VIME: Variational Information Maximizing Exploration

Size: px
Start display at page:

Download "VIME: Variational Information Maximizing Exploration"

Transcription

1 1 VIME: Variational Information Maximizing Exploration Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel Reviewed by Zhao Song January 13, 2017

2 1 Exploration in Reinforcement Learning The exploration-exploitation dilemma: Exploration: The agent experiments with novel strategies that may improve returns in the long run; Exploitation: The agent maximizes rewards through behavior that is known to be successful. This paper focuses on the exploration.

3 2 Exploration in Reinforcement Learning (cont.) Typical strategies in exploration: Bayesian RL and PAC-MDP methods - Theoretical guarantees - Not scalable - Continuous control Heuristic exploration - Data inefficient

4 3 Notations Finite-horizon discounted Markov decision process (M D P): S R n : the state set A R m : the action set P : S A S R 0 : the transition probability r : S A R: the reward function γ (0, 1]: the discount factor T : the horizon

5 4 Curiosity-driven Exploration Basic idea: Seeking out state-action regions relatively unexplored [Schmidhuber 1991] Environment dynamics modeled as p(s t+1 s t, a t ; θ) Taking actions that maximize the reduction in uncertainty about the dynamics [ H(Θ ξt, a t ) H(Θ s t+1, ξ t, a t ) ] t where ξ t = {s 1, a 1,..., s t } corresponds to the history up to time t Interpretation using mutual information between s t+1 and Θ [ I(s t+1 ; Θ ξ t, a t ) = E st+1 P( ξ t,a t){d KL p(θ ξt, a t, s t+1 ) p(θ ξ t ) ] } }{{} Information Gain

6 5 Curiosity-driven Exploration (cont.) Explicitly maxmizing mutual information intractable An approximate approach with RL - Taking action a t π α (s t ) - Sampling s t+1 P( s t, a t ) - Obtaining the new reward r (s t, a t, s t+1 ) = r(s t, a t ) + ηd KL [ p(θ ξt, a t, s t+1 ) p(θ ξ t ) ] where η R + is a hyperparameter

7 The VIME Algorithm 6

8 7 Variational Bayes Posterior via Bayes rule where p(θ ξ t, a t, s t+1 ) = p(θ ξ t) p(s t+1 ξ t, a t ; θ) p(s t+1 ξ t, a t ) p(s t+1 ξ t, a t ) = Approximating p(θ D) with q(θ; φ) The total reward is then approximated as Θ p(s t+1 ξ t, a t ; θ) p(θ ξ t )dθ r (s t, a t, s t+1 ) = r(s t, a t ) + ηd KL [ q(θ φt+1 ) q(θ φ t ) ]

9 8 Neural Networks Implementation The Bayesian nerual network (BNN) [Blundell et al. 2015] Modeling p(s t+1 s t, a t ; θ) The weight distribution parameterized by φ Θ q(θ; φ) = N (θ i µ i, σi 2 ) i=1 Feedforward network structure and ReLU nonlinearity between hidden layers Trained by maximizing the variational lower bound using Backprop L[q(θ; φ), D] = E θ q( ;φ) [log p(d θ)] D KL [q(θ; φ) p(θ)]

10 9 Efficient Computation of Information Gain Approximated with D KL [q(θ; φ + λ φ ) q(θ; φ)] 1 Newton s method - Step φ = H 1 (l) φ l ( q(θ; φ), s t ) - Diagonal Hessian 2 Taylor expansion - Only the second-order term left - D KL [q(θ; φ + λ φ ) q(θ; φ)] 1 2 λ2 φ l T H 1 φ l

11 10 Experiments Setup Continous control problems Policies learned by TRPO [Schulman et al. 2015] Performance measured in terms of average return

