Atomic Physics ASTR 2110 Sarazin

Size: px
Start display at page:

Download "Atomic Physics ASTR 2110 Sarazin"

Transcription

1 Atomic Physics ASTR 2110 Sarazin

2 Homework #5 Due Wednesday, October 4 due to fall break

3 Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any other materials or any person Bring pencils, paper, calculator ~2/3 Quantitative Problems (like homework problems) ~1/3 Qualitative Questions Multiple Choice, Short Answer, Fill In the Blank questions No essay questions

4 Test #1 (Cont.) Equation/Formula Card: You may bring one 3x5 inch index card with equations and formulae written on both sides. DO NOT LIST pc, AU, Μ, L, R DO NOT INCLUDE ANY QUALITATIVE MATERIAL (text, etc.)

5 Test #1 (Cont.) No problem set week of October 2 9 to allow study for test Review Session: Discussion session Friday, October 6, 3-4 pm

6 Atomic Physics ASTR 2110 Sarazin

7 Uncertainty Principle Heisenberg 1927: lumpiness of nature means we cannot make perfectly accurate measurements Newtonian physics: F = ma = dp/dt. If you knew position and momentum of every particle perfectly, you could exactly predict everything in the future. But, can t measure position and momentum accurately.

8 Uncertainty Principle Measure position with microscope. What kind of light to use? Measure position to accuracy of Δx, need λ Δx But, photon will bounce off particle, change particle momentum by Δp p γ = hν c = h λ h Δx Δx Δp more accurately ΔE Δt for energy

9 Relativity and Quantum Mechanics Spin-Statistics Theorem: Social properties of particles depend on spin Integer Spin (S = nħ) Bosons All want to be doing the same thing (in the same state) Example: photons, S = 1 ħ. Stimulated Emission (lasers) all photons in exactly the same state Half-Integer Spin [S = (n+1/2)ħ] Fermions Can NEVER be in exactly the same state Examples: electrons, protons, neutrons Exclusion Principle

10 Relativity and Quantum Mechanics Sizes of particles: Δp = mδv mc Δx Δp mc = size (radius r) of particle Note: m 0 r effects at distances Long range forces due to massless particles Photons è Electromagnetism Gravitons è Gravity Strong, Weak forces short range

11 Relativity and Quantum Mechanics Virtual Particles: Δt r c = # % $ ΔE Δt = & ( 1 mc ' c = shortest time 2 mc mc 2 = mc2 = rest mass energy Make virtual particles e - e - + e - e + e - + e - e + e - e + etc. Reason for field description of particles, number of particles is not fixed

12 Relativity and Quantum Mechanics Forces = Exchange of Virtual Particles: e - e + photon Electromagnetism = exchange of photons

13 Nucleus: Atomic Structure Strong force strong, short range p s & n s è nucleus (10-13 cm = m) Electron bound to nucleus by electric force Strength of electrical forces PE(electron) e2 r e = e 2 m e c PE / m e c 2 = e2 c α " % $ 'm e c 2 # c & = e2 fine structure constant Electrical forces are relatively weak e - e - + e - e + ~ α 2 ~ 10-4

14 Atomic Structure Electrons: Force from nucleus is F = q 1 q 2 /r 2 = -Ze 2 /r 2 just like gravity Newtonian Physics: elliptical orbits, etc. Problem: Electrons charged, accelerating èmust radiate (Maxwell s eqs.), would lose energy, atom would collapse in ~10-18 sec!! Note: nucleus actually 10 5 x smaller

15 Bohr Theory of Atom L quantized, orbital angular momentum L = m e vr = n Bound, Circular Orbits: Radius: m e v 2 r m 2 e v 2 r 2 = Ze 2 m e r = Ze2 r 2 multiply by m e r 3 n 2 2 = Ze 2 m e r r = n2 2 Ze 2 m e = n2 r e Zα Orbits quantized As n increases, r increases Smallest orbit, n=1 Bohr radius (Z=1) = r e /α =5.29 x 10-9 cm = Å = nm

16 Bohr Theory of Atom Bound, Circular Orbits: Velocity: m e vr = n plug in r, solve for v! v = Zα $ # &c nonrelativistic as long as Z <<137 " n % Energy: E = KE + PE = 1 2 m ev 2 Ze2 r E = Z 2 α 2 2n 2 m e c 2 E < 0 bound E(hydrogen) ~ ½ α 2 m e c 2 << m e c 2 n=1 most bound, n large nearly unbound m e èμ e = m e m nucl /(m e + m nucl )

17 Bohr Theory of Atom Unbound Electrons: m e v 2 Ze2 no energy quantization (energy levels) r r 2 E > 0 Why are atoms stable? 1. n =1 (ground state) has no where to go 2. Upper levels don t spiral in, E atom & E photon both quantized

18 Hydrogen Spectral Lines E photon = ΔE atom hν ab = E a E b ν ab = Z 2 α 2 m e c 2 2h # % $ 1 n b 2 1 n a 2 1 = ν ab λ ab c = R # % 1 2 n 1 2 $ b n a & ( ' & ( (for Z =1) ' R =109, 678 cm 1 Rydberg constant R 1 = 912 A o = 91.2 nm n b n a

19 Hydrogen Spectral Lines Label by lower n (roman letters) & Δn (greek letter) n 1 Lyman lines (UV) Lyα n = 2 n =1 λ Lyα =1216 A o =121.6 nm Lyβ n = 3 n =1 n 2 Balmer lines (optical) Hα n = 3 n = 2 Hβ n = 4 n = 2 λ Hα = 6563 A o = nm (red) λ Hβ = 4861 A o = nm

20 Red Hα Line in Planetary Nebula

21 More Complex Atoms: Energy Levels E>0 free Energy # States n=3 n=2 E<0 bound ev -3.4 ev 18 8 }Periodic Table n= ev 2 1 ev = ΔE of electron moving through 1 volt 1 ev = erg = J α 2 2 m e c2 =13.6 ev Ionization potential of H Bound, quantized energy levels & Free continuous energies

22 Atomic Processes Transitions: radiative & collisional Bound-bound: ΔE = E 2 E 1 Excitation (é): E 2 E>0 free E Radiative = Absorption line ΔE E<0 bound hν = ΔE rate α intensity of light De-Excitation (ê) Radiative = Emission line E 1 Intensity emission line absorption line hν

23 Atomic Processes Bound-free: ΔE > IP ionization potential Ionization (é): Removes electron Radiative: hν > IP Absorption edge Recombination (ê): Adds an electron Emission Edge IP Intensity E>0 free E<0 bound emission edge absorption edge hν E

24 Atomic Processes Free-free: Only energy condition is ΔE < initial E of electron Continuous emission or absorption of radiation Intensity hν

25 Radiation Photons: Photons = lumps of light Light = waves of electric and magnetic field Electric field = wave function, gives probability of finding a photon E photon = hν Bulk Properties of Radiation: Natural Illumination: lots of photons, radiation not coherent, generally not polarized, etc. Main property = carrier of energy Intensity: I ν = energy / (time x area x solid angle x frequency) solid angle = direction from which radiation came (steradian)

26 Interaction of Radiation and Matter 1. Transmission 2. Absorption 3. Scattering 4. Emission 5. Stimulated emission Makes exact clone of an incoming photon. Result of Spin-Statistics Thm. Photons have S = 1, bosons. View scattering = absorption, then emission Stimulated emission = negative absorption exactly Define: Extinction = true absorption + scattering stimulated emission Two processes: emission & extinction

27 Radiative Transfer Emissivity: j ν = (energy emitted) / (time x volume x solid angle x freq.) Opacity: Think of each atom as target, area A, mass m n = # atoms / volume α = n A (units cm -1 ) κ = A / m (units cm 2 / gm) Equation of Radiative Transfer area A, mass m d I ν d x = α ν I ν + j ν absorption emission distance

28 Optical Depth: Radiative Transfer τ α dx ~ αx (dimensionless) τ <<1 little interaction of matter and radiation optically thin τ >> 1 lots of interaction optically thick

29 Radiative Transfer Realistic astrophysics Matter: Many elements, atoms, molecules, ions Each with many, many energy levels Many, many transitions between the levels Radiation: Need opacities, emissivities for all lines. Many frequencies, wavelengths covering EM spectrum Transfer equation for all frequencies, directions Big, messy problem = solve on computer

30 Thermodynamic Equilibrium Closed system Wait a long time Thermodynamic equilibrium: Unique state with Energy fixed E = constant Entropy maximum, S max Characterized by one number Temperature T Same value throughout box Ludwig Boltzmann

31 Thermodynamic Equilibrium Given all possible molecules, ions, energy levels, emission lines, photon energies, etc., how can there be one unique state of thermodynamic equilibrium? Detailed Balance: In TE, every process is exactly balanced by its inverse In TE, populations of states generally vary as population α exp( - E / kt), where E is energy of state

32 Thermodynamic Equilibrium Bound states: E>0 free n 2 = e ( E2 E1 )/kt = e ΔE/kT n 1 E 2 E kt << ΔE every thing in ground state kt >> ΔE many states populated Bound-free (ionization): Saha equation kt << IP lower ionization kt >> IP higher ionization ΔE IP E 1 E<0 bound

33 fully ionized neutral atom T (K)

34 Thermodynamic Equilibrium Free Particles: Maxwellian distribution <E> = <½ mv 2 > = 3/2 kt Hotter = faster moving atoms

35 Radiation in Thermodynamic Equilibrium Planck or Blackbody Spectrum: I ν = B ν 2hν 3 c 2 1 e hν /kt 1 Rayleigh-Jeans Limit: hν << kt I ν 2ν 2 kt c 2

36 Wien s Law: Radiation in Thermodynamic Equilibrium λ max = c ν max = 0.3 cm T (K) Hotter = shorter wavelength = bluer Stefan-Boltzmann Law: L = (area) σt 4 σ = erg/(cm 2 sec K 4 )

37 Pressure Forces Newton s 3 rd Law è most forces cancel in bulk But, new force appears Pressure pressure = force / area

38 Pressure Forces p = momentum Force = dp dt = Δp atom Δp atom = 2 p = 2mv x x atoms time = nv (area) x n atoms / volume P = 2np x v x = 2nm v x 2 atoms time P = nkt = ρkt µm p ideal gas law atom wall

39 Hydrostatic Equilbrium Planets & Stars Gravity is balanced by Pressure: Hydrostatic Equilibrium Consider a spherically symmetric object F = G M(r)m r 2 ê r M(r) mass interior to r r m

40 Hydrostatic Equilbrium For mass m, take a small cylinder Area A Height Δr Filled with fluid with mass density ρ A Δr r Assume pressure P and density only depend on radius [P(r), ρ(r)], and that pressure decreases with radius.

41 Hydrostatic Equilbrium Pressure forces = P Area F pres = PAê r (P + ΔP)Aê r P + ΔP = (P P ΔP)Aê r Δr A = ΔPAê r F grav = G M(r)m r 2 ê r P r M(r) mass interior to r m = ρ volume = ρaδr

42 Hydrostatic Equilbrium F grav = G M(r)ρAΔr r 2 F tot = F grav + F pres = 0 ê r A P + ΔP F pres = F grav Δr ΔPAê r = G M(r)ρAΔr r 2 ΔP Δr = G M(r)ρ r 2 ê r P r dp dr = G M(r)ρ r 2

43 Stellar Spectra ASTR 2110 Sarazin Solar Spectrum

44 Theory of Stellar Atmospheres Divide stars into Atmosphere Narrow outer layer, 1 mean free path, τ 1 Makes light we see Interior Not directly observable

45 Theory of Stellar Atmospheres Assume 1. Very thin Δr << R Treat as flat plane 2. No energy sources L in = L out = L 3. Static Forces balance, hydrostatic equilibrium

46 Theory of Stellar Atmospheres dp dr = GM(r)ρ Hydrostatic equilibrium r 2 M(r) mass interior to r = M * ρ mass density = mass/volume r R * constant, thin atmosphere g * GM * R * 2 surface gravity, constant dp dr = g *ρ Hydrostatic equilibrium P = ρkt µm p Pressure, ideal gas law

47 Theory of Stellar Atmospheres L = constant, thin atmosphere, flux important L = 4π R *2 σt 4 eff, F = L / (4π R 2 * ) = σt 4 eff constant Equation of Radiative Transfer di ν dx = α I +ε ν ν ν absorption reduces, emission increases ε ν,α ν emissivity, opacity, depend on T,ρ, composition

48 Theory of Stellar Atmospheres dp dr = g *ρ Hydrostatic equilibrium P = ρkt µm p Pressure, ideal gas law F = L / (4π R 2 * ) = σt 4 eff constant di ν dx = α ν I ν +ε ν Eqn. Radiative Transfer

49 Theory of Stellar Atmospheres dp dr = g *ρ Hydrostatic equilibrium P = ρkt µm p Pressure, ideal gas law F = L / (4π R 2 * ) = σt 4 eff constant di ν dx = α νi ν +ε ν Eqn. Radiative Transfer Four unknowns: P, ρ, T, I ν vs. r Four equations solvable

50 Inputs: F = L / 4π R 2 * = σt 4 eff = constant g * α ν,ε ν,µ depend on ρ, T, composition R * but only scales the fluxes

51 Stellar Spectra and Stellar Atmospheres Determined by (in decreasing order of importance) 1. T eff 2. g * 3. Composition

52 Stellar Spectra and Stellar Atmospheres Determined by (in decreasing order of importance) 1. T eff 2. g * 3. Composition

53 Solar Spectrum

54 Stellar Spectra General result Stellar spectra = continuum emission + absorption lines ~blackbody hotter brighter, bluer hotter molecular lines atomic lines ions (more and more ionized)

55 Stellar Spectra hotter cooler

56 Stellar Spectra hotter cooler

57 Stellar Spectra ions hotter molecules cooler

58 Stellar Spectra ions molecules hotter Temperature cooler

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Stellar Interiors ASTR 2110 Sarazin. Interior of Sun

Stellar Interiors ASTR 2110 Sarazin. Interior of Sun Stellar Interiors ASTR 2110 Sarazin Interior of Sun Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any other materials or any person Bring

More information

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum Stellar Spectra ASTR 2120 Sarazin Solar Spectrum Solar Prominence Sep. 14, 1999 Solar Activity Due to rotation, convection, and magnetic field (Section 7.2 review) Charged Particles in Magnetic Fields

More information

Stellar Spectra ASTR 2110 Sarazin. Solar Spectrum

Stellar Spectra ASTR 2110 Sarazin. Solar Spectrum Stellar Spectra ASTR 2110 Sarazin Solar Spectrum Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any other materials or any person Bring pencils,

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays Pulsars ASTR2110 Sarazin Crab Pulsar in X-rays Test #2 Monday, November 13, 11-11:50 am Ruffner G006 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

PHYS 231 Lecture Notes Week 3

PHYS 231 Lecture Notes Week 3 PHYS 231 Lecture Notes Week 3 Reading from Maoz (2 nd edition): Chapter 2, Sec. 3.1, 3.2 A lot of the material presented in class this week is well covered in Maoz, and we simply reference the book, with

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 33 Modern Physics Atomic Physics Atomic spectra Bohr s theory of hydrogen http://www.physics.wayne.edu/~apetrov/phy140/ Chapter 8 1 Lightning Review Last lecture: 1. Atomic

More information

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Covers all readings, lectures, homework from Chapters 17 through 30 Be sure to bring your student ID card, calculator, pencil, and up to three onepage

More information

Equilibrium Properties of Matter and Radiation

Equilibrium Properties of Matter and Radiation Equilibrium Properties of Matter and Radiation Temperature What is it? A measure of internal energy in a system. Measure from (1) velocities of atoms/molecules () population of excited/ionized states (3)

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 1 Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 3 Continuous Spectra: Thermal Radiation The equations below quantitatively summarize the light-emitting

More information

2. Basic Assumptions for Stellar Atmospheres

2. Basic Assumptions for Stellar Atmospheres 2. Basic Assumptions for Stellar Atmospheres 1. geometry, stationarity 2. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres!

More information

Interstellar Astrophysics Summary notes: Part 2

Interstellar Astrophysics Summary notes: Part 2 Interstellar Astrophysics Summary notes: Part 2 Dr. Paul M. Woods The main reference source for this section of the course is Chapter 5 in the Dyson and Williams (The Physics of the Interstellar Medium)

More information

Black Holes ASTR 2110 Sarazin. Calculation of Curved Spacetime near Merging Black Holes

Black Holes ASTR 2110 Sarazin. Calculation of Curved Spacetime near Merging Black Holes Black Holes ASTR 2110 Sarazin Calculation of Curved Spacetime near Merging Black Holes Test #2 Monday, November 13, 11-11:50 am Ruffner G006 (classroom) Bring pencils, paper, calculator You may not consult

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Lecture 4: Absorption and emission lines

Lecture 4: Absorption and emission lines Lecture 4: Absorption and emission lines Senior Astrophysics 2018-03-13 Senior Astrophysics () Lecture 4: Absorption and emission lines 2018-03-13 1 / 35 Outline 1 Absorption and emission line spectra

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 6. Stellar spectra excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 1 Occupation numbers: LTE case Absorption coefficient: = n i calculation of occupation numbers

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Also: Question: what is the nature of radiation emitted by an object in equilibrium

Also: Question: what is the nature of radiation emitted by an object in equilibrium They already knew: Total power/surface area Also: But what is B ν (T)? Question: what is the nature of radiation emitted by an object in equilibrium Body in thermodynamic equilibrium: i.e. in chemical,

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

[10] Spectroscopy (9/28/17)

[10] Spectroscopy (9/28/17) 1 [10] Spectroscopy (9/28/17) Upcoming Items 1. Homework #5 due on Tuesday 2. Midterm #1 October 10 3. Read Ch. 6.2 & 6.3 by next class (skim the rest of Ch. 6). Do the selfstudy quizzes APOD 9/28/16 2

More information

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 6. Stellar spectra excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 1 Occupation numbers: LTE case Absorption coefficient: = n i calculation of occupation numbers

More information

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan Sharif University of Technology Physics Department Modern Physics Spring 2016 Prof. Akhavan Problems Set #5. Due on: 03 th of April / 15 th of Farvardin. 1 Blackbody Radiation. (Required text book is Modern

More information

Spectroscopy Lecture 2

Spectroscopy Lecture 2 Spectroscopy Lecture 2 I. Atomic excitation and ionization II. Radiation Terms III. Absorption and emission coefficients IV. Einstein coefficients V. Black Body radiation I. Atomic excitation and ionization

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities L = 3.9 x 10 33 erg s 1 M = 2 x 10 33 g M bol = 4.74 R = 7 x 10 10 cm 1 A.U. = 1.5 x 10 13 cm 1 pc = 3.26 l.y. = 3.1 x 10 18 cm a = 7.56 x 10 15 erg cm 3 K 4 c= 3.0 x 10 10 cm s 1 σ = ac/4 = 5.7 x 10 5

More information

Cosmology - Redshift and Radiation ASTR 2120 Sarazin

Cosmology - Redshift and Radiation ASTR 2120 Sarazin Cosmology - Redshift and Radiation ASTR 2120 Sarazin Test #1 Monday, February 26, 11-11:50 am ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: "OMEWORK #1

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: OMEWORK #1 ASTR 1120 General Astronomy: Stars & Galaxies!ATH REVIEW: Tonight, 5-6pm, in RAMY N1B23 "OMEWORK #1 -Due THU, Sept. 10, by 5pm, on Mastering Astronomy CLASS RECORDED STARTED - INFO WILL BE POSTED on CULEARN

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

Quantum Statistics (2)

Quantum Statistics (2) Quantum Statistics Our final application of quantum mechanics deals with statistical physics in the quantum domain. We ll start by considering the combined wavefunction of two identical particles, 1 and

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Physics 160: Stellar Astrophysics. Midterm Exam. 27 October 2011 INSTRUCTIONS READ ME!

Physics 160: Stellar Astrophysics. Midterm Exam. 27 October 2011 INSTRUCTIONS READ ME! Physics 160: Stellar Astrophysics 27 October 2011 Name: S O L U T I O N S Student ID #: INSTRUCTIONS READ ME! 1. There are 4 questions on the exam; complete at least 3 of them. 2. You have 80 minutes to

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include:

There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include: Chapter 1 Introduction 1.1 Historical Background There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include: The blackbody

More information

The Sun: A Star of Our Own ASTR 2110 Sarazin

The Sun: A Star of Our Own ASTR 2110 Sarazin The Sun: A Star of Our Own ASTR 2110 Sarazin Sarazin Travel Wednesday, September 19 afternoon Friday, September 21 Will miss class Friday, September 21 TA Molly Finn will be guest lecturer Cancel Office

More information

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics Today : a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics photo-ionization of HII assoc. w/ OB stars ionization

More information

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle Newton s Laws of Motion and Gravity ASTR 2110 Sarazin Space Shuttle Discussion Session This Week Friday, September 8, 3-4 pm Shorter Discussion Session (end 3:40), followed by: Intro to Astronomy Department

More information

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 6. Stellar spectra excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H - 1 Occupation numbers: LTE case Absorption coefficient: κ ν = n i σ ν$ à calculation of occupation

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Final exam is scheduled on Thursday May 2 @ 8 10 AM In Physics 112 It will cover five Chapters 25, 27, 28, 29, and 30. Review lecture notes,

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin. Davis Solar Neutrino Experiment

Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin. Davis Solar Neutrino Experiment Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin Davis Solar Neutrino Experiment Hydrogen Burning Want 4H = 4p è 4 He = (2p,2n) p è n, only by weak interaction Much slower than pure fusion protons

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

Einstein s Approach to Planck s Law

Einstein s Approach to Planck s Law Supplement -A Einstein s Approach to Planck s Law In 97 Albert Einstein wrote a remarkable paper in which he used classical statistical mechanics and elements of the old Bohr theory to derive the Planck

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39

LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39 PHYS 270-SPRING 2011 LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39 April 14, 2011 1 HOW TO MEASURE SPECTRA Spectroscopy: Unlocking the Structure of Atoms

More information

Examination, course FY2450 Astrophysics Wednesday 23 rd May, 2012 Time:

Examination, course FY2450 Astrophysics Wednesday 23 rd May, 2012 Time: Page 1 of 18 The Norwegian University of Science and Technology Department of Physics Contact person Name: Robert Hibbins Tel: 93551, mobile: 94 82 08 34 Examination, course FY2450 Astrophysics Wednesday

More information

Light & Matter Interactions

Light & Matter Interactions Light & Matter Interactions. Spectral Lines. Kirchoff's Laws 2. Photons. Inside atoms 2. Classical Atoms 3. The Bohr Model 4. Lowest energy 5. Kirchoff's laws, again 3. Quantum Theory. de Broglie wavelength

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

Structure of the atom

Structure of the atom Structure of the atom What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

An object capable of emitting/absorbing all frequencies of radiation uniformly

An object capable of emitting/absorbing all frequencies of radiation uniformly 1 IIT Delhi - CML 100:1 The shortfalls of classical mechanics Classical Physics 1) precise trajectories for particles simultaneous specification of position and momentum 2) any amount of energy can be

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

Nicholas J. Giordano. Chapter 29. Atomic Theory. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.  Chapter 29. Atomic Theory. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 29 Atomic Theory Marilyn Akins, PhD Broome Community College Atomic Theory Matter is composed of atoms Atoms are assembled from electrons,

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

SISD Training Lectures in Spectroscopy

SISD Training Lectures in Spectroscopy SISD Training Lectures in Spectroscopy Anatomy of a Spectrum Visual Spectrum of the Sun Blue Spectrum of the Sun Morphological Features in Spectra λ 2 Line Flux = Fλ dλ λ1 (Units: erg s -1 cm -2 ) Continuum

More information

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic From Last Time All objects show both wave-like properties and particle-like properties. Electromagnetic radiation (e.g. light) shows interference effects (wave-like properties), but also comes in discrete

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy PHY 688, Lecture 5 Stanimir Metchev Outline Review of previous lecture Stellar atmospheres spectral lines line profiles; broadening

More information

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg Stellar Interiors. Hydrostatic Equilibrium 2. Mass continuity 3. Equation of State. The pressure integral 4. Stellar Energy Sources. Where does it come from? 5. Intro to Nuclear Reactions. Fission 2. Fusion

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact? Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

2. Stellar atmospheres: Structure

2. Stellar atmospheres: Structure 2. Stellar atmospheres: Structure 2.1. Assumptions Plane-parallel geometry Hydrostatic equilibrium, i.e. o no large-scale accelerations comparable to surface gravity o no dynamically significant mass loss

More information

Chapter 1 The Bohr Atom

Chapter 1 The Bohr Atom Chapter 1 The Bohr Atom 1 Introduction Niels Bohr was a Danish physicist who made a fundamental contribution to our understanding of atomic structure and quantum mechanics. He made the first successful

More information

CHAPTER 27. Continuum Emission Mechanisms

CHAPTER 27. Continuum Emission Mechanisms CHAPTER 27 Continuum Emission Mechanisms Continuum radiation is any radiation that forms a continuous spectrum and is not restricted to a narrow frequency range. In what follows we briefly describe five

More information

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Kenneth Wood, Room 316 kw25@st-andrews.ac.uk http://www-star.st-and.ac.uk/~kw25 What is a Stellar Atmosphere? Transition from dense

More information

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 QC-2 QUANTUM CHEMISTRY (Classical Concept) Dr. A. DAYALAN,Former Professor & Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai

More information

Light and Atoms

Light and Atoms Light and Atoms ASTR 170 2010 S1 Daniel Zucker E7A 317 zucker@science.mq.edu.au ASTR170 Introductory Astronomy: II. Light and Atoms 1 Overview We ve looked at telescopes, spectrographs and spectra now

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

Quantum Physics Lecture 5

Quantum Physics Lecture 5 Quantum Physics Lecture 5 Thermal Phenomena - continued Black Body radiation - Classical model, UV catastrophe - Planck model, Wien & Stefan laws - Photoelectric effect revisited The hydrogen atom Planetary

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

9.1 Introduction. 9.2 Static Models STELLAR MODELS

9.1 Introduction. 9.2 Static Models STELLAR MODELS M. Pettini: Structure and Evolution of Stars Lecture 9 STELLAR MODELS 9.1 Introduction Stars are complex physical systems, but not too complex to be modelled numerically and, with some simplifying assumptions,

More information

Announcements. There is no homework next week. Tuesday s sections (right after the midterm) will be cancelled.

Announcements. There is no homework next week. Tuesday s sections (right after the midterm) will be cancelled. 1 Announcements The Midterm is one week away! Bring: Calculator, scantron (big red form), pencil No notes, cellphones, or books allowed. Homework #4 is due this thursday There is no homework next week.

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out. Next, consider an optically thick source: Already shown that in the interior, radiation will be described by the Planck function. Radiation escaping from the source will be modified because the temperature

More information

Light and Matter(LC)

Light and Matter(LC) Light and Matter(LC) Every astronomy book that I ve seen has at least one chapter dedicated to the physics of light. Why are astronomers so interested in light? Everything* that we know about Astronomical

More information

Topics ASTR 3730: Fall 2003

Topics ASTR 3730: Fall 2003 Topics Qualitative questions: might cover any of the main topics (since 2nd midterm: star formation, extrasolar planets, supernovae / neutron stars, black holes). Quantitative questions: worthwhile to

More information

Preliminary Examination: Astronomy

Preliminary Examination: Astronomy Preliminary Examination: Astronomy Department of Physics and Astronomy University of New Mexico Spring 2017 Instructions: Answer 8 of the 10 questions (10 points each) Total time for the test is three

More information

College Physics B - PHY2054C

College Physics B - PHY2054C of College - PHY2054C The of 11/17/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline of 1 2 of 3 4 of Puzzling The blackbody intensity falls to zero at both long and short wavelengths,

More information