Laplace Potential Distribution and Earnshaw s Theorem

Size: px
Start display at page:

Download "Laplace Potential Distribution and Earnshaw s Theorem"

Transcription

1 Laplae Potential Distibution and Eanshaw s Theoem Fits F.M. de Mul Laplae and Eanshaw

2 Pesentations: Eletomagnetism: Histoy Eletomagnetism: Elet. topis Eletomagnetism: Magn. topis Eletomagnetism: Waves topis Capaito filling (omplete) Capaito filling (patial) Divegene Theoem E-field of a thin long haged wie E-field of a haged disk E-field of a dipole E-field of a line of dipoles E-field of a haged sphee E-field of a polaized objet E-field: field enegy Eletomagnetism: integations Eletomagnetism: integation elements Gauss Law fo a ylindial hage Gauss Law fo a haged plane Laplae s and Poisson s Law B-field of a thin long wie aying a uent B-field of a onduting haged sphee B-field of a homogeneously haged sphee Laplae and Eanshaw

3 Laplae and Eanshaw. Eleti Field equations: Gauss Law and Potential Gadient Law. Laplae and Poisson: deivation 3. Laplae and Poisson in dimension 4. Chage-fee spae: Eanshaw s Theoem Finite-Elements method fo Potential Distibution 5. Laplae and Poisson in and 3 dimensions Laplae and Eanshaw 3

4 Eleti Field Equations Gauss: integal fomulation: Id. diffeential fomulation: E(, y, z) (, y, z) S E ds e... Ee... d E... Potential: integal fomulation: Id. diffeential fomulation: E e B A E dl (, y, z) e... ee Laplae and Eanshaw 4 B A......

5 Eleti Field Lines and Equipotential Sufaes E(, y, z) (, y, z) E E = onst. Laplae and Eanshaw 5

6 Laplae and Poisson: deivation Gauss: E(, y, z) (, y, z) Potential: E Laplae / Poisson : e e y E... z Laplae and Eanshaw 6 = : fee spae (Laplae) : mateials (Poisson)

7 Laplae and Poisson in dimension = : fee spae (Laplae) : mateials (Poisson) Calulate () fo = by integation of Laplae equation E d d d d E ( ) ' - Bounday onditions: at and at : ( ) ( ) Laplae and Eanshaw 7

8 Laplae and Poisson in dimension E - = : fee spae (Laplae) : mateials (Poisson) Calulate () by integation of Poisson s equation. d d ( ) E Laplae and Eanshaw 8 Assume =onst.: Bounday onditions at and Paaboli behaviou '

9 Laplae and Poisson in dimension a E - a = : fee spae (Laplae) : mateials (Poisson) ( ) Assume =onstant: Bounday onditions at and Speial ase: = ; = and = a ; = Calulate () and E() a ( ) Laplae and EEanshaw ( ) ( a) 9 a ' a

10 Laplae and Poisson in dimension a ( ) a Assume =onst.: Bounday onditions: at and Speial ase: = ; = and = a ; = /a / Laplae and Eanshaw

11 Laplae in dimension = : fee spae (Laplae) : mateials (Poisson) E d d d d ( ) ' E Bounday onditions at and : - ( ) ( ) Laplae and Eanshaw

12 Laplae in dimension: Eanshaw d d d d E ( ) ' Eanshaw: E If no fee hage pesent, then: Potential has no loal maima o minima. - Consequenes:. is linea funtion of position. at eah point is always in between neighbous Laplae and Eanshaw

13 Laplae in dimension: Eanshaw Eanshaw: If no fee hage pesent, then: Potential has no loal maima o minima. Consequenes:. is linea funtion of position. at eah point is always in between neighbous Numeial method fo alulating potentials between boundaies:. Stat with zeo potential between boundaies. Take aveages between neighbous 3. Repeat and epeat and... Laplae and Eanshaw 3

14 Laplae in dimensions: Eanshaw Potential =f (,y) on S? S? y Eanshaw: If no fee hage pesent, then: Potential has no loal maima o minima. Solution of Laplae y (, y) will depend on boundaies. Patial diffeential equation Laplae and Eanshaw 4

15 Laplae / Poisson in 3 dimensions Spatial hage density: =f (,y,z) Potential = f (,y,z)? Bounday onditions:, and 3 = f (,y,z) z 3 y Solution of Laplae/Poisson: y z will depend on boundaies. 4-D plot needed!? Laplae and Eanshaw 5 (, y) Speial ases: ylindial geomety spheial geomety