12 Experimental Results 11

13 Experimental Results (cont.) 12

14 Experimental Results (cont.) 13

15 14 References I Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in Neural Network. : Proceedings of The 32nd International Conference on Machine Learning Jürgen Schmidhuber. Curious Model-Building Control Systems. : Proceedings of International Joint Conference on Neural Networks. Citeseer John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust Region Policy Optimization. : Proceedings of the 32nd International Conference on Machine Learning (ICML-15)

arxiv: v1 [cs.lg] 31 May 2016

arxiv: v1 [cs.lg] 31 May 2016 Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks arxiv:165.9674v1 [cs.lg] 31 May 216 Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel

More information

arxiv: v4 [cs.lg] 27 Jan 2017

arxiv: v4 [cs.lg] 27 Jan 2017 VIME: Variational Information Maximizing Exploration arxiv:1605.09674v4 [cs.lg] 27 Jan 2017 Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel UC Berkeley, Department of Electrical

More information

Advanced Policy Gradient Methods: Natural Gradient, TRPO, and More. March 8, 2017

Advanced Policy Gradient Methods: Natural Gradient, TRPO, and More. March 8, 2017 Advanced Policy Gradient Methods: Natural Gradient, TRPO, and More March 8, 2017 Defining a Loss Function for RL Let η(π) denote the expected return of π [ ] η(π) = E s0 ρ 0,a t π( s t) γ t r t We collect

More information

Behavior Policy Gradient Supplemental Material

Behavior Policy Gradient Supplemental Material Behavior Policy Gradient Supplemental Material Josiah P. Hanna 1 Philip S. Thomas 2 3 Peter Stone 1 Scott Niekum 1 A. Proof of Theorem 1 In Appendix A, we give the full derivation of our primary theoretical

More information

Trust Region Policy Optimization

Trust Region Policy Optimization Trust Region Policy Optimization Yixin Lin Duke University yixin.lin@duke.edu March 28, 2017 Yixin Lin (Duke) TRPO March 28, 2017 1 / 21 Overview 1 Preliminaries Markov Decision Processes Policy iteration

More information

Noisy Natural Gradient as Variational Inference

Noisy Natural Gradient as Variational Inference Noisy Natural Gradient as Variational Inference Guodong Zhang Shengyang Sun David Duvenaud Roger Grosse University of Toronto Vector Institute {gdzhang, ssy, duvenaud, rgrosse}@cs.toronto.edu Abstract

More information

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning Michalis K. Titsias Department of Informatics Athens University of Economics and Business

More information

Variational Deep Q Network

Variational Deep Q Network Variational Deep Q Network Yunhao Tang Department of IEOR Columbia University yt2541@columbia.edu Alp Kucukelbir Department of Computer Science Columbia University alp@cs.columbia.edu Abstract We propose

More information

Exploration. 2015/10/12 John Schulman

Exploration. 2015/10/12 John Schulman Exploration 2015/10/12 John Schulman What is the exploration problem? Given a long-lived agent (or long-running learning algorithm), how to balance exploration and exploitation to maximize long-term rewards

More information

Combining PPO and Evolutionary Strategies for Better Policy Search

Combining PPO and Evolutionary Strategies for Better Policy Search Combining PPO and Evolutionary Strategies for Better Policy Search Jennifer She 1 Abstract A good policy search algorithm needs to strike a balance between being able to explore candidate policies and

More information

Probabilistic Mixture of Model-Agnostic Meta-Learners

Probabilistic Mixture of Model-Agnostic Meta-Learners Probabilistic Mixture of Model-Agnostic Meta-Learners Prasanna Sattigeri psattig@us.ibm.com Soumya Ghosh ghoshso@us.ibm.com Abhishe Kumar abhishe@inductivebias.net Karthieyan Natesan Ramamurthy natesa@us.ibm.com

More information

Gradient Estimation Using Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs Gradient Estimation Using Stochastic Computation Graphs Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology May 9, 2017 Outline Stochastic Gradient Estimation

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme

An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme Ghassen Jerfel April 2017 As we will see during this talk, the Bayesian and information-theoretic

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Deep Reinforcement Learning

Deep Reinforcement Learning Deep Reinforcement Learning John Schulman 1 MLSS, May 2016, Cadiz 1 Berkeley Artificial Intelligence Research Lab Agenda Introduction and Overview Markov Decision Processes Reinforcement Learning via Black-Box

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information

Lecture 9: Policy Gradient II 1

Lecture 9: Policy Gradient II 1 Lecture 9: Policy Gradient II 1 Emma Brunskill CS234 Reinforcement Learning. Winter 2019 Additional reading: Sutton and Barto 2018 Chp. 13 1 With many slides from or derived from David Silver and John

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Reinforcement Learning for NLP

Reinforcement Learning for NLP Reinforcement Learning for NLP Advanced Machine Learning for NLP Jordan Boyd-Graber REINFORCEMENT OVERVIEW, POLICY GRADIENT Adapted from slides by David Silver, Pieter Abbeel, and John Schulman Advanced

More information

Deep Reinforcement Learning: Policy Gradients and Q-Learning

Deep Reinforcement Learning: Policy Gradients and Q-Learning Deep Reinforcement Learning: Policy Gradients and Q-Learning John Schulman Bay Area Deep Learning School September 24, 2016 Introduction and Overview Aim of This Talk What is deep RL, and should I use

More information

Artificial Intelligence & Sequential Decision Problems

Artificial Intelligence & Sequential Decision Problems Artificial Intelligence & Sequential Decision Problems (CIV6540 - Machine Learning for Civil Engineers) Professor: James-A. Goulet Département des génies civil, géologique et des mines Chapter 15 Goulet

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

arxiv: v2 [cs.lg] 7 Mar 2018

arxiv: v2 [cs.lg] 7 Mar 2018 Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control arxiv:1712.00006v2 [cs.lg] 7 Mar 2018 Shangtong Zhang 1, Osmar R. Zaiane 2 12 Dept. of Computing Science, University

More information

Noisy Natural Gradient as Variational Inference

Noisy Natural Gradient as Variational Inference Guodong Zhang * 1 2 Shengyang Sun * 1 2 David Duvenaud 1 2 Roger Grosse 1 2 Abstract Variational Bayesian neural nets combine the flexibility of deep learning with Bayesian uncertainty estimation. Unfortunately,

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

Efficient Learning in Linearly Solvable MDP Models

Efficient Learning in Linearly Solvable MDP Models Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Efficient Learning in Linearly Solvable MDP Models Ang Li Department of Computer Science, University of Minnesota

More information

Reinforcement Learning as Variational Inference: Two Recent Approaches

Reinforcement Learning as Variational Inference: Two Recent Approaches Reinforcement Learning as Variational Inference: Two Recent Approaches Rohith Kuditipudi Duke University 11 August 2017 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing

More information

Stein Variational Policy Gradient

Stein Variational Policy Gradient Stein Variational Policy Gradient Yang Liu UIUC liu301@illinois.edu Prajit Ramachandran UIUC prajitram@gmail.com Qiang Liu Dartmouth qiang.liu@dartmouth.edu Jian Peng UIUC jianpeng@illinois.edu Abstract

More information

Bayesian Policy Gradients via Alpha Divergence Dropout Inference

Bayesian Policy Gradients via Alpha Divergence Dropout Inference Bayesian Policy Gradients via Alpha Divergence Dropout Inference Peter Henderson* Thang Doan* Riashat Islam David Meger * Equal contributors McGill University peter.henderson@mail.mcgill.ca thang.doan@mail.mcgill.ca

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel & Sergey Levine Department of Electrical Engineering and Computer

More information

Planning by Probabilistic Inference

Planning by Probabilistic Inference Planning by Probabilistic Inference Hagai Attias Microsoft Research 1 Microsoft Way Redmond, WA 98052 Abstract This paper presents and demonstrates a new approach to the problem of planning under uncertainty.

More information

Recurrent Latent Variable Networks for Session-Based Recommendation

Recurrent Latent Variable Networks for Session-Based Recommendation Recurrent Latent Variable Networks for Session-Based Recommendation Panayiotis Christodoulou Cyprus University of Technology paa.christodoulou@edu.cut.ac.cy 27/8/2017 Panayiotis Christodoulou (C.U.T.)

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

Bayesian Semi-supervised Learning with Deep Generative Models

Bayesian Semi-supervised Learning with Deep Generative Models Bayesian Semi-supervised Learning with Deep Generative Models Jonathan Gordon Department of Engineering Cambridge University jg801@cam.ac.uk José Miguel Hernández-Lobato Department of Engineering Cambridge

More information

Neural network ensembles and variational inference revisited

Neural network ensembles and variational inference revisited 1st Symposium on Advances in Approximate Bayesian Inference, 2018 1 11 Neural network ensembles and variational inference revisited Marcin B. Tomczak marcin@prowler.io PROWLER.io Office, 72 Hills Road,

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Crowdsourcing & Optimal Budget Allocation in Crowd Labeling

Crowdsourcing & Optimal Budget Allocation in Crowd Labeling Crowdsourcing & Optimal Budget Allocation in Crowd Labeling Madhav Mohandas, Richard Zhu, Vincent Zhuang May 5, 2016 Table of Contents 1. Intro to Crowdsourcing 2. The Problem 3. Knowledge Gradient Algorithm

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Multiagent (Deep) Reinforcement Learning

Multiagent (Deep) Reinforcement Learning Multiagent (Deep) Reinforcement Learning MARTIN PILÁT (MARTIN.PILAT@MFF.CUNI.CZ) Reinforcement learning The agent needs to learn to perform tasks in environment No prior knowledge about the effects of

More information

Lecture 9: Policy Gradient II (Post lecture) 2

Lecture 9: Policy Gradient II (Post lecture) 2 Lecture 9: Policy Gradient II (Post lecture) 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver

More information

Dueling Network Architectures for Deep Reinforcement Learning (ICML 2016)

Dueling Network Architectures for Deep Reinforcement Learning (ICML 2016) Dueling Network Architectures for Deep Reinforcement Learning (ICML 2016) Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology October 11, 2016 Outline

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018

Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018 Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018 OpenAI OpenAI is a non-profit AI research company, discovering and enacting the path to safe artificial general intelligence. OpenAI OpenAI is a non-profit

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning From the basics to Deep RL Olivier Sigaud ISIR, UPMC + INRIA http://people.isir.upmc.fr/sigaud September 14, 2017 1 / 54 Introduction Outline Some quick background about discrete

More information

Active Learning of MDP models

Active Learning of MDP models Active Learning of MDP models Mauricio Araya-López, Olivier Buffet, Vincent Thomas, and François Charpillet Nancy Université / INRIA LORIA Campus Scientifique BP 239 54506 Vandoeuvre-lès-Nancy Cedex France

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

Lecture 7: CS395T Numerical Optimization for Graphics and AI Trust Region Methods

Lecture 7: CS395T Numerical Optimization for Graphics and AI Trust Region Methods Lecture 7: CS395T Numerical Optimization for Graphics and AI Trust Region Methods Qixing Huang The University of Texas at Austin huangqx@cs.utexas.edu 1 Disclaimer This note is adapted from Section 4 of

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2017 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

Reinforcement Learning via Policy Optimization

Reinforcement Learning via Policy Optimization Reinforcement Learning via Policy Optimization Hanxiao Liu November 22, 2017 1 / 27 Reinforcement Learning Policy a π(s) 2 / 27 Example - Mario 3 / 27 Example - ChatBot 4 / 27 Applications - Video Games

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2018 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

CS230: Lecture 9 Deep Reinforcement Learning

CS230: Lecture 9 Deep Reinforcement Learning CS230: Lecture 9 Deep Reinforcement Learning Kian Katanforoosh Menti code: 21 90 15 Today s outline I. Motivation II. Recycling is good: an introduction to RL III. Deep Q-Learning IV. Application of Deep

More information

arxiv: v3 [cs.ai] 22 Feb 2018

arxiv: v3 [cs.ai] 22 Feb 2018 TRUST-PCL: AN OFF-POLICY TRUST REGION METHOD FOR CONTINUOUS CONTROL Ofir Nachum, Mohammad Norouzi, Kelvin Xu, & Dale Schuurmans {ofirnachum,mnorouzi,kelvinxx,schuurmans}@google.com Google Brain ABSTRACT

More information

Sampling diverse neural networks for exploration in reinforcement learning

Sampling diverse neural networks for exploration in reinforcement learning Sampling diverse neural networks for exploration in reinforcement learning Maxime Wabartha School of Computer Science McGill University maxime.wabartha@mail.mcgill.ca Vincent François-Lavet School of Computer

More information

Algorithms for Variational Learning of Mixture of Gaussians

Algorithms for Variational Learning of Mixture of Gaussians Algorithms for Variational Learning of Mixture of Gaussians Instructors: Tapani Raiko and Antti Honkela Bayes Group Adaptive Informatics Research Center 28.08.2008 Variational Bayesian Inference Mixture

More information

Preference Elicitation for Sequential Decision Problems

Preference Elicitation for Sequential Decision Problems Preference Elicitation for Sequential Decision Problems Kevin Regan University of Toronto Introduction 2 Motivation Focus: Computational approaches to sequential decision making under uncertainty These

More information

Nonparametric Inference for Auto-Encoding Variational Bayes

Nonparametric Inference for Auto-Encoding Variational Bayes Nonparametric Inference for Auto-Encoding Variational Bayes Erik Bodin * Iman Malik * Carl Henrik Ek * Neill D. F. Campbell * University of Bristol University of Bath Variational approximations are an

More information

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning JMLR: Workshop and Conference Proceedings vol:1 8, 2012 10th European Workshop on Reinforcement Learning Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning Michael

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

Constraint-Space Projection Direct Policy Search

Constraint-Space Projection Direct Policy Search Constraint-Space Projection Direct Policy Search Constraint-Space Projection Direct Policy Search Riad Akrour 1 riad@robot-learning.de Jan Peters 1,2 jan@robot-learning.de Gerhard Neumann 1,2 geri@robot-learning.de

More information

Scalable Non-linear Beta Process Factor Analysis

Scalable Non-linear Beta Process Factor Analysis Scalable Non-linear Beta Process Factor Analysis Kai Fan Duke University kai.fan@stat.duke.edu Katherine Heller Duke University kheller@stat.duke.com Abstract We propose a non-linear extension of the factor

More information

arxiv: v4 [stat.ml] 15 Jun 2018

arxiv: v4 [stat.ml] 15 Jun 2018 for Efficient and Risk-sensitive Learning Stefan Depeweg 1 2 José Miguel Hernández-Lobato 3 Finale Doshi-Velez 4 Steffen Udluft 1 arxiv:1710.07283v4 [stat.ml] 15 Jun 2018 Abstract Bayesian neural networks

More information

Exercises, II part Exercises, II part

Exercises, II part Exercises, II part Inference: 12 Jul 2012 Consider the following Joint Probability Table for the three binary random variables A, B, C. Compute the following queries: 1 P(C A=T,B=T) 2 P(C A=T) P(A, B, C) A B C 0.108 T T

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24 and partially observable Markov decision processes Christos Dimitrakakis EPFL November 6, 2013 Bayesian reinforcement learning and partially observable Markov decision processes November 6, 2013 1 / 24

More information

Deep Q-Learning with Recurrent Neural Networks

Deep Q-Learning with Recurrent Neural Networks Deep Q-Learning with Recurrent Neural Networks Clare Chen cchen9@stanford.edu Vincent Ying vincenthying@stanford.edu Dillon Laird dalaird@cs.stanford.edu Abstract Deep reinforcement learning models have

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) Proximal Policy Optimization (PPO) default reinforcement learning algorithm at OpenAI Policy Gradient On-policy Off-policy Add constraint DeepMind https://youtu.be/gn4nrcc9twq OpenAI https://blog.openai.com/o

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Deep Reinforcement Learning SISL. Jeremy Morton (jmorton2) November 7, Stanford Intelligent Systems Laboratory

Deep Reinforcement Learning SISL. Jeremy Morton (jmorton2) November 7, Stanford Intelligent Systems Laboratory Deep Reinforcement Learning Jeremy Morton (jmorton2) November 7, 2016 SISL Stanford Intelligent Systems Laboratory Overview 2 1 Motivation 2 Neural Networks 3 Deep Reinforcement Learning 4 Deep Learning

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

CS 598 Statistical Reinforcement Learning. Nan Jiang

CS 598 Statistical Reinforcement Learning. Nan Jiang CS 598 Statistical Reinforcement Learning Nan Jiang Overview What s this course about? A grad-level seminar course on theory of RL 3 What s this course about? A grad-level seminar course on theory of RL

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Predictive Processing in Planning:

Predictive Processing in Planning: Predictive Processing in Planning: Choice Behavior as Active Bayesian Inference Philipp Schwartenbeck Wellcome Trust Centre for Human Neuroimaging, UCL The Promise of Predictive Processing: A Critical

More information

Inverse Optimal Control

Inverse Optimal Control Inverse Optimal Control Oleg Arenz Technische Universität Darmstadt o.arenz@gmx.de Abstract In Reinforcement Learning, an agent learns a policy that maximizes a given reward function. However, providing

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control

Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control Shangtong Zhang Dept. of Computing Science University of Alberta shangtong.zhang@ualberta.ca Osmar R. Zaiane Dept. of

More information

Forward Actor-Critic for Nonlinear Function Approximation in Reinforcement Learning

Forward Actor-Critic for Nonlinear Function Approximation in Reinforcement Learning Forward Actor-Critic for Nonlinear Function Approximation in Reinforcement Learning Vivek Veeriah Dept. of Computing Science University of Alberta Edmonton, Canada vivekveeriah@ualberta.ca Harm van Seijen

More information

Bayesian Neural Networks

Bayesian Neural Networks Vikram Mullachery mv333@nyu.edu Bayesian Neural Networks Aniruddh Khera ak5146@nyu.edu Amir Husain ah3548@nyu.edu Abstract This paper describes, and discusses Bayesian Neural Network (BNN). The paper showcases

More information

Development of a Deep Recurrent Neural Network Controller for Flight Applications

Development of a Deep Recurrent Neural Network Controller for Flight Applications Development of a Deep Recurrent Neural Network Controller for Flight Applications American Control Conference (ACC) May 26, 2017 Scott A. Nivison Pramod P. Khargonekar Department of Electrical and Computer

More information

Variance Reduction for Policy Gradient Methods. March 13, 2017

Variance Reduction for Policy Gradient Methods. March 13, 2017 Variance Reduction for Policy Gradient Methods March 13, 2017 Reward Shaping Reward Shaping Reward Shaping Reward shaping: r(s, a, s ) = r(s, a, s ) + γφ(s ) Φ(s) for arbitrary potential Φ Theorem: r admits

More information

Lecture 8: Policy Gradient I 2

Lecture 8: Policy Gradient I 2 Lecture 8: Policy Gradient I 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver and John Schulman

More information

Implicit Incremental Natural Actor Critic

Implicit Incremental Natural Actor Critic Implicit Incremental Natural Actor Critic Ryo Iwaki and Minoru Asada Osaka University, -1, Yamadaoka, Suita city, Osaka, Japan {ryo.iwaki,asada}@ams.eng.osaka-u.ac.jp Abstract. The natural policy gradient

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Reinforcement Learning. George Konidaris

Reinforcement Learning. George Konidaris Reinforcement Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom

More information

arxiv: v1 [cs.ne] 4 Dec 2015

arxiv: v1 [cs.ne] 4 Dec 2015 Q-Networks for Binary Vector Actions arxiv:1512.01332v1 [cs.ne] 4 Dec 2015 Naoto Yoshida Tohoku University Aramaki Aza Aoba 6-6-01 Sendai 980-8579, Miyagi, Japan naotoyoshida@pfsl.mech.tohoku.ac.jp Abstract

More information