Resolution of the Cap Set Problem: Progression Free Subsets of F n q are exponentially small

Size: px
Start display at page:

Download "Resolution of the Cap Set Problem: Progression Free Subsets of F n q are exponentially small"

Transcription

1 Resolution of the Cap Set Problem: Progression Free Subsets of F n q are exponentially small Jordan S. Ellenberg, Dion Gijswijt Presented by: Omri Ben-Eliezer Tel-Aviv University January 25, 2017

2 The Cap Set Problem A F n q is a cap set if it contains no arithmetic progressions, i.e. no distinct a, b, c A with b = (a + c)/2. In other words: no nontrivial solutions for a 2b + c = 0 in A. Equivalent definitions in F n 3 : A is a cap set if it contains no lines. A is a cap set if a + b + c 0 for any three distinct elements a, b, c A. What is the maximal size of a cap set A F n q? Denote this size by r(f n q).

3 Background In Z n, maximal size of a set with no arithmetic progression is n 1 o(1) [Behrend 1946, Roth 1953]. What about F n 3, and Fn q in general? Brown, Buhler [1982]: r(f n 3 ) = o(3n ) (using regularity lemma) Meshulam [1995]: r(f n 3 ) = O(3n /n) (using Fourier analysis) Tao [2007]: Perhaps my favorite open question. Bateman, Katz [2012]: r(f n 3 ) = o(3n /n 1+ɛ ) (complicated Fourier arguments) Croot, Lev, Pach [2016]: r(f n 4 ) < 3.62n Ellenberg, Gijswijt [2016]: r(f n q) < c n with c < q, for any finite field F q (polynomial method)

4 Background In Z n, maximal size of a set with no arithmetic progression is n 1 o(1) [Behrend 1946, Roth 1953]. What about F n 3, and Fn q in general? Ellenberg, Gijswijt [2016]: r(f n q) < c n with c < q, for any prime q (polynomial method) Example: q = 3 Upper bound (Ellenberg, Gijswijt 2016) r(f n 3 ) = O(2.756n ) Trivial lower bound r(f n 3 ) 2n Best lower bound (Edel 2004) r(f n 3 ) = Ω(2.217n )

5 Definitions M n Set of monomials in x 1,..., x n with degree q 1 in each variable. There are q n monomials. S n e : S n F Fn q q Span of monomials from M n over F q. Linear space of dimension q n over F q. Evaluation map: each polynomial is mapped to the set of values it has for any assignment of n elements in F q to its variables. This is an isomorphism: the polynomial n i=1 (1 (x i a i ) q 1 ) is mapped to the indicator of a = (a 1,..., a n ) F n q.

6 Definitions M d n Set of monomials from M n with total degree d in each variable. S d n Subspace of S n spanned by M d n. m d Dimension of S d n over F q. Equivalently, m d = M d n.

7 Structural lemma on low-degree polynomials Lemma Let F q be a finite field and let A F n q. Let α, β, γ F q with α + β + γ = 0. Suppose P S d n satisfies P(αa + βb) = 0 for every a b A. Then the number of a A with P( γa) 0 is at most 2m d/2. Remark Croot, Lev and Pach proved a special case of this lemma: if (α, β, γ) = (1, 1, 0) and A > 2m d/2, then P(0) = 0. The stronger result above is needed for our proof.

8 Structural lemma on low-degree polynomials Lemma Let F q be a finite field and let A F n q. Let α, β, γ F q with α + β + γ = 0. Suppose P S d n satisfies P(αa + βb) = 0 for every a b A. Then the number of a A with P( γa) 0 is at most 2m d/2. Proof Let B be the A A matrix whose a, b entry is P(αa + βb). Then B is diagonal. Since P( γa) = P(αa + βa) is the a, a entry of B, we need to bound the number of non-zero entries on the diagonal. This is the rank of B.

9 Structural lemma on low-degree polynomials Lemma Let F q be a finite field and let A F n q. Let α, β, γ F q with α + β + γ = 0. Suppose P S d n satisfies P(αa + βb) = 0 for every a b A. Then the number of a A with P( γa) 0 is at most 2m d/2. Proof Since P S d n we can write P(αx + βy) = m,m M d n deg(mm ) d c m,m m(x)m (y) In each summand one of m, m has degree at most d/2.