16 Laplae / Poisson in 3 dimensions z Speial ase : Cylindial geomety y With z Laplae and Eanshaw ln 6 If dependene only: and boundaies will be f (). Thus: will be f () only Eample: = at and at, and = Calulate = ( ) d d d d ( ).ln ' boundaies : ( ) d d ( and ':onst.) ( ) ln d d ln ln

17 Laplae and Eanshaw 7 Laplae / Poisson in 3 dimensions Speial ase : Spheial geomety sin sin sin If dependene only: and boundaies will be f (). Thus: will be f () only Eample: = at and at, and = Calulate = ( ) ( and ':onst.) '. ) ( d d d d d d d d / / / / ) ( ) ( : boundaies With z y the end

AVS fiziks. Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

AVS fiziks. Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES ELECTROMAGNETIC THEORY SOLUTIONS GATE- Q. An insulating sphee of adius a aies a hage density a os ; a. The leading ode tem fo the eleti field at a distane d, fa away fom the hage distibution, is popotional

More information

8.022 (E&M) Lecture 13. What we learned about magnetism so far

8.022 (E&M) Lecture 13. What we learned about magnetism so far 8.0 (E&M) Letue 13 Topis: B s ole in Mawell s equations Veto potential Biot-Savat law and its appliations What we leaned about magnetism so fa Magneti Field B Epeiments: uents in s geneate foes on hages

More information

matschek (ccm2548) Ch17-h3 chiu (57890) 1

matschek (ccm2548) Ch17-h3 chiu (57890) 1 matshek m2548) Ch17-h3 hiu 5789) 1 This pint-out should have 16 questions. Multiple-hoie questions may ontinue on the next olumn o page find all hoies efoe answeing. 1 1. points A student said, The eleti

More information

In electrostatics, the electric field E and its sources (charges) are related by Gauss s law: Surface

In electrostatics, the electric field E and its sources (charges) are related by Gauss s law: Surface Ampee s law n eletostatis, the eleti field E and its soues (hages) ae elated by Gauss s law: EdA i 4πQenl Sufae Why useful? When symmety applies, E an be easily omputed Similaly, in magnetism the magneti

More information

E(r,t) = e 3. r 3. (b) Show that the transverse current, J t,is 3n(n e 3 ) e 3

E(r,t) = e 3. r 3. (b) Show that the transverse current, J t,is 3n(n e 3 ) e 3 Polem Set 3 (Jakson 6.20).. An example of the pesevation of ausality and finite speed of popagation in spite of the use of the Coulomg gauge is affoded y a unit stength dipole soue that is flashed on and

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory letomagnetism Chistophe R Pio Fellow and Tuto in Mathematis Tinity College Oxfod ASTeC Intense Beams Goup Ruthefod Appleton Laboatoy Contents Maxwell s equations and Loentz Foe Law Motion of a haged patile

More information

Physics 218, Spring March 2004

Physics 218, Spring March 2004 Today in Physis 8: eleti dipole adiation II The fa field Veto potential fo an osillating eleti dipole Radiated fields and intensity fo an osillating eleti dipole Total satteing oss setion of a dieleti

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

PHY481: Electromagnetism

PHY481: Electromagnetism PHY48: Electomagnetism HW5 Lectue Cal Bombeg - Pof. of Physics Bounday condition ( ) = C n cos n + V x, y ( ) n= ( ) = V cos x V x,± a 5.3 V = V cos x a & ' at y = ± a Geneal solution (fo even bounday

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physial insight in the sound geneation mehanism an be gained by onsideing simple analytial solutions to the wave equation. One example is to onside aousti adiation

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

PHYS 110B - HW #7 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS B - HW #7 Fall 5, Solutions by David Pae Equations efeened as Eq. # ae fom Giffiths Poblem statements ae paaphased [.] Poblem.4 fom Giffiths Show that Eq..4, V, t an be witten as Eq..44, V, t q t

More information

Mass Transfer (Stoffaustausch)

Mass Transfer (Stoffaustausch) Mass Tansfe (Stoffaustaush) Examination 3. August 3 Name: Legi-N.: Edition Diffusion by E. L. Cussle: none nd 3 d Test Duation: minutes The following mateials ae not pemitted at you table and have to be

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physial insight in the sound geneation mehanism an be gained by onsideing simple analytial solutions to the wave equation One example is to onside aousti adiation

