Compton Scattering Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Synchrotron Self-Absorption synchrotron emission is accompanied

More information

Synchrotron Radiation II

Synchrotron Radiation II Synchrotron Radiation II Cyclotron v

More information

Lorentz Force. Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force.

Lorentz Force. Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force. Set 10: Synchrotron Lorentz Force Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force 0 E x E y E z dp µ dτ = e c F µ νu ν, F µ E x 0 B z B y ν = E y B

More information

5. SYNCHROTRON RADIATION 1

5. SYNCHROTRON RADIATION 1 5. SYNCHROTRON RADIATION 1 5.1 Charge motions in a static magnetic field Charged particles moving inside a static magnetic field continuously accelerate due to the Lorentz force and continuously emit radiation.

More information

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron - Synchrotron emission: A brief history - Examples - Cyclotron radiation - Synchrotron radiation - Synchrotron power from a single electron - Relativistic beaming - Relativistic Doppler effect - Spectrum

More information

Radiative Processes in Astrophysics. Lecture 9 Nov 13 (Wed.), 2013 (last updated Nov. 13) Kwang-Il Seon UST / KASI

Radiative Processes in Astrophysics. Lecture 9 Nov 13 (Wed.), 2013 (last updated Nov. 13) Kwang-Il Seon UST / KASI Radiative Processes in Astrophysics Lecture 9 Nov 13 (Wed.), 013 (last updated Nov. 13) Kwang-Il Seon UST / KASI 1 Equation of Motion Equation of motion of an electron in a uniform magnetic field: Solution:

More information

Radiative processes from energetic particles II: Gyromagnetic radiation

Radiative processes from energetic particles II: Gyromagnetic radiation Hale COLLAGE 2017 Lecture 21 Radiative processes from energetic particles II: Gyromagnetic radiation Bin Chen (New Jersey Institute of Technology) e - Shibata et al. 1995 e - magnetic reconnection Previous

More information

Jet Spectrum. At low ν: synchrotron emitting electrons can absorb synchrotron log ν. photons: synchrotron

Jet Spectrum. At low ν: synchrotron emitting electrons can absorb synchrotron log ν. photons: synchrotron D D D S D X Synchrotron Self-bsorption 10 21 log ν (p 1)/2 ν 5/2 t low ν: synchrotron emitting electrons can absorb synchrotron log ν photons: synchrotron after Shu, ig. 18.6 self-absorption. or a power

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 5:Synchrotron and Bremsstrahlung spectra Dr. J. Hatchell, Physics 406, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics.

More information

Synchrotron Radiation II

Synchrotron Radiation II Synchrotron Radiation II Summary of Radiation Properties Thermal Blackbody Bremsstrahlung Synchrotron Optically thick YES NO Maxwellian distribution of velocities YES YES NO Relativistic speeds YES Main

More information

Active galactic nuclei (AGN)

Active galactic nuclei (AGN) Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 9. Synchrotron Radiation Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Useful reminders relativistic terms, and simplifications for very high velocities

More information

1 Monday, November 7: Synchrotron Radiation for Beginners

1 Monday, November 7: Synchrotron Radiation for Beginners 1 Monday, November 7: Synchrotron Radiation for Beginners An accelerated electron emits electromagnetic radiation. The most effective way to accelerate an electron is to use electromagnetic forces. Since

More information

Compton Scattering I. 1 Introduction

Compton Scattering I. 1 Introduction 1 Introduction Compton Scattering I Compton scattering is the process whereby photons gain or lose energy from collisions with electrons. It is an important source of radiation at high energies, particularly

More information

- Synchrotron emission from power Law electron energy distributions

- Synchrotron emission from power Law electron energy distributions - Spectrum of synchrotron emission from a single electron - Synchrotron emission from power Law electron energy distributions - Synchrotron self absorption - Polarization of synchrotron emission - Synchrotron

More information

Special relativity and light RL 4.1, 4.9, 5.4, (6.7)

Special relativity and light RL 4.1, 4.9, 5.4, (6.7) Special relativity and light RL 4.1, 4.9, 5.4, (6.7) First: Bremsstrahlung recap Braking radiation, free-free emission Important in hot plasma (e.g. coronae) Most relevant: thermal Bremsstrahlung What

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

Galaxy Clusters in radio

Galaxy Clusters in radio Galaxy Clusters in radio Non-thermal phenomena Luigina Feretti Istituto di Radioastronomia CNR Bologna, Italy Tonanzintla, G005, 4-5 July 005 Lecture 1 : Theoretical background related to radio emission

More information

Extreme high-energy variability of Markarian 421

Extreme high-energy variability of Markarian 421 Extreme high-energy variability of Markarian 421 Mrk 421 an extreme blazar Previous observations outstanding science issues 2001 Observations by VERITAS/Whipple 10 m 2001 Light Curve Energy spectrum is

More information

ETA Observations of Crab Pulsar Giant Pulses

ETA Observations of Crab Pulsar Giant Pulses ETA Observations of Crab Pulsar Giant Pulses John Simonetti,, Dept of Physics, Virginia Tech October 7, 2005 Pulsars Crab Pulsar Crab Giant Pulses Observing Pulses --- Propagation Effects Summary Pulsars

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν 1 2. NOTES ON RADIATIVE TRANSFER 2.1. The specific intensity I ν Let f(x, p) be the photon distribution function in phase space, summed over the two polarization states. Then fdxdp is the number of photons

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 3: Relativistic effects I Dr. J. Hatchell, Physics 407, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics. Radiative transfer.

More information

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar The Mystery of Fast Radio Bursts and its possible resolution Outline Pawan Kumar FRBs: summary of relevant observations Radiation mechanism and polarization FRB cosmology Wenbin Lu Niels Bohr Institute,

More information

Lecture 13 Interstellar Magnetic Fields

Lecture 13 Interstellar Magnetic Fields Lecture 13 Interstellar Magnetic Fields 1. Introduction. Synchrotron radiation 3. Faraday rotation 4. Zeeman effect 5. Polarization of starlight 6. Summary of results References Zweibel & Heiles, Nature

More information

TEMA 6. Continuum Emission

TEMA 6. Continuum Emission TEMA 6. Continuum Emission AGN Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

More information

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron - Potentials - Liénard-Wiechart Potentials - Larmor s Formula - Dipole Approximation - Beginning of Cyclotron & Synchrotron Maxwell s equations in a vacuum become A basic feature of these eqns is the existence

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Introduction Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk January 2012 Today s introduction - The sky at different

More information

High-Energy Astrophysics

High-Energy Astrophysics Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Michaelmas 2012 Lecture 6 Today s lecture Synchrotron emission Part III Synchrotron self-absorption

More information

Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole?

Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole? Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole? Department of Astrophysics, University of Lodz, Lodz, Poland E-mail: p.banasinski@uni.lodz.pl Wlodek

More information

Thomson scattering: It is the scattering of electromagnetic radiation by a free non-relativistic charged particle.

Thomson scattering: It is the scattering of electromagnetic radiation by a free non-relativistic charged particle. Thomson scattering: It is the scattering of electromagnetic radiation by a free non-relativistic charged particle. The electric and magnetic components of the incident wave accelerate the particle. As

More information

Compton Scattering II

Compton Scattering II Compton Scattering II 1 Introduction In the previous chapter we considered the total power produced by a single electron from inverse Compton scattering. This is useful but limited information. Here we

More information

CHAPTER 27. Continuum Emission Mechanisms

CHAPTER 27. Continuum Emission Mechanisms CHAPTER 27 Continuum Emission Mechanisms Continuum radiation is any radiation that forms a continuous spectrum and is not restricted to a narrow frequency range. In what follows we briefly describe five

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

Compton Scattering. hω 1 = hω 0 / [ 1 + ( hω 0 /mc 2 )(1 cos θ) ]. (1) In terms of wavelength it s even easier: λ 1 λ 0 = λ c (1 cos θ) (2)

Compton Scattering. hω 1 = hω 0 / [ 1 + ( hω 0 /mc 2 )(1 cos θ) ]. (1) In terms of wavelength it s even easier: λ 1 λ 0 = λ c (1 cos θ) (2) Compton Scattering Last time we talked about scattering in the limit where the photon energy is much smaller than the mass-energy of an electron. However, when X-rays and gamma-rays are considered, this

More information

X-ray Radiation, Absorption, and Scattering

X-ray Radiation, Absorption, and Scattering X-ray Radiation, Absorption, and Scattering What we can learn from data depend on our understanding of various X-ray emission, scattering, and absorption processes. We will discuss some basic processes:

More information

1 Monday, November 21: Inverse Compton Scattering

1 Monday, November 21: Inverse Compton Scattering 1 Monday, November 21: Inverse Compton Scattering When I did the calculations for the scattering of photons from electrons, I chose (for the sake of simplicity) the inertial frame of reference in which

More information

Chapter 2 Bremsstrahlung and Black Body

Chapter 2 Bremsstrahlung and Black Body Chapter 2 Bremsstrahlung and Black Body 2.1 Bremsstrahlung We will follow an approximate derivation. For a more complete treatment see [2] and [1]. We will consider an electron proton plasma. Definitions:

More information

Radio Galaxies High resolution observations of radio galaxies often show highly extended emission. Best known case: Cygnus A. Jet.

Radio Galaxies High resolution observations of radio galaxies often show highly extended emission. Best known case: Cygnus A. Jet. Radio Galaxies High resolution observations of radio galaxies often show highly extended emission. Best known case: Cygnus A Lobe Jet Nucleus Hotspot Emission is synchrotron radiation Physical extent can

More information

Astro 201 Radiative Processes Solution Set 10. Eugene Chiang

Astro 201 Radiative Processes Solution Set 10. Eugene Chiang Astro 201 Radiative Processes Solution Set 10 Eugene Chiang NOTE FOR ALL PROBLEMS: In this class, we are not going to stress over the sin α term in any expression involving synchrotron emission, nor are

More information

Bremsstrahlung Radiation

Bremsstrahlung Radiation Bremsstrahlung Radiation Wise (IR) An Example in Everyday Life X-Rays used in medicine (radiographics) are generated via Bremsstrahlung process. In a nutshell: Bremsstrahlung radiation is emitted when

More information

Active Galactic Nuclei OIII

Active Galactic Nuclei OIII Active Galactic Nuclei In 1908, Edward Fath (1880-1959) observed NGC 1068 with his spectroscope, which displayed odd (and very strong) emission lines. In 1926 Hubble recorded emission lines of this and

More information

3145 Topics in Theoretical Physics - radiation processes - Dr J Hatchell. Multiwavelength Milky Way

3145 Topics in Theoretical Physics - radiation processes - Dr J Hatchell. Multiwavelength Milky Way Multiwavelength Milky Way PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes Dr. J. Hatchell, Physics 406, J.Hatchell@exeter.ac.uk Textbooks Main texts Rybicki & Lightman Radiative

More information

Crab Pulsar. Chandra Image of the Crab Nebula. Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum

Crab Pulsar. Chandra Image of the Crab Nebula. Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum Crab Pulsar Chandra Image of the Crab Nebula Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum Conventional view on the Crab Pulsar Related Emitting Zones Pulsar(Massaro+)

More information

Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar? Chin. J. Astron. Astrophys. Vol. 7 2007), No. 5, 669 674 http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond

More information

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Wataru Ishizaki ( Department of Physics, Graduate School of Science, The University of Tokyo ) Abstract The pulsar

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Radiative processes in GRB (prompt) emission. Asaf Pe er (STScI)

Radiative processes in GRB (prompt) emission. Asaf Pe er (STScI) Radiative processes in GRB (prompt) emission Asaf Pe er (STScI) May 2009 Outline Historical approach Synchrotron: pro s and co s Compton scattering in prompt emission (and why it is different than in afterglow)

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Prof. Jeff Kenney Class 18 June 20, 2018 the first quasar discovered 3C273 (1963) very bright point source (the quasar ) jet the first quasar discovered 3C273 (1963) very bright

More information

Synchrotron Power Cosmic rays are astrophysical particles (electrons, protons, and heavier nuclei) with extremely high energies. Cosmic-ray electrons in the galactic magnetic field emit the synchrotron

More information

ASTR240: Radio Astronomy

ASTR240: Radio Astronomy AST24: adio Astronomy HW#1 Due Feb 6, 213 Problem 1 (6 points) (Adapted from Kraus Ch 8) A radio source has flux densities of S 1 12.1 Jy and S 2 8.3 Jy at frequencies of ν 1 6 MHz and ν 2 1415 MHz, respectively.

More information

GAMMA-RAYS FROM MASSIVE BINARIES

GAMMA-RAYS FROM MASSIVE BINARIES GAMMA-RAYS FROM MASSIVE BINARIES W lodek Bednarek Department of Experimental Physics, University of Lódź, Poland 1. Sources of TeV gamma-rays PSR 1259+63/SS2883 - (HESS) LS 5039 - (HESS) LSI 303 +61 o

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation Bremsstrahlung Rybicki & Lightman Chapter 5 Bremsstrahlung Free-free Emission Braking Radiation Radiation due to acceleration of charged particle by the Coulomb field of another charge. Relevant for (i)

More information

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

Radiative processes in high energy astrophysical plasmas

Radiative processes in high energy astrophysical plasmas Radiative processes in high energy astrophysical plasmas École de physique des Houches 23 Février-8 Mars 2013 R. Belmont Why radiation? Why is radiation so important to understand? Light is a tracer of

More information

BH Astrophys Ch1~2.2. h"p://www.astro.princeton.edu/~burrows/classes/250/distant_galaxies.html h"p://abyss.uoregon.edu/~js/ast123/lectures/lec12.

BH Astrophys Ch1~2.2. hp://www.astro.princeton.edu/~burrows/classes/250/distant_galaxies.html hp://abyss.uoregon.edu/~js/ast123/lectures/lec12. BH Astrophys Ch1~2.2 h"p://www.astro.princeton.edu/~burrows/classes/250/distant_galaxies.html h"p://abyss.uoregon.edu/~js/ast123/lectures/lec12.html Outline Ch1. 1. Why do we think they are Black Holes?(1.1-1.2)

More information

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18 Pulsar Winds John Kirk Max-Planck-Institut für Kernphysik Heidelberg, Germany < > p.1/18 About 50 years after... The Crab Nebula Central star is source of particles and magnetic field (Piddington 1957)

More information

arxiv:astro-ph/ v1 7 Jul 1999

arxiv:astro-ph/ v1 7 Jul 1999 Gamma-ray Burst Energetics Pawan Kumar Institute for Advanced Study, Princeton, NJ 08540 Abstract arxiv:astro-ph/9907096v1 7 Jul 1999 We estimate the fraction of the total energy in a Gamma-Ray Burst (GRB)

More information

Ultra High Energy Cosmic Rays. UHECRs from Mildly Relativistic Supernovae

Ultra High Energy Cosmic Rays. UHECRs from Mildly Relativistic Supernovae Ultra High Energy Cosmic Rays from Mildly Relativistic Supernovae Tata Institute of Fundamental Research Mumbai, India March 13, 2012 Outline UHECRS Chakraborti, Ray, Soderberg, Loeb, Chandra 2011 Nature

More information

What does the Sun tell us about circular polarization on stars? Stephen White

What does the Sun tell us about circular polarization on stars? Stephen White What does the Sun tell us about circular polarization on stars? Stephen White The Radio Sun at 4.6 GHz Combination of: optically thick upper chromosphere, optically thick coronal gyroresonance where B>500

More information

Solutions Mock Examination

Solutions Mock Examination Solutions Mock Examination Elena Rossi December 18, 2013 1. The peak frequency will be given by 4 3 γ2 ν 0. 2. The Einstein coeffients present the rates for the different processes populating and depopulating

More information

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays Short Course on High Energy Astrophysics Exploring the Nonthermal Universe with High Energy Gamma Rays Lecture 1: Introduction Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck Institut

More information

Neutron Stars. Neutron Stars Mass ~ 2.0 M sun! Radius ~ R sun! isolated neutron stars first seen only recently (1997)

Neutron Stars. Neutron Stars Mass ~ 2.0 M sun! Radius ~ R sun! isolated neutron stars first seen only recently (1997) Neutron Stars 1 2 M core > 1.4 M - collapse past WD! sun nuclei packed tightly together! protons absorb electrons; only neutrons left! collapse halted by neutron degeneracy pressure How do you find something

More information

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics Today : a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics photo-ionization of HII assoc. w/ OB stars ionization

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Thermal Bremsstrahlung

Thermal Bremsstrahlung Thermal Bremsstrahlung ''Radiation due to the acceleration of a charge in the Coulomb field of another charge is called bremsstrahlung or free-free emission A full understanding of the process requires

More information

Multi-wavelength Astronomy

Multi-wavelength Astronomy astronomy Multi-wavelength Astronomy Content What do we measure Multi-wavelength approach Data Data Mining Virtual Observatory Hands on session Larmor's formula Maxwell's equations imply that all classical

More information

UNDERSTANDING POWERFUL JETS AT DIFFERENT SCALES IN THE FERMI ERA. B. THE KPC SCALE: X-RAY EMISSION MECHANISM AND JET SPEED

UNDERSTANDING POWERFUL JETS AT DIFFERENT SCALES IN THE FERMI ERA. B. THE KPC SCALE: X-RAY EMISSION MECHANISM AND JET SPEED UNDERSTANDING POWERFUL JETS AT DIFFERENT SCALES IN THE FERMI ERA. A. THE PC SCALE: LOCATING THE Γ-RAY EMISSION SITE B. THE KPC SCALE: X-RAY EMISSION MECHANISM AND JET SPEED Markos Georganopoulos 1,2 Eileen

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

Broadband Emission of Magnetar Wind Nebulae

Broadband Emission of Magnetar Wind Nebulae Broadband Emission of Magnetar Wind Nebulae Shuta Tanaka ICRR, The Univ. of Tokyo 29, Oct., 2015, TeVPA 2015 @ Kashiwa 1 Contents 1. Introduction 2. Spectral Evolution of young PWNe 3. A Spectral Model

More information

Particle acceleration during 2D and 3D magnetic reconnection

Particle acceleration during 2D and 3D magnetic reconnection Particle acceleration during 2D and 3D magnetic reconnection J. Dahlin University of Maryland J. F. Drake University of Maryland M. Swisdak University of Maryland Astrophysical reconnection Solar and stellar

More information

Plasma Effects. Massimo Ricotti. University of Maryland. Plasma Effects p.1/17

Plasma Effects. Massimo Ricotti. University of Maryland. Plasma Effects p.1/17 Plasma Effects p.1/17 Plasma Effects Massimo Ricotti ricotti@astro.umd.edu University of Maryland Plasma Effects p.2/17 Wave propagation in plasma E = 4πρ e E = 1 c B t B = 0 B = 4πJ e c (Faraday law of

More information

BEAMING, SYNCHROTRON AND INVERSE COMPTON

BEAMING, SYNCHROTRON AND INVERSE COMPTON BEAMING, SYNCHROTRON AND INVERSE COMPTON Gabriele Ghisellini INAF Osservatorio Astronomico di Brera September 13, 2008 2 Contents 1 Beaming 5 1.1 Rulers and clocks......................... 5 1.2 Photographs

More information

Afterglows Theory Re em Sari - Caltech

Afterglows Theory Re em Sari - Caltech Π= Π m /3 Afterglows Theory Re em Sari - Caltech 30s 2h t -2 30m t +1/2 t Rising -1 spectrum ν 1/3 1d t -2.2 100d t -1.5 Gamma-Ray Burst: 4 Stages 1) Compact Source, E>10 51 erg 2) Relativistic Kinetic

More information

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics? High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation Robert Laing Lectures: Week 1: M 10, T 9 Timetable Week 2: M 10, T 9, W 10 Week 3: M 10, T 9, W 10 Week 4: M 10, T 9,

More information

X-ray & γ-ray. Polarization in Gamma-Ray Bursts. Jonathan Granot. Institute for Advanced Study, Princeton

X-ray & γ-ray. Polarization in Gamma-Ray Bursts. Jonathan Granot. Institute for Advanced Study, Princeton X-ray & γ-ray olarization in Gamma-Ray ursts Jonathan Granot Institute for Advanced Study, rinceton X-ray olarimetry Workshop KIAC, February 10, 2004 Outline of the Talk: Short Overview of GRs Why is GR

More information

Particle acceleration during the gamma-ray flares of the Crab Nebular

Particle acceleration during the gamma-ray flares of the Crab Nebular Particle acceleration during the gamma-ray flares of the Crab Nebular SLAC Accelerator seminar SLAC 15 June 2011 R. Buehler for the LAT collaboration and A. Tennant, E. Costa, D. Horns, C. Ferrigno, A.

More information

Synchrotron Radiation I

Synchrotron Radiation I Synchrotron Radiation I Examples of synchrotron emitting plasma Following are some examples of astrophysical objects that are emitting synchrotron radiation. These include radio galaxies, quasars and supernova

More information

Monte Carlo Radiation Transfer I

Monte Carlo Radiation Transfer I Monte Carlo Radiation Transfer I Monte Carlo Photons and interactions Sampling from probability distributions Optical depths, isotropic emission, scattering Monte Carlo Basics Emit energy packet, hereafter

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

no incoming fields c D r

no incoming fields c D r A x 4 D r xx ' J x ' d 4 x ' no incoming fields c D r xx ' : the retarded Green function e U x 0 r 0 xr d J e c U 4 x ' r d xr 0 0 x r x x xr x r xr U f x x x i d f d x x xi A x e U Ux r 0 Lienard - Wiechert

More information

FRB emission mechanisms. Maxim Lyutikov (Purdue, McGill)

FRB emission mechanisms. Maxim Lyutikov (Purdue, McGill) FRB emission mechanisms Maxim Lyutikov (Purdue, McGill) 2 What FRBs are not msecs long (not AGNe) > 10 4 per day (not prompt GRBs) repetitive (not catastrophic events like NS-NS mergers) isotropic (extra-galactic);

More information

Relativistic reconnection at the origin of the Crab gamma-ray flares

Relativistic reconnection at the origin of the Crab gamma-ray flares Relativistic reconnection at the origin of the Crab gamma-ray flares Benoît Cerutti Center for Integrated Plasma Studies University of Colorado, Boulder, USA Collaborators: Gregory Werner (CIPS), Dmitri

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates

Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates energy according to Maxwell equations. A non-relativistic

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

Ph 136: Solution for Chapter 2 3.6 Observations of Cosmic Microwave Radiation from a Moving Earth [by Alexander Putilin] (a) let x = hν/kt, I ν = h4 ν 3 c 2 N N = g s h 3 η = 2 η (for photons) h3 = I ν

More information

The extreme ends of the spectrum: the radio/gamma connection

The extreme ends of the spectrum: the radio/gamma connection The extreme ends of the spectrum: the radio/gamma connection Monica Orienti INAF IRA Bologna Astronomy Department, Bologna University This research has made used of data from the MOJAVE database that is

More information

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν 3-1 3. Radiation Nearly all our information about events beyond the Solar system is brought to us by electromagnetic radiation radio, submillimeter, infrared, visual, ultraviolet, X-rays, γ-rays. The particles

More information

Spectroscopy Lecture 2

Spectroscopy Lecture 2 Spectroscopy Lecture 2 I. Atomic excitation and ionization II. Radiation Terms III. Absorption and emission coefficients IV. Einstein coefficients V. Black Body radiation I. Atomic excitation and ionization

More information

Particle acceleration at relativistic shock waves and gamma-ray bursts

Particle acceleration at relativistic shock waves and gamma-ray bursts Particle acceleration at relativistic shock waves and gamma-ray bursts Martin Lemoine Institut d Astrophysique de Paris CNRS, Université Pierre & Marie Curie Outline: 1. Particle acceleration and relativistic

More information

VLBI observations of AGNs

VLBI observations of AGNs VLBI observations of AGNs Gabriele Giovannini Dipartimento di Astronomia, Universita di Bologna Istituto di Radioastronomia - INAF OUTLINE Single sources: Mkn 501 1144+35 Sample: nearby BL-Lacs nearby

More information

LeMMINGs the emerlin radio legacy survey of nearby galaxies Ranieri D. Baldi

LeMMINGs the emerlin radio legacy survey of nearby galaxies Ranieri D. Baldi LeMMINGs the emerlin radio legacy survey of nearby galaxies Ranieri D. Baldi in collaboration with I. McHardy, D. Williams, R. Beswick and many others The radio-loud / radio-quiet dichotomy Among the many

More information

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay)

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay) Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay) Outline Introduction: X-ray binaries and flavors of relativistic jets LOFAR Contributions Conclusions Introduction:

More information

High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds

High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds S. Nagataki Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho Kitashirakawa Sakyo-ku,

More information

SYNCHROTRON RADIATION

SYNCHROTRON RADIATION SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland Introduction to Accelerator Physics Course CERN Accelerator School, Zakopane,

More information