Branch-and-Price algorithm for Vehicle Routing Problem: tutorial

Size: px
Start display at page:

Download "Branch-and-Price algorithm for Vehicle Routing Problem: tutorial"

Transcription

1 Branch-and-Price algorithm for Vehicle Routing Problem: tutorial Kyuree AHN Department of Industrial and Systems Engineering KAIST, Republic of Korea Friday, May 17, 2017

2 Presentation Overview Problem description Vehicle Routing Problem with Time Window (VRPTW) Column generation Set partitioning problem Master Problem Generating Columns Subproblem Overall Algorithm Branch-and-Bound Why we need branch-and-bound? Branching Decisions Branch-and-price General problem Implement on split job Results Concluding Remark 2017 winter Xs3d lab seminar - Branch-and-Price 2

3 Presentation Overview Problem description Vehicle Routing Problem with Time Window (VRPTW) Column generation Set partitioning problem Master Problem Generating Columns Subproblem Overall Algorithm Branch-and-Bound Why we need branch-and-bound? Branching Decisions Branch-and-price General problem Implement on split job Results Concluding Remark 2017 winter Xs3d lab seminar - Branch-and-Price 3

4 Vehicle Routing Problem with Time Window (VRPTW) VRPTW 2 [2,4] 3 [3,5] 2 [2,4] 3 [3,5] 1 [1,3] Depot 1 [1,3] Depot 4 [4,6] 4 [4,6] 2017 winter Xs3d lab seminar - Branch-and-Price 4

5 Vehicle Routing Problem with Time Window (VRPTW) VRPTW 2017 winter Xs3d lab seminar - Branch-and-Price 5

6 Vehicle Routing Problem with Time Window (VRPTW) VRPTW minimize total distance Each customer served once Capacity constraint Flow constraints Time constraints 2017 winter Xs3d lab seminar - Branch-and-Price 6

7 Presentation Overview Problem description Vehicle Routing Problem with Time Window (VRPTW) Column generation Set partitioning problem Master Problem Generating Columns Subproblem Overall Algorithm Branch-and-Bound Why we need branch-and-bound? Branching Decisions Branch-and-price General problem Implement on split job Results Concluding Remark 2017 winter Xs3d lab seminar - Branch-and-Price 7

8 Set partitioning Problem Set Partitioning problem Master Problem 2 [2,4] 3 [3,5] 4 [4,6] 9 feasible routes (d-1-d), (d-2-d), (d-3-d), (d-4-d), (d-1-2-d), (d-2-3-d), (d-3-4-d), Generating Columns Subproblem Overall Algorithm 1 [1,3] Depot C = 1, 2, 3, 4 SP (d d), (d d) 2017 winter Xs3d lab seminar - Branch-and-Price 8

9 Set partitioning Problem Set Partitioning problem Master Problem 2 [2,4] 3 [3,5] 4 [4,6] 9 feasible routes (d-1-d), (d-2-d), (d-3-d), (d-4-d), (d-1-2-d), (d-2-3-d), (d-3-4-d), Generating Columns Subproblem Overall Algorithm 1 [1,3] Depot C = 1, 2, 3, 4 SP (d d), (d d) 2017 winter Xs3d lab seminar - Branch-and-Price 9

10 Set partitioning Problem Set Partitioning problem Master Problem Generating Columns Subproblem Overall Algorithm One column = One route = One subset y r = 1, if route r is used 0, otherwise c r = cost(distance) of route r R = set of all feasible routes δ ir = 1 if customer i is serviced by route r SP 2017 winter Xs3d lab seminar - Branch-and-Price 10

11 Set partitioning Problem Set Partitioning problem Master Problem Generating Columns SP Subproblem Overall Algorithm Relax Integer Condition MP 2017 winter Xs3d lab seminar - Branch-and-Price 11

12 Master Problem(MP) Set Partitioning problem Master Problem Generating Columns Linear relaxation of SP: y r no longer binary MP Subproblem Overall Algorithm 0 y i 1 Part Ⅰ : Initial columns Part Ⅱ : Generated by subproblem 2017 winter Xs3d lab seminar - Branch-and-Price 12

13 Master Problem(MP) Set Partitioning problem Master Problem Generating Columns Linear relaxation of SP: y r no longer binary MP Subproblem Overall Algorithm 0 y i 1 Part Ⅰ : Initial columns Part Ⅱ : Generated by subproblem 2017 winter Xs3d lab seminar - Branch-and-Price 13

14 Master Problem(MP) Set Partitioning problem Master Problem Generating Columns Linear relaxation of SP: y r no longer binary MP Subproblem Overall Algorithm 0 y i 1 Part Ⅰ : Initial columns Part Ⅱ : Generated by subproblem How do we generate new column? 2017 winter Xs3d lab seminar - Branch-and-Price 14

15 Set Partitioning problem Master Problem Generating Columns Subproblem Overall Algorithm Generating Columns Find new column with maximum reduced cost MP Reduced cost Dual variable π i, i C If reduced cost negative, solution can be improved 2017 winter Xs3d lab seminar - Branch-and-Price 15

16 Generating Columns Set Partitioning problem Master Problem Generating Columns Find new column with maximum reduced cost MP Dual variable π i, i C Subproblem Overall Algorithm Reduced cost Minimize! 2017 winter Xs3d lab seminar - Branch-and-Price 16

17 Subproblem Set Partitioning problem Master Problem Generating Columns c ij = c ij π i : how much arc(i,j) can improve current MP Subproblem Overall Algorithm Find path with negative reduced cost When minimum reduced cost > 0, the algorithm ends 2017 winter Xs3d lab seminar - Branch-and-Price 17

18 Overall Algorithm Overview Master Problem Generating Columns START Generate initial routes Subproblem Overall Algorithm Solve Master Problem and get dual Run Subpbroblem Add routes to the problem Reduced cost negative? YES NO End 2017 winter Xs3d lab seminar - Branch-and-Price 18

19 Presentation Overview Problem description Vehicle Routing Problem with Time Window (VRPTW) Column generation Set partitioning problem Master Problem Generating Columns Subproblem Overall Algorithm Branch-and-Bound Why we need branch-and-bound? Branching Decisions Branch-and-price General problem Implement on split job Results Concluding Remark 2017 winter Xs3d lab seminar - Branch-and-Price 19

20 Why we need branch-and-bound? Why B&B? B&B MP Branch-and- Price Solution of relaxed master problem may fractional(non-integer) If column generation end but solution is fractional Branch-and-bound occurs 2017 winter Xs3d lab seminar - Branch-and-Price 20

21 Branching Decisions Why B&B? B&B Branch-and- Price Bounding Global upper bound(gub, current best solution) GUB = initially Local lower bound(llb, optimal solution of current node) If LLB < GUB, branch and update GUB If LLB > GUB, discard Branching on arc (x ij = k K x ijk ) When x ij fractional, branching occurs. x ij = 0 : arc i, j is removed from the subproblem x ij = 1 : arcs (i, j) are removed from the current master problem x ij = 0 x ij = winter Xs3d lab seminar - Branch-and-Price 21

22 Branch-and-Price Why B&B? B&B START Generate initial routes Branch-and- Price Solve Master Problem Run Subpbroblem Add routes to the problem Reduced cost negative? N Solution Integral? N Branch Y Y Done 2017 winter Xs3d lab seminar - Branch-and-Price 22

23 Presentation Overview Problem description Vehicle Routing Problem with Time Window (VRPTW) Column generation Set partitioning problem Master Problem Generating Columns Subproblem Overall Algorithm Branch-and-Bound Why we need branch-and-bound? Branching Decisions Branch-and-price General problem Implement on split job Results Concluding Remark 2017 winter Xs3d lab seminar - Branch-and-Price 23

24 Implement on split job x ijk = 1, if vehicle k serve split job j after split job i, 0, otherwise s ik starting time of vehicle k service customer i. c ij distance between end location if ith job and start location of jth job s ik c ij 2017 winter Xs3d lab seminar - Branch-and-Price 24

25 Results 10 Tasks 2 Depots : (195, 47) and (587, 145) Speed : 150m/min Maximum flight time = 10min Start End Task a Location Location i b i q i winter Xs3d lab seminar - Branch-and-Price 25

26 Results 2017 winter Xs3d lab seminar - Branch-and-Price 26

27 Results 2017 winter Xs3d lab seminar - Branch-and-Price 27

28 Concluding Remarks Initial location of vehicle Reuse of vehicle Another SP Subproblem is often NP-hard Dynamic programming 2017 winter Xs3d lab seminar - Branch-and-Price 28

29 References Gamrath, Gerald. "Generic branch-cut-and-price." (2010). Larsen, Jesper. Parallelization of the vehicle routing problem with time windows. Diss. Technical University of DenmarkDanmarks Tekniske Universitet, Department of Informatics and Mathematical ModelingInstitut for Informatik og Matematisk Modellering, Kallehauge, Brian, et al. "Vehicle routing problem with time windows." Column generation. Springer US, Azi, Nabila, Michel Gendreau, and Jean-Yves Potvin. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles." European Journal of Operational Research (2010): winter Xs3d lab seminar - Branch-and-Price 29

30 Thank you

31 References Gamrath, Gerald. "Generic branch-cut-and-price." (2010). Larsen, Jesper. Parallelization of the vehicle routing problem with time windows. Diss. Technical University of DenmarkDanmarks Tekniske Universitet, Department of Informatics and Mathematical ModelingInstitut for Informatik og Matematisk Modellering, Kallehauge, Brian, et al. "Vehicle routing problem with time windows." Column generation. Springer US, Azi, Nabila, Michel Gendreau, and Jean-Yves Potvin. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles." European Journal of Operational Research (2010): winter Xs3d lab seminar - Branch-and-Price 31

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Guy Desaulniers École Polytechnique de Montréal and GERAD Column Generation 2008 Aussois, France Outline Introduction

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Bjørn Petersen & Mads Kehlet Jepsen } DIKU Department of Computer Science, University of Copenhagen Universitetsparken 1,

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

Classification of Dantzig-Wolfe Reformulations for MIP s

Classification of Dantzig-Wolfe Reformulations for MIP s Classification of Dantzig-Wolfe Reformulations for MIP s Raf Jans Rotterdam School of Management HEC Montreal Workshop on Column Generation Aussois, June 2008 Outline and Motivation Dantzig-Wolfe reformulation

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Sito web: http://home.deib.polimi.it/amaldi/ott-13-14.shtml A.A. 2013-14 Edoardo

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows

Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows Matteo Salani Ilaria Vacca December 24, 2009 Report TRANSP-OR 091224 Transport and Mobility Laboratory Ecole

More information

A generalized formulation for vehicle routing problems

A generalized formulation for vehicle routing problems Working paper A generalized formulation for vehicle routing problems Pedro Munari a, Twan Dollevoet b, Remy Spliet b a Production Engineering Department, Federal University of São Carlos, Brazil b Econometric

More information

A Hub Location Problem with Fully Interconnected Backbone and Access Networks

A Hub Location Problem with Fully Interconnected Backbone and Access Networks A Hub Location Problem with Fully Interconnected Backbone and Access Networks Tommy Thomadsen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark tt@imm.dtu.dk

More information

Column Generation. i = 1,, 255;

Column Generation. i = 1,, 255; Column Generation The idea of the column generation can be motivated by the trim-loss problem: We receive an order to cut 50 pieces of.5-meter (pipe) segments, 250 pieces of 2-meter segments, and 200 pieces

More information

IGERT Experience In SwitzerlandLogistics at Galenica Pharmaceutical p.1

IGERT Experience In SwitzerlandLogistics at Galenica Pharmaceutical p.1 IGERT Experience In Switzerland Logistics at Galenica Pharmaceutical Matthew V Galati Gérard Hêche Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA September 27, 2002

More information

Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints

Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints Mads Kehlet Jepsen & Bjørn Petersen Department of Computer Science, University of Copenhagen Universitetsparken

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Branch-and-Price for a Multi-Attribute Technician Routing and Scheduling Problem

Branch-and-Price for a Multi-Attribute Technician Routing and Scheduling Problem Branch-and-Price for a Multi-Attribute Technician Routing and Scheduling Problem Ines Mathlouthi Michel Gendreau Jean-Yves Potvin August 2017 Branch-and-Price for a Multi-Attribute Technician Routing and

More information

A Column Generation Based Heuristic for the Dial-A-Ride Problem

A Column Generation Based Heuristic for the Dial-A-Ride Problem A Column Generation Based Heuristic for the Dial-A-Ride Problem Nastaran Rahmani 1, Boris Detienne 2,3, Ruslan Sadykov 3,2, François Vanderbeck 2,3 1 Kedge Business School, 680 Cours de la Libération,

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

Combinatorial optimization problems

Combinatorial optimization problems Combinatorial optimization problems Heuristic Algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Optimization In general an optimization problem can be formulated as:

More information

Decomposition Methods for Integer Programming

Decomposition Methods for Integer Programming Decomposition Methods for Integer Programming J.M. Valério de Carvalho vc@dps.uminho.pt Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho Portugal PhD Course Programa Doutoral

More information

An exact algorithm for Aircraft Landing Problem

An exact algorithm for Aircraft Landing Problem An exact algorithm for Aircraft Landing Problem Min Wen Jesper Larsen Jens Clausen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark September 4, 2005 Abstract

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Integer Programming Part II

Integer Programming Part II Be the first in your neighborhood to master this delightful little algorithm. Integer Programming Part II The Branch and Bound Algorithm learn about fathoming, bounding, branching, pruning, and much more!

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Pedro Munari [munari@dep.ufscar.br] - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Outline Vehicle routing problem; How interior point methods can help; Interior point branch-price-and-cut:

More information

Vehicle Routing and MIP

Vehicle Routing and MIP CORE, Université Catholique de Louvain 5th Porto Meeting on Mathematics for Industry, 11th April 2014 Contents: The Capacitated Vehicle Routing Problem Subproblems: Trees and the TSP CVRP Cutting Planes

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009 Branch-and-Bound Algorithm November 3, 2009 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal

More information

Scheduling Home Hospice Care with Logic-Based Benders Decomposition

Scheduling Home Hospice Care with Logic-Based Benders Decomposition Scheduling Home Hospice Care with Logic-Based Benders Decomposition John Hooker Carnegie Mellon University Joint work with Aliza Heching Ryo Kimura Compassionate Care Hospice CMU Lehigh University October

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Complexity of Routing Problems with Release Dates and Deadlines

Complexity of Routing Problems with Release Dates and Deadlines Complexity of Routing Problems with Release Dates and Deadlines Alan Erera, Damian Reyes, and Martin Savelsbergh H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

More information

where X is the feasible region, i.e., the set of the feasible solutions.

where X is the feasible region, i.e., the set of the feasible solutions. 3.5 Branch and Bound Consider a generic Discrete Optimization problem (P) z = max{c(x) : x X }, where X is the feasible region, i.e., the set of the feasible solutions. Branch and Bound is a general semi-enumerative

More information

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths H. Murat AFSAR Olivier BRIANT Murat.Afsar@g-scop.inpg.fr Olivier.Briant@g-scop.inpg.fr G-SCOP Laboratory Grenoble Institute of Technology

More information

A Priori Route Evaluation for the Lateral Transhipment Problem (ARELTP) with Piecewise Linear Profits

A Priori Route Evaluation for the Lateral Transhipment Problem (ARELTP) with Piecewise Linear Profits 1 / 47 A Priori Route Evaluation for the Lateral Transhipment Problem (ARELTP) with Piecewise Linear Profits Martin Romauch 1 Richard Hartl 1 Thibaut Vidal 2 1 University of Vienna 2 PUC-Rio, Rio de Janeiro,

More information

Branch-and-cut (and-price) for the chance constrained vehicle routing problem

Branch-and-cut (and-price) for the chance constrained vehicle routing problem Branch-and-cut (and-price) for the chance constrained vehicle routing problem Ricardo Fukasawa Department of Combinatorics & Optimization University of Waterloo May 25th, 2016 ColGen 2016 joint work with

More information

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling Department of Mathematics, Linköping University Jessika Boberg LiTH-MAT-EX 2017/18 SE Credits: Level:

More information

Branch-and-Price for Routing with Probabilistic Customers

Branch-and-Price for Routing with Probabilistic Customers Branch-and-Price for Routing with Probabilistic Customers Felipe Lagos 1, Mathias A. Klapp 2, Alejandro Toriello 1 1 H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of

More information

Advanced Topics in Operations Research

Advanced Topics in Operations Research Advanced Topics in Operations Research jla@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark 1 Why look at the Set Partitioning Problem? The Set Partitioning Problem has

More information

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows Philipp Hungerländer Christian Truden 5th January 2017 Abstract In this extended abstract we introduce the

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

A Branch-and-Cut Algorithm for the Periodic Rural Postman Problem with Irregular Services

A Branch-and-Cut Algorithm for the Periodic Rural Postman Problem with Irregular Services A Branch-and-Cut Algorithm for the Periodic Rural Postman Problem with Irregular Services Enrique Benavent Ángel Corberán Demetrio Laganà Francesca Vocaturo DEIO, Universitat de València, Spain DIMEG,

More information

Integer linear programming models for a cement delivery problem

Integer linear programming models for a cement delivery problem Integer linear programming models for a cement delivery problem Alain Hertz Département de mathématiques et de génie industriel École Polytechnique de Montréal alain.hertz@gerad.ca Marc Uldry and Marino

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

An Optimization-Based Heuristic for the Split Delivery Vehicle Routing Problem

An Optimization-Based Heuristic for the Split Delivery Vehicle Routing Problem An Optimization-Based Heuristic for the Split Delivery Vehicle Routing Problem Claudia Archetti (1) Martin W.P. Savelsbergh (2) M. Grazia Speranza (1) (1) University of Brescia, Department of Quantitative

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP)

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP) INTEGER PROGRAMMING Integer Programming g In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Cut-First Branch-and-Price-Second for the CARP Workshop on Large Scale Optimization 2012 Vevey, Switzerland

Cut-First Branch-and-Price-Second for the CARP Workshop on Large Scale Optimization 2012 Vevey, Switzerland Cut-First Branch-and-Price-Second for the CARP Workshop on Large Scale Optimization 2012 Vevey, Switzerland Claudia Bode and Stefan Irnich {claudia.bode,irnich}@uni-mainz.de Chair for Logistics Management

More information

Column Generation for Bi-Objective Vehicle Routing Problems with a Min-Max Objective

Column Generation for Bi-Objective Vehicle Routing Problems with a Min-Max Objective Author manuscript, published in "ATMOS - 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems - 2013 33 (2013) 137--149" DOI : 10.4230/OASIcs.ATMOS.2013.137 Column

More information

Advanced linear programming

Advanced linear programming Advanced linear programming http://www.staff.science.uu.nl/~akker103/alp/ Chapter 10: Integer linear programming models Marjan van den Akker 1 Intro. Marjan van den Akker Master Mathematics TU/e PhD Mathematics

More information

Models and Cuts for the Two-Echelon Vehicle Routing Problem

Models and Cuts for the Two-Echelon Vehicle Routing Problem Models and Cuts for the Two-Echelon Vehicle Routing Problem Guido Perboli Roberto Tadei Francesco Masoero Department of Control and Computer Engineering, Politecnico di Torino Corso Duca degli Abruzzi,

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Partial Path Column Generation for the Vehicle Routing Problem

Partial Path Column Generation for the Vehicle Routing Problem Partial Path Column Generation for the Vehicle Routing Problem Report 12.2009 DTU Management Engineering Mads Kehlet Jepsen Bjørn Petersen November 2009 Partial Path Column Generation for the Vehicle Routing

More information

Pricing Routines for Vehicle Routing with Time Windows on Road Networks

Pricing Routines for Vehicle Routing with Time Windows on Road Networks Pricing Routines for Vehicle Routing with Time Windows on Road Networks Adam N. Letchford Saeideh D. Nasiri Amar Oukil Published in Computers & Operations Research, July 2014 Abstract Several very effective

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 1 Homework Problems Exercise

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4,

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4, LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR OCH KOMBINATORISK OPTIMERING 2018-03-16 1. a) The rst thing to do is to rewrite the problem so that the right hand side of all constraints are positive.

More information

On the exact solution of a large class of parallel machine scheduling problems

On the exact solution of a large class of parallel machine scheduling problems 1 / 23 On the exact solution of a large class of parallel machine scheduling problems Teobaldo Bulhões 2 Ruslan Sadykov 1 Eduardo Uchoa 2 Anand Subramanian 3 1 Inria Bordeaux and Univ. Bordeaux, France

More information

Logic, Optimization and Data Analytics

Logic, Optimization and Data Analytics Logic, Optimization and Data Analytics John Hooker Carnegie Mellon University United Technologies Research Center, Cork, Ireland August 2015 Thesis Logic and optimization have an underlying unity. Ideas

More information

The fire and rescue vehicle location problem

The fire and rescue vehicle location problem The fire and rescue vehicle location problem Henrik Andersson Norwegian University of Science and Technology Tobias Andersson Granberg Linköping University Introduction The Swedish Civil Contingencies

More information

Almost Robust Optimization with Binary Variables

Almost Robust Optimization with Binary Variables Almost Robust Optimization with Binary Variables Opher Baron, Oded Berman, Mohammad M. Fazel-Zarandi Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada, Opher.Baron@Rotman.utoronto.ca,

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 16 Dr. Ted Ralphs ISE 418 Lecture 16 1 Reading for This Lecture Wolsey, Chapters 10 and 11 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4 CCZ Chapter 8

More information

Integer Programming and Branch and Bound

Integer Programming and Branch and Bound Courtesy of Sommer Gentry. Used with permission. Integer Programming and Branch and Bound Sommer Gentry November 4 th, 003 Adapted from slides by Eric Feron and Brian Williams, 6.40, 00. Integer Programming

More information

Creating Web Presentations

Creating Web Presentations Creating Web Presentations with W3C Slidy Gerald Senarclens de Grancy Grazer Linuxtage, April 2014, Graz Outline Web Presentations - Programs, Purpose and Powers Tiny Tour of What

More information

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of Column Generation MTech Seminar Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering

More information

Stochastic Integer Programming An Algorithmic Perspective

Stochastic Integer Programming An Algorithmic Perspective Stochastic Integer Programming An Algorithmic Perspective sahmed@isye.gatech.edu www.isye.gatech.edu/~sahmed School of Industrial & Systems Engineering 2 Outline Two-stage SIP Formulation Challenges Simple

More information

Integer Linear Programming (ILP)

Integer Linear Programming (ILP) Integer Linear Programming (ILP) Zdeněk Hanzálek, Přemysl Šůcha hanzalek@fel.cvut.cz CTU in Prague March 8, 2017 Z. Hanzálek (CTU) Integer Linear Programming (ILP) March 8, 2017 1 / 43 Table of contents

More information

Projection in Logic, CP, and Optimization

Projection in Logic, CP, and Optimization Projection in Logic, CP, and Optimization John Hooker Carnegie Mellon University Workshop on Logic and Search Melbourne, 2017 Projection as a Unifying Concept Projection is a fundamental concept in logic,

More information

23. Cutting planes and branch & bound

23. Cutting planes and branch & bound CS/ECE/ISyE 524 Introduction to Optimization Spring 207 8 23. Cutting planes and branch & bound ˆ Algorithms for solving MIPs ˆ Cutting plane methods ˆ Branch and bound methods Laurent Lessard (www.laurentlessard.com)

More information

EXACT ALGORITHMS FOR THE ATSP

EXACT ALGORITHMS FOR THE ATSP EXACT ALGORITHMS FOR THE ATSP Branch-and-Bound Algorithms: Little-Murty-Sweeney-Karel (Operations Research, ); Bellmore-Malone (Operations Research, ); Garfinkel (Operations Research, ); Smith-Srinivasan-Thompson

More information

International ejournals

International ejournals ISSN 0976 1411 Available online at www.internationalejournals.com International ejournals International ejournal of Mathematics and Engineering 2 (2017) Vol. 8, Issue 1, pp 11 21 Optimization of Transportation

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

Introduction to integer programming III:

Introduction to integer programming III: Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability

More information

A computational study of enhancements to Benders Decomposition in uncapacitated multicommodity network design

A computational study of enhancements to Benders Decomposition in uncapacitated multicommodity network design A computational study of enhancements to Benders Decomposition in uncapacitated multicommodity network design 1 Carlos Armando Zetina, 1 Ivan Contreras, 2 Jean-François Cordeau 1 Concordia University and

More information

Exact and Heuristic Algorithms for the Symmetric and Asymmetric Vehicle Routing Problem with Backhauls

Exact and Heuristic Algorithms for the Symmetric and Asymmetric Vehicle Routing Problem with Backhauls Exact and Heuristic Algorithms for the Symmetric and Asymmetric Vehicle Routing Problem with Backhauls Paolo Toth, Daniele Vigo ECCO IX - Dublin 1996 Exact and Heuristic Algorithms for VRPB 1 Vehicle Routing

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

PART 4 INTEGER PROGRAMMING

PART 4 INTEGER PROGRAMMING PART 4 INTEGER PROGRAMMING 102 Read Chapters 11 and 12 in textbook 103 A capital budgeting problem We want to invest $19 000 Four investment opportunities which cannot be split (take it or leave it) 1.

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Totally unimodular matrices Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

The Stochastic Vehicle Routing Problem

The Stochastic Vehicle Routing Problem The Stochastic Vehicle Routing Problem Research Paper Vrije Universiteit Amsterdam Faculty of Sciences Study programme Business Analytics De Boelelaan 08a 08 HV Amsterdam Dimitry Erkin, email:dimitry.erkin@gmail.com

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

arxiv: v1 [math.oc] 18 Aug 2014

arxiv: v1 [math.oc] 18 Aug 2014 New symmetries in mixed-integer linear optimization Symmetry heuristics and complement-based symmetries arxiv:1408.4017v1 [math.oc] 18 Aug 2014 Philipp M. Christophel, Menal Güzelsoy, and Imre Pólik SAS

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Decomposition-based Methods for Large-scale Discrete Optimization p.1

Decomposition-based Methods for Large-scale Discrete Optimization p.1 Decomposition-based Methods for Large-scale Discrete Optimization Matthew V Galati Ted K Ralphs Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA Départment de Mathématiques

More information

IE418 Integer Programming

IE418 Integer Programming IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 2nd February 2005 Boring Stuff Extra Linux Class: 8AM 11AM, Wednesday February 9. Room??? Accounts and Passwords

More information

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization Professor M. Chiang Electrical Engineering Department, Princeton University March 16, 2007 Lecture

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Branch and Price for Hub Location Problems with Single Assignment

Branch and Price for Hub Location Problems with Single Assignment Branch and Price for Hub Location Problems with Single Assignment Ivan Contreras 1, Elena Fernández 2 1 Concordia University and CIRRELT, Montreal, Canada 2 Technical University of Catalonia, Barcelona,

More information

INTEGER PROGRAMMING. In many problems the decision variables must have integer values.

INTEGER PROGRAMMING. In many problems the decision variables must have integer values. INTEGER PROGRAMMING Integer Programming In many problems the decision variables must have integer values. Example:assign people, machines, and vehicles to activities in integer quantities. If this is the

More information

A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions

A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions Meritxell Pacheco Shadi Sharif Azadeh, Michel Bierlaire, Bernard Gendron

More information

Logic-based Benders Decomposition

Logic-based Benders Decomposition Logic-based Benders Decomposition A short Introduction Martin Riedler AC Retreat Contents 1 Introduction 2 Motivation 3 Further Notes MR Logic-based Benders Decomposition June 29 July 1 2 / 15 Basic idea

More information

A STUDY OF REALISTIC AND INNOVATIVE FEATURES OF THE SCHOOL BUS ROUTING PROBLEM

A STUDY OF REALISTIC AND INNOVATIVE FEATURES OF THE SCHOOL BUS ROUTING PROBLEM A STUDY OF REALISTIC AND INNOVATIVE FEATURES OF THE SCHOOL BUS ROUTING PROBLEM by Hernan Andres Caceres Venegas February 1, 2017 A dissertation submitted to the Faculty of the Graduate School of the University

More information

THE TRAVELING SALESMAN PROBLEM (TSP) is one

THE TRAVELING SALESMAN PROBLEM (TSP) is one Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 377 384 Quadratic TSP: A lower bounding procedure and a column generation approach Borzou Rostami, Federico

More information