More information

Mutual impedance between linear elements: The induced EMF method. Persa Kyritsi September 29th, 2005 FRB7, A1-104

Mutual impedance between linear elements: The induced EMF method. Persa Kyritsi September 29th, 2005 FRB7, A1-104 Mutual impedance between linea elements: The induced EMF method Septembe 9th, 5 FRB7, A-4 Outline Septembe 9, 5 Reminde: self impedance nduced EMF method Nea-field of a dipole Self impedance vs. Mutual

More information

Revised Newtonian Formula of Gravity and Equation of Cosmology in Flat Space-Time Transformed from Schwarzschild Solution

Revised Newtonian Formula of Gravity and Equation of Cosmology in Flat Space-Time Transformed from Schwarzschild Solution Intenational Jounal of Astonomy and Astophysis,,, 6-8 http://dx.doi.og/.46/ijaa.. Published Online Mah (http://www.sip.og/jounal/ijaa) evised Newtonian Fomula of Gavity and Equation of Cosmology in Flat

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Classical Approach to the Theory of Elementary Particles

Classical Approach to the Theory of Elementary Particles Classial Appoah to the Theoy of Elementay Patiles By Yui N. Keilman Abstat: Pesented hee is an attempt to modify /extend lassial eletodynamis (CED) in ode to enable the lassial appoah (the appoah based

More information

not to be republished NCERT ELECTROMAGNETIC WAVES Chapter Eight MCQ I

not to be republished NCERT ELECTROMAGNETIC WAVES Chapter Eight MCQ I Chapte Eight ELECTROMAGNETIC WAVES MCQ I 8 One equies ev of enegy to dissoiate a abon monoxide moleule into abon and oxygen atoms The minimum fequeny of the appopiate eletomagneti adiation to ahieve the

More information

arxiv: v4 [physics.class-ph] 14 Jul 2018

arxiv: v4 [physics.class-ph] 14 Jul 2018 Noname manusipt No. will be inseted by the edito Long-Range Longitudinal Eleti Wave in Vauum Radiated by Eleti Dipole: Pat I Altay Zhakatayev, Leila Tlebaldiyeva axiv:7.v4 [physis.lass-ph] 4 Jul 8 Reeived:

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics ECE 3318 Applied Electicity and Magnetism Sping 218 Pof. David R. Jackson Dept. Of ECE Notes 2 Dielectics 1 Dielectics Single H 2 O molecule: H H Wate ε= εε O 2 Dielectics (cont.) H H Wate ε= εε O Vecto

More information

Welcome to Physics 272

Welcome to Physics 272 Welcome to Physics 7 Bob Mose mose@phys.hawaii.edu http://www.phys.hawaii.edu/~mose/physics7.html To do: Sign into Masteing Physics phys-7 webpage Registe i-clickes (you i-clicke ID to you name on class-list)

More information

3/19/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105

3/19/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105 PHY 7 Eletodynamis 9-9:5 A WF Olin 5 Plan fo Letue 4: Complete eading of Chap. 9 & A. Supeposition of adiation B. Satteed adiation PHY 7 Sping 8 -- Letue 4 PHY 7 Sping 8 -- Letue 4 Eletomagneti waves fom

More information

INFN School on Electron Accelerators. Beam Acceleration Cavity Field and Concepts

INFN School on Electron Accelerators. Beam Acceleration Cavity Field and Concepts INFN Shool on leton Aeleatos -4 Septembe 7, INFN Sezione di Pisa Letue b Beam Aeleation Cavity Field and Conepts Calo Pagani Univesity of Milano INFN Milano-LASA & GD Linea Collide Coneptual Sheme Final

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

An analytic calculation method on air gap flux in permanent magnet. brushless DC motor with ironless rotor

An analytic calculation method on air gap flux in permanent magnet. brushless DC motor with ironless rotor Intenational Confeene on Enegy and Envionmental Potetion ICEEP 6 An analyti alulation method on ai gap flux in pemanent magnet bushless DC moto with ionless oto Xinghua Wang,Yaolong Sheng andshugang Zhao,,

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

A dual-reciprocity boundary element method for axisymmetric thermoelastodynamic deformations in functionally graded solids

A dual-reciprocity boundary element method for axisymmetric thermoelastodynamic deformations in functionally graded solids APCOM & ISCM 11-14 th Decembe, 013, Singapoe A dual-ecipocity bounday element method fo axisymmetic themoelastodynamic defomations in functionally gaded solids *W. T. Ang and B. I. Yun Division of Engineeing

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCouseWae http://ocw.mit.edu 6.641 Electomagnetic Fields, Foces, and Motion, Sping 5 Please use the following citation fomat: Makus Zahn, 6.641 Electomagnetic Fields, Foces, and Motion, Sping 5.