10 Structural lemma on low-degree polynomials Lemma Let F q be a finite field and let A F n q. Let α, β, γ F q with α + β + γ = 0. Suppose P S d n satisfies P(αa + βb) = 0 for every a b A. Then the number of a A with P( γa) 0 is at most 2m d/2. Proof We can write (maybe not uniquely) P(αx + βy) = m M d/2 n m(x)f m (y) + Put x = a and y = b. Then we get B ab = P(αa + βb) = m(a)f m (b) + m M d/2 n m M d/2 n m M d/2 n m (y)g m (x) m (b)g m (a)

11 Structural lemma on low-degree polynomials Lemma Let F q be a finite field and let A F n q. Let α, β, γ F q with α + β + γ = 0. Suppose P S d n satisfies P(αa + βb) = 0 for every a b A. Then the number of a A with P( γa) 0 is at most 2m d/2. Proof For any m Mn d/2 Define A A matrices C m and D m as follows: C m ab = m(a)f m(b) D m ab = m(b)g m(a) Each C m (and each D m ) is a matrix of rank 1: all of its columns are multiples of the vector (m(a)) a A.

12 Structural lemma on low-degree polynomials Lemma Let F q be a finite field and let A F n q. Let α, β, γ F q with α + β + γ = 0. Suppose P S d n satisfies P(αa + βb) = 0 for every a b A. Then the number of a A with P( γa) 0 is at most 2m d/2. Proof For (a, b) A A we have B ab = m M d/2 n = m M d/2 n m(a)f m (b) + C m ab + m M d/2 n m M d/2 n D m ab m (b)g m (a)

13 Structural lemma on low-degree polynomials Lemma Let F q be a finite field and let A F n q. Let α, β, γ F q with α + β + γ = 0. Suppose P S d n satisfies P(αa + βb) = 0 for every a b A. Then the number of a A with P( γa) 0 is at most 2m d/2. Proof B = m M d/2 n C m + m M d/2 n D m So B is the sum of 2m d/2 matrices of rank 1. Thus, B has rank at most 2m d/2, and we are finished.

14 Main Theorem Theorem Let α, β, γ F q with α + β + γ = 0 and γ 0. Let A F n q such that the equation αa 1 + βa 2 + γa 3 = 0 has no solutions (a 1, a 2, a 3 ) A 3 other than those with a 1 = a 2 = a 3. Then A 3m (q 1)n/3. Remark: A cap set A satisfies the above requirements with α = γ = 1, β = 2.

15 Main Theorem Theorem Let α, β, γ F q with α + β + γ = 0 and γ 0. Let A F n q such that the equation αa 1 + βa 2 + γa 3 = 0 has no solutions (a 1, a 2, a 3 ) A 3 other than those with a 1 = a 2 = a 3. Then A 3m (q 1)n/3. Proof Let d be an integer in [0, (q 1)n] and let V be the subspace of polynomials in S d n vanishing on the complement of γa: P V x / ( γa) : P(x) = 0 Proof strategy: we will bound dim V from above and below, with A appearing in the lower bound. This gives upper bound for A.

16 Main Theorem Theorem Let α, β, γ F q with α + β + γ = 0 and γ 0. Let A F n q such that the equation αa 1 + βa 2 + γa 3 = 0 has no solutions (a 1, a 2, a 3 ) A 3 other than those with a 1 = a 2 = a 3. Then A 3m (q 1)n/3. Proof The number of monomials of degree > d is the same as the number of monomials of degree < n(q 1) d: m n(q 1) d. The dimension of the space of polynomials vanishing outside γa is A : it is spanned by the indicator polynomials of all elements in γa. The dimension of V is A m n(q 1) d.

17 Main Theorem Theorem Let α, β, γ F q with α + β + γ = 0 and γ 0. Let A F n q such that the equation αa 1 + βa 2 + γa 3 = 0 has no solutions (a 1, a 2, a 3 ) A 3 other than those with a 1 = a 2 = a 3. Then A 3m (q 1)n/3. Proof Let S(A) F q be the set of elements αa 1 + βa 2 with a 1 a 2 A. S(A) is disjoint from γa. Thus, any P V vanishes on S(A). By Lemma, P( γa) 0 for at most 2m d/2 points a A. P is in V so it vanishes outside γa.

18 Main Theorem Theorem Let α, β, γ F q with α + β + γ = 0 and γ 0. Let A F n q such that the equation αa 1 + βa 2 + γa 3 = 0 has no solutions (a 1, a 2, a 3 ) A 3 other than those with a 1 = a 2 = a 3. Then A 3m (q 1)n/3. Proof Define support of a function f as supp(f ) = {x : f (x) 0}. Let P V with support Σ of maximal size. Then Σ dim V : the subspace of polynomials in V vanishing on Σ has dimension dim V Σ ; but if Q V is a nonzero polynomial in this subspace, then P + Q V has larger support, a contradiction.

19 Main Theorem Theorem Let α, β, γ F q with α + β + γ = 0 and γ 0. Let A F n q such that the equation αa 1 + βa 2 + γa 3 = 0 has no solutions (a 1, a 2, a 3 ) A 3 other than those with a 1 = a 2 = a 3. Then A 3m (q 1)n/3. Proof Thus A m (q 1)n d dim V Σ 2m d/2, or equivalently A 2m d/2 + m (q 1)n d. Picking d = 2(q 1)n 3, we get A 3m (q 1)n/3 as desired.

20 Bounding m (q 1)n/3 m (q 1)n/3 is exponentially small with respect to q n with q fixed and n large. Most monomials have degree around (q-1)n/2. Indeed, let X i for i = 1,..., n be i.i.d. random variables taking values from 0, 1,..., q 1 uniformly at random. Therefore ( ) m (q 1)n/3 1 n q n = P X i (q 1)/3 n i=1 This is a large deviation problem. Original proof uses a general method of Cramér for such problems. However, we will see a more elementary method, proposed by Tao who gave an entirely different proof for the theorem in his blog (recommended!). For example, take q = 3.

21 Bounding m 2n/3 over F 3 We can count monomials of total degree d and degree 2 in each variable as follows: choose a, b, c 0 such that a + b + c = n. Pick a, b, c variables to be of degree 0, 1, 2 respectively, where the degree of the monomial is b + 2c d. Thus m 2n/3 = a,b,c 0: a+b+c=n,b+2c 2n/3 n! a!b!c! Write a = αn, b = βn, c = γn. Stirling formula gives ( ) n! a!b!c! nn a a b b c c = 1 n α α β β γ γ = exp (n h(α, β, γ)) Where h is the entropy function h(α, β, γ) = α log 1 α + β log 1 β + γ log 1 γ

22 Bounding m 2n/3 over F 3 Up to polynomial factor, m 2n/3 is equal to exp (n max h(α, β, γ)) where the maximum is taken over all α, β, γ 0; α + β + γ = 1; β + 2γ 2/3 A standard Lagrange multiplier computation implies that the maximal h(α, β, γ) under the above constraints is , implying that A 3m 2n/3 = O(2.756 n ).

arxiv: v1 [math.co] 24 Aug 2017

arxiv: v1 [math.co] 24 Aug 2017 arxiv:1708.07263v1 [math.co] 24 Aug 2017 An upper bound on tricolored ordered sum-free sets Taegyun Kim and Sang-il Oum Department of Mathematical Sciences, KAIST Daejeon, South Korea. August 25, 2017

More information

arxiv: v1 [math.co] 13 Sep 2018

arxiv: v1 [math.co] 13 Sep 2018 SIDON SETS AND 2-CAPS IN F n 3 YIXUAN HUANG, MICHAEL TAIT, AND ROBERT WON arxiv:1809.05117v1 [math.co] 13 Sep 2018 Abstract. For each natural number d, we introduce the concept of a d-cap in F n 3. A subset

More information

arxiv: v2 [math.nt] 21 May 2016

arxiv: v2 [math.nt] 21 May 2016 arxiv:165.156v2 [math.nt] 21 May 216 PROGRESSION-FREE SETS IN Z n 4 ARE EXPONENTIALLY SMALL ERNIE CROOT, VSEVOLOD F. LEV, AND PÉTER PÁL PACH Abstract. We show that for integer n 1, any subset A Z n 4 free

More information

arxiv: v1 [math.co] 30 Jun 2016

arxiv: v1 [math.co] 30 Jun 2016 UPPER BOUNDS FOR SUNFLOWER-FREE SETS ERIC NASLUND, WILLIAM F. SAWIN arxiv:66.9575v [math.co] 3 Jun 6 Abstract. A collection of sets is said to form a -sunflower, or -system if the intersection of any two

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Slice rank of tensors and its applications

Slice rank of tensors and its applications Slice rank of tensors and its applications Wenjie Fang, LIP, ENS de Lyon Work of Terence Tao and William Sawin One Day Meeting in Discrete Structures April 14 2017, ENS de Lyon Two problems in extremal

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

Erdős and arithmetic progressions

Erdős and arithmetic progressions Erdős and arithmetic progressions W. T. Gowers University of Cambridge July 2, 2013 W. T. Gowers (University of Cambridge) Erdős and arithmetic progressions July 2, 2013 1 / 22 Two famous Erdős conjectures

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

Chapter 7. Linear Algebra: Matrices, Vectors,

Chapter 7. Linear Algebra: Matrices, Vectors, Chapter 7. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems Linear algebra includes the theory and application of linear systems of equations, linear transformations, and eigenvalue problems.

More information

Research Problems in Arithmetic Combinatorics

Research Problems in Arithmetic Combinatorics Research Problems in Arithmetic Combinatorics Ernie Croot July 13, 2006 1. (related to a quesiton of J. Bourgain) Classify all polynomials f(x, y) Z[x, y] which have the following property: There exists

More information

(II.B) Basis and dimension

(II.B) Basis and dimension (II.B) Basis and dimension How would you explain that a plane has two dimensions? Well, you can go in two independent directions, and no more. To make this idea precise, we formulate the DEFINITION 1.

More information

CHARACTER-FREE APPROACH TO PROGRESSION-FREE SETS

CHARACTER-FREE APPROACH TO PROGRESSION-FREE SETS CHARACTR-FR APPROACH TO PROGRSSION-FR STS VSVOLOD F. LV Abstract. We present an elementary combinatorial argument showing that the density of a progression-free set in a finite r-dimensional vector space

More information

JORDAN NORMAL FORM. Contents Introduction 1 Jordan Normal Form 1 Conclusion 5 References 5

JORDAN NORMAL FORM. Contents Introduction 1 Jordan Normal Form 1 Conclusion 5 References 5 JORDAN NORMAL FORM KATAYUN KAMDIN Abstract. This paper outlines a proof of the Jordan Normal Form Theorem. First we show that a complex, finite dimensional vector space can be decomposed into a direct

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

Math 110, Summer 2012: Practice Exam 1 SOLUTIONS

Math 110, Summer 2012: Practice Exam 1 SOLUTIONS Math, Summer 22: Practice Exam SOLUTIONS Choose 3/5 of the following problems Make sure to justify all steps in your solutions Let V be a K-vector space, for some number field K Let U V be a nonempty subset

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 1. Please write your 1- or 2-digit exam number on

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4].

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4]. Lecture Notes: Rank of a Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Linear Independence Definition 1. Let r 1, r 2,..., r m

More information

About sunflowers. Óbuda University Bécsi út 96, Budapest, Hungary, H-1037 April 27, 2018

About sunflowers. Óbuda University Bécsi út 96, Budapest, Hungary, H-1037 April 27, 2018 arxiv:1804.10050v1 [math.co] 26 Apr 2018 About sunflowers Gábor Hegedűs Óbuda University Bécsi út 96, Budapest, Hungary, H-1037 hegedus.gabor@nik.uni-obuda.hu April 27, 2018 Abstract Alon, Shpilka and

More information

x y B =. v u Note that the determinant of B is xu + yv = 1. Thus B is invertible, with inverse u y v x On the other hand, d BA = va + ub 2

x y B =. v u Note that the determinant of B is xu + yv = 1. Thus B is invertible, with inverse u y v x On the other hand, d BA = va + ub 2 5. Finitely Generated Modules over a PID We want to give a complete classification of finitely generated modules over a PID. ecall that a finitely generated module is a quotient of n, a free module. Let

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

The converse is clear, since

The converse is clear, since 14. The minimal polynomial For an example of a matrix which cannot be diagonalised, consider the matrix ( ) 0 1 A =. 0 0 The characteristic polynomial is λ 2 = 0 so that the only eigenvalue is λ = 0. The

More information

Math Midterm Solutions

Math Midterm Solutions Math 145 - Midterm Solutions Problem 1. (10 points.) Let n 2, and let S = {a 1,..., a n } be a finite set with n elements in A 1. (i) Show that the quasi-affine set A 1 \ S is isomorphic to an affine set.

More information

A geometric proof of the spectral theorem for real symmetric matrices

A geometric proof of the spectral theorem for real symmetric matrices 0 0 0 A geometric proof of the spectral theorem for real symmetric matrices Robert Sachs Department of Mathematical Sciences George Mason University Fairfax, Virginia 22030 rsachs@gmu.edu January 6, 2011

More information

Irredundant Families of Subcubes

Irredundant Families of Subcubes Irredundant Families of Subcubes David Ellis January 2010 Abstract We consider the problem of finding the maximum possible size of a family of -dimensional subcubes of the n-cube {0, 1} n, none of which

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

NOTES on LINEAR ALGEBRA 1

NOTES on LINEAR ALGEBRA 1 School of Economics, Management and Statistics University of Bologna Academic Year 207/8 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura

More information

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS J. WARNER SUMMARY OF A PAPER BY J. CARLSON, E. FRIEDLANDER, AND J. PEVTSOVA, AND FURTHER OBSERVATIONS 1. The Nullcone and Restricted Nullcone We will need

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

MATH JORDAN FORM

MATH JORDAN FORM MATH 53 JORDAN FORM Let A,, A k be square matrices of size n,, n k, respectively with entries in a field F We define the matrix A A k of size n = n + + n k as the block matrix A 0 0 0 0 A 0 0 0 0 A k It

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

Solving a system by back-substitution, checking consistency of a system (no rows of the form

Solving a system by back-substitution, checking consistency of a system (no rows of the form MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary

More information

The Cyclic Decomposition of a Nilpotent Operator

The Cyclic Decomposition of a Nilpotent Operator The Cyclic Decomposition of a Nilpotent Operator 1 Introduction. J.H. Shapiro Suppose T is a linear transformation on a vector space V. Recall Exercise #3 of Chapter 8 of our text, which we restate here

More information

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved Fundamentals of Linear Algebra Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 PREFACE Linear algebra has evolved as a branch of mathematics with wide range of applications to the natural

More information

Math 121 Homework 5: Notes on Selected Problems

Math 121 Homework 5: Notes on Selected Problems Math 121 Homework 5: Notes on Selected Problems 12.1.2. Let M be a module over the integral domain R. (a) Assume that M has rank n and that x 1,..., x n is any maximal set of linearly independent elements

More information

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts (in

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8.

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8. Linear Algebra M1 - FIB Contents: 5 Matrices, systems of linear equations and determinants 6 Vector space 7 Linear maps 8 Diagonalization Anna de Mier Montserrat Maureso Dept Matemàtica Aplicada II Translation:

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

Math 601 Solutions to Homework 3

Math 601 Solutions to Homework 3 Math 601 Solutions to Homework 3 1 Use Cramer s Rule to solve the following system of linear equations (Solve for x 1, x 2, and x 3 in terms of a, b, and c 2x 1 x 2 + 7x 3 = a 5x 1 2x 2 x 3 = b 3x 1 x

More information

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics Ulrich Meierfrankenfeld Department of Mathematics Michigan State University East Lansing MI 48824 meier@math.msu.edu

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis Math 24 4.3 Linear Independence; Bases A. DeCelles Overview Main ideas:. definitions of linear independence linear dependence dependence relation basis 2. characterization of linearly dependent set using

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

IMA Preprint Series # 2066

IMA Preprint Series # 2066 THE CARDINALITY OF SETS OF k-independent VECTORS OVER FINITE FIELDS By S.B. Damelin G. Michalski and G.L. Mullen IMA Preprint Series # 2066 ( October 2005 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

Math 113 Homework 5. Bowei Liu, Chao Li. Fall 2013

Math 113 Homework 5. Bowei Liu, Chao Li. Fall 2013 Math 113 Homework 5 Bowei Liu, Chao Li Fall 2013 This homework is due Thursday November 7th at the start of class. Remember to write clearly, and justify your solutions. Please make sure to put your name

More information

Roth s Theorem on 3-term Arithmetic Progressions

Roth s Theorem on 3-term Arithmetic Progressions Roth s Theorem on 3-term Arithmetic Progressions Mustazee Rahman 1 Introduction This article is a discussion about the proof of a classical theorem of Roth s regarding the existence of three term arithmetic

More information

MATH PRACTICE EXAM 1 SOLUTIONS

MATH PRACTICE EXAM 1 SOLUTIONS MATH 2359 PRACTICE EXAM SOLUTIONS SPRING 205 Throughout this exam, V and W will denote vector spaces over R Part I: True/False () For each of the following statements, determine whether the statement is

More information

On Lines and Joints. August 17, Abstract

On Lines and Joints. August 17, Abstract On Lines and Joints Haim Kaplan Micha Sharir Eugenii Shustin August 17, 2009 Abstract Let L be a set of n lines in R d, for d 3. A joint of L is a point incident to at least d lines of L, not all in a

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

Locally linearly dependent operators and reflexivity of operator spaces

Locally linearly dependent operators and reflexivity of operator spaces Linear Algebra and its Applications 383 (2004) 143 150 www.elsevier.com/locate/laa Locally linearly dependent operators and reflexivity of operator spaces Roy Meshulam a, Peter Šemrl b, a Department of

More information

1.8 Dual Spaces (non-examinable)

1.8 Dual Spaces (non-examinable) 2 Theorem 1715 is just a restatement in terms of linear morphisms of a fact that you might have come across before: every m n matrix can be row-reduced to reduced echelon form using row operations Moreover,

More information

Recall the convention that, for us, all vectors are column vectors.

Recall the convention that, for us, all vectors are column vectors. Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists

More information

GROUPS OF ORDER p 3 KEITH CONRAD

GROUPS OF ORDER p 3 KEITH CONRAD GROUPS OF ORDER p 3 KEITH CONRAD For any prime p, we want to describe the groups of order p 3 up to isomorphism. From the cyclic decomposition of finite abelian groups, there are three abelian groups of

More information

Bare-bones outline of eigenvalue theory and the Jordan canonical form

Bare-bones outline of eigenvalue theory and the Jordan canonical form Bare-bones outline of eigenvalue theory and the Jordan canonical form April 3, 2007 N.B.: You should also consult the text/class notes for worked examples. Let F be a field, let V be a finite-dimensional

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

On an Extremal Hypergraph Problem of Brown, Erdős and Sós

On an Extremal Hypergraph Problem of Brown, Erdős and Sós On an Extremal Hypergraph Problem of Brown, Erdős and Sós Noga Alon Asaf Shapira Abstract Let f r (n, v, e) denote the maximum number of edges in an r-uniform hypergraph on n vertices, which does not contain

More information

A bilinear Bogolyubov theorem, with applications

A bilinear Bogolyubov theorem, with applications A bilinear Bogolyubov theorem, with applications Thái Hoàng Lê 1 & Pierre-Yves Bienvenu 2 1 University of Mississippi 2 Institut Camille Jordan November 11, 2018 Thái Hoàng Lê & Pierre-Yves Bienvenu A

More information

Random matrices: A Survey. Van H. Vu. Department of Mathematics Rutgers University

Random matrices: A Survey. Van H. Vu. Department of Mathematics Rutgers University Random matrices: A Survey Van H. Vu Department of Mathematics Rutgers University Basic models of random matrices Let ξ be a real or complex-valued random variable with mean 0 and variance 1. Examples.

More information

Probabilistic construction of t-designs over finite fields

Probabilistic construction of t-designs over finite fields Probabilistic construction of t-designs over finite fields Shachar Lovett (UCSD) Based on joint works with Arman Fazeli (UCSD), Greg Kuperberg (UC Davis), Ron Peled (Tel Aviv) and Alex Vardy (UCSD) Gent

More information

Induced subgraphs of prescribed size

Induced subgraphs of prescribed size Induced subgraphs of prescribed size Noga Alon Michael Krivelevich Benny Sudakov Abstract A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let q(g denote the maximum

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

We simply compute: for v = x i e i, bilinearity of B implies that Q B (v) = B(v, v) is given by xi x j B(e i, e j ) =

We simply compute: for v = x i e i, bilinearity of B implies that Q B (v) = B(v, v) is given by xi x j B(e i, e j ) = Math 395. Quadratic spaces over R 1. Algebraic preliminaries Let V be a vector space over a field F. Recall that a quadratic form on V is a map Q : V F such that Q(cv) = c 2 Q(v) for all v V and c F, and

More information

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

More information

IMC 2015, Blagoevgrad, Bulgaria

IMC 2015, Blagoevgrad, Bulgaria IMC 05, Blagoevgrad, Bulgaria Day, July 9, 05 Problem. For any integer n and two n n matrices with real entries, B that satisfy the equation + B ( + B prove that det( det(b. Does the same conclusion follow

More information

(x 1 +x 2 )(x 1 x 2 )+(x 2 +x 3 )(x 2 x 3 )+(x 3 +x 1 )(x 3 x 1 ).

(x 1 +x 2 )(x 1 x 2 )+(x 2 +x 3 )(x 2 x 3 )+(x 3 +x 1 )(x 3 x 1 ). CMPSCI611: Verifying Polynomial Identities Lecture 13 Here is a problem that has a polynomial-time randomized solution, but so far no poly-time deterministic solution. Let F be any field and let Q(x 1,...,

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

The Measure Problem. Louis de Branges Department of Mathematics Purdue University West Lafayette, IN , USA

The Measure Problem. Louis de Branges Department of Mathematics Purdue University West Lafayette, IN , USA The Measure Problem Louis de Branges Department of Mathematics Purdue University West Lafayette, IN 47907-2067, USA A problem of Banach is to determine the structure of a nonnegative (countably additive)

More information

Roth s theorem on 3-arithmetic progressions. CIMPA Research school Shillong 2013

Roth s theorem on 3-arithmetic progressions. CIMPA Research school Shillong 2013 Roth s theorem on 3-arithmetic progressions CIPA Research school Shillong 2013 Anne de Roton Institut Elie Cartan Université de Lorraine France 2 1. Introduction. In 1953, K. Roth [6] proved the following

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

Math 321: Linear Algebra

Math 321: Linear Algebra Math 32: Linear Algebra T. Kapitula Department of Mathematics and Statistics University of New Mexico September 8, 24 Textbook: Linear Algebra,by J. Hefferon E-mail: kapitula@math.unm.edu Prof. Kapitula,

More information

Solution. That ϕ W is a linear map W W follows from the definition of subspace. The map ϕ is ϕ(v + W ) = ϕ(v) + W, which is well-defined since

Solution. That ϕ W is a linear map W W follows from the definition of subspace. The map ϕ is ϕ(v + W ) = ϕ(v) + W, which is well-defined since MAS 5312 Section 2779 Introduction to Algebra 2 Solutions to Selected Problems, Chapters 11 13 11.2.9 Given a linear ϕ : V V such that ϕ(w ) W, show ϕ induces linear ϕ W : W W and ϕ : V/W V/W : Solution.

More information

arxiv: v1 [math.co] 28 Aug 2017

arxiv: v1 [math.co] 28 Aug 2017 Popular progression differences in vector spaces Jacob Fox Huy Tuan Pham arxiv:708.08482v [math.co] 28 Aug 207 August 30, 207 Abstract Green proved an arithmetic analogue of Szemerédi s celebrated regularity

More information

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises This document gives the solutions to all of the online exercises for OHSx XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Answers are in square brackets [. Lecture 02 ( 1.1)

More information

Class notes: Approximation

Class notes: Approximation Class notes: Approximation Introduction Vector spaces, linear independence, subspace The goal of Numerical Analysis is to compute approximations We want to approximate eg numbers in R or C vectors in R

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

First we introduce the sets that are going to serve as the generalizations of the scalars.

First we introduce the sets that are going to serve as the generalizations of the scalars. Contents 1 Fields...................................... 2 2 Vector spaces.................................. 4 3 Matrices..................................... 7 4 Linear systems and matrices..........................

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

The Maximum Dimension of a Subspace of Nilpotent Matrices of Index 2

The Maximum Dimension of a Subspace of Nilpotent Matrices of Index 2 The Maximum Dimension of a Subspace of Nilpotent Matrices of Index L G Sweet Department of Mathematics and Statistics, University of Prince Edward Island Charlottetown, PEI C1A4P, Canada sweet@upeica J

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 Throughout this lecture k denotes an algebraically closed field. 17.1 Tangent spaces and hypersurfaces For any polynomial f k[x

More information

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases.

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Lecture 11 Andrei Antonenko February 6, 003 1 Examples of bases Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Example 1.1. Consider the vector space P the

More information

Nondeterminism LECTURE Nondeterminism as a proof system. University of California, Los Angeles CS 289A Communication Complexity

Nondeterminism LECTURE Nondeterminism as a proof system. University of California, Los Angeles CS 289A Communication Complexity University of California, Los Angeles CS 289A Communication Complexity Instructor: Alexander Sherstov Scribe: Matt Brown Date: January 25, 2012 LECTURE 5 Nondeterminism In this lecture, we introduce nondeterministic

More information

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 5, 2012 Andre Tkacenko

More information