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information

Φ E = E A E A = p212c22: 1

Φ E = E A E A = p212c22: 1 Chapte : Gauss s Law Gauss s Law is an altenative fomulation of the elation between an electic field and the souces of that field in tems of electic flux. lectic Flux Φ though an aea A ~ Numbe of Field

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Section 1: Main results of Electrostatics and Magnetostatics. Electrostatics

Section 1: Main results of Electrostatics and Magnetostatics. Electrostatics Chage density ection 1: ain esults of Electostatics and agnetostatics Electostatics The most fundamental quantity of electostatics is electic chage. Chage comes in two vaieties, which ae called positive

More information

Review Notes on Maxwell's Equations

Review Notes on Maxwell's Equations ELEC344 Micowave Engineeing, Sping 2002 Handout #1 Kevin Chen Review Notes on Maxwell's Equations Review of Vecto Poducts and the Opeato The del, gad o nabla opeato is a vecto, and can be pat of a scala

More information

Ion-sound waves (electrostatic low frequency waves)

Ion-sound waves (electrostatic low frequency waves) OTHER TYPES of WAVES Ion-sound waves (eletostati low fequeny waves) ae longitudinal waves simila lassial sound in gas s kt k M B plasma sound is slow fo eletons, but fast fo ions Eleton density is in eah

More information

Electric Anisotropy, Magnetic Anisotropy, Uniaxial and Biaxial Materials, Bianisotropic Media (Definitions)

Electric Anisotropy, Magnetic Anisotropy, Uniaxial and Biaxial Materials, Bianisotropic Media (Definitions) leti nisotop agneti nisotop Uniaial and iaial ateials ianisotopi edia efinitions medium is alled eletiall anisotopi if tenso Note that and ae no longe paallel medium is magnetiall anisotopi if tenso Note

More information

Extra Examples for Chapter 1

Extra Examples for Chapter 1 Exta Examples fo Chapte 1 Example 1: Conenti ylinde visomete is a devie used to measue the visosity of liquids. A liquid of unknown visosity is filling the small gap between two onenti ylindes, one is

More information

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or ENERGETICS So fa we have been studying electic foces and fields acting on chages. This is the dynamics of electicity. But now we will tun to the enegetics of electicity, gaining new insights and new methods

More information

The electrified interface.

The electrified interface. Physial and Intefaial Eletohemisty 3 Exess negative Eletode + + + Solution + + Potential elmholtz Laye s Letue 5 Eletode/solution Intefae Exess positive x a..6 nm istane L The eletified intefae. The intefae

More information

dp p v= = ON SHOCK WAVES AT LARGE DISTANCES FROM THE PLACE OF THEIR ORIGIN By Lev D. Landau J. Phys. U.S.S.R. 9, 496 (1945).

dp p v= = ON SHOCK WAVES AT LARGE DISTANCES FROM THE PLACE OF THEIR ORIGIN By Lev D. Landau J. Phys. U.S.S.R. 9, 496 (1945). ON SHOCK WAVES AT LARGE DISTANCES FROM THE PLACE OF THEIR ORIGIN By Lev D. Landau J. Phys. U.S.S.R. 9, 496 (1945). It is shown that at lage distanes fom the body, moving with a. veloity exeeding that of

More information

Physics 11-0-Formulas - Useful Information. h hc. Earth's mass Earth's radius. Speed of light. Moon's radius. Moon's mass.

Physics 11-0-Formulas - Useful Information. h hc. Earth's mass Earth's radius. Speed of light. Moon's radius. Moon's mass. Physis - 0-Fomulas - Useful Infomation unifie atomi mass unit u.66 x 0-7 kg 9 Me V/ Poton mass m p.67 x 0-7 kg Neuton mass m n.67 x 0-7 kg Eleton mass m e 9. x 0 - kg The hage of eleton e.6 x 0-9 C Avogao's

More information

Review for Midterm-1

Review for Midterm-1 Review fo Midtem-1 Midtem-1! Wednesday Sept. 24th at 6pm Section 1 (the 4:10pm class) exam in BCC N130 (Business College) Section 2 (the 6:00pm class) exam in NR 158 (Natual Resouces) Allowed one sheet

More information

Khmelnik S.I. Mathematical Model of Dust Whirl

Khmelnik S.I. Mathematical Model of Dust Whirl Khmelnik S.I. Mathematial Model of Dust Whil Abstat The question of the soue of enegy in a dust whil is onsideed. Atmosphei onditions annot be the sole soue of enegy, as suh dust whils exist on Mas, whee

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

q r 1 4πε Review: Two ways to find V at any point in space: Integrate E dl: Sum or Integrate over charges: q 1 r 1 q 2 r 2 r 3 q 3

q r 1 4πε Review: Two ways to find V at any point in space: Integrate E dl: Sum or Integrate over charges: q 1 r 1 q 2 r 2 r 3 q 3 Review: Lectue : Consevation of negy and Potential Gadient Two ways to find V at any point in space: Integate dl: Sum o Integate ove chages: q q 3 P V = i 4πε q i i dq q 3 P V = 4πε dq ample of integating

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

2. Equation of generalized Dynamics. Let rectangular right hand coordinate triple is fixed in three-dimensional Euclidian space.

2. Equation of generalized Dynamics. Let rectangular right hand coordinate triple is fixed in three-dimensional Euclidian space. Genealized Dynamis about Foes Ating on Chage Moving in Capaito and Solenoid. J.G. Klyushin, Ph. D. Aademy of Civil Aviation, hai of applied mathematis; e-mail: klyushin@shaping.og; mail: Intenational Club

More information

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux?

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux? om last times MTE1 esults Mean 75% = 90/120 Electic chages and foce Electic ield and was to calculate it Motion of chages in E-field Gauss Law Toda: Moe on Gauss law and conductos in electostatic equilibium

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005 Fields and Waves I Sping 005 Homewok 8 Tansmission Lines Due: 3 May 005. Multiple Choice (6) a) The SWR (standing wave atio): a) is a measue of the match between the souce impedance and line impedance

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Physics 2102 Lecture: 07 TUE 09 FEB

Physics 2102 Lecture: 07 TUE 09 FEB Physics 2102 Jonathan Dowling Physics 2102 Lectue: 07 TUE 09 FEB Electic Potential II PHYS2102 FIRST MIDTERM EXAM 6 7PM THU 11 FEB 2009 Dowling s Sec. 4 in??? YOU MUST BRING YOUR STUDENT ID YOU MUST WRITE

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

In the previous section we considered problems where the

In the previous section we considered problems where the 5.4 Hydodynamically Fully Developed and Themally Developing Lamina Flow In the pevious section we consideed poblems whee the velocity and tempeatue pofile wee fully developed, so that the heat tansfe coefficient

More information

On the Revolving Ferrofluid Flow Due to Rotating Disk

On the Revolving Ferrofluid Flow Due to Rotating Disk ISSN 1749-3889 (pint), 1749-3897 (online) Intenational Jounal of Nonlinea Siene Vol.13(212) No.3,pp.317-324 On the Revolving Feofluid Flow Due to Rotating Disk Paas Ram, Kushal Shama Depatment of Mathematis,

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Reflectance spectra for Si

Reflectance spectra for Si Refletane speta fo Si Notie R and ε i and ε show onsideable stutues in the fom of peas and shouldes. These stutues aise fom the optial tansitions between alene bands to the ondution bands. 16 Miosopi Theoy:

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Mass- and light-horizons, black holes' radii, the Schwartzschild metric and the Kerr metric

Mass- and light-horizons, black holes' radii, the Schwartzschild metric and the Kerr metric 006-010 Thiey De Mees Mass- and light-hoizons, blak holes' adii, the Shwatzshild meti and the Ke meti mpoved alulus. (using gavitomagnetism) T. De Mees - thieydm@pandoa.be Abstat Blak holes geneally ae

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

The Geometric Representation of Electrodynamics by Exterior Differential Forms

The Geometric Representation of Electrodynamics by Exterior Differential Forms 1 The Geometi Repesentation of letodynamis by xteio Diffeential Foms Pete Russe Institute fo Nanoeletonis, Tehnishe Univesität Münhen isst. 21, D-80333 Munih, Gemany bstat The aim of this ontibution is

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Collection of Formulas

Collection of Formulas Collection of Fomuls Electomgnetic Fields EITF8 Deptment of Electicl nd Infomtion Technology Lund Univesity, Sweden August 8 / ELECTOSTATICS field point '' ' Oigin ' Souce point Coulomb s Lw The foce F

More information

Chapter 2: Solution of First order ODE

Chapter 2: Solution of First order ODE 0 Chapter : Solution of irst order ODE Se. Separable Equations The differential equation of the form that is is alled separable if f = h g; In order to solve it perform the following steps: Rewrite the

More information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101 PHY 114 A Geneal Physics II 11 AM-1:15 PM TR Olin 11 Plan fo Lectue 1 Chaptes 3): Souces of Magnetic fields 1. Pemanent magnets.biot-savat Law; magnetic fields fom a cuent-caying wie 3.Ampee Law 4.Magnetic

More information

Physics 1502: Lecture 4 Today s Agenda

Physics 1502: Lecture 4 Today s Agenda 1 Physics 1502: Today s genda nnouncements: Lectues posted on: www.phys.uconn.edu/~cote/ HW assignments, solutions etc. Homewok #1: On Mastephysics today: due next Fiday Go to masteingphysics.com and egiste

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005 Homewok 4 Due 8 Mach 005. Inceasing the Beakdown Voltage: This fist question is a mini design poject. You fist step is to find a commecial cable (coaxial o two wie line) fo which you have the following

More information

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2.

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2. Lectue 5 Solving Poblems using Geen s Theoem Today s topics. Show how Geen s theoem can be used to solve geneal electostatic poblems. Dielectics A well known application of Geen s theoem. Last time we

More information

A near-perfect invisibility cloak constructed with homogeneous materials

A near-perfect invisibility cloak constructed with homogeneous materials A nea-pefet invisibility loak onstuted with homogeneous mateials Wei Li, Jianguo Guan, * Zhigang Sun, Wei Wang, and Qingjie Zhang 1 State Key Lab of Advaned Tehnology fo Mateials Synthesis and Poessing,

More information

Dissolution of Solid Particles in Liquids: A Shrinking Core Model

Dissolution of Solid Particles in Liquids: A Shrinking Core Model Wold Aademy of Siene, Engineeing and Tehnology 5 9 Dissolution of Solid Patiles in Liquids: A Shining oe Model Wei-Lun Hsu, Mon-Jyh Lin, and Jyh-Ping Hsu Astat The dissolution of spheial patiles in liquids

More information

Introduction to Accelerator Physics

Introduction to Accelerator Physics Intoduction to Acceleato Physics Pat 3 Pedo Casto / Acceleato Physics Goup (MPY) Intoduction to Acceleato Physics DSY, 5th July 017 acceleating devices vacuum chambe injecto acceleating device staight

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

A Theory of the Podkletnov Effect based on General Relativity: Anti-Gravity Force due to the Perturbed Non-Holonomic Background of Space

A Theory of the Podkletnov Effect based on General Relativity: Anti-Gravity Force due to the Perturbed Non-Holonomic Background of Space July, 007 PROGRESS IN PHYSICS Volume 3 SPECIAL REPORT A Theoy of the Podkletnov Effet based on Geneal Relativity: Anti-Gavity Foe due to the Petubed Non-Holonomi Bakgound of Spae Dmiti Rabounski and Laissa

More information

International ejournals

International ejournals Available online at www.intenationalejounals.com Intenational ejounals ISSN 0976 4 Intenational ejounal of Mathematics and Engineeing 49 (00) 49-497 RADIAL VIBRATIONS IN MICRO ELASTIC HOLLOW SPHERE T.

More information

Fundamentals of Modern Optics Winter Term 2012/2013 Prof. Thomas Pertsch Abbe School of Photonics Friedrich-Schiller-Universität Jena

Fundamentals of Modern Optics Winter Term 2012/2013 Prof. Thomas Pertsch Abbe School of Photonics Friedrich-Schiller-Universität Jena Sipt Fundamentals of Moden Optis, FSU Jena, Pof. T. Petsh, FoMO_Sipt_--9.dox Fundamentals of Moden Optis Winte Tem /3 Pof. Thomas Petsh Abbe Shool of Photonis Fiedih-Shille-Univesität Jena This sipt is

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown [Giffiths Ch.-] 8//8, :am :am, Useful fomulas V ˆ ˆ V V V = + θ+ φ ˆ and v = ( v ) + (sin θvθ ) + v θ sinθ φ sinθ θ sinθ φ φ. (6%, 7%, 7%) Suppose the potential at the suface of a hollow hemisphee is specified,

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

4) Magnetic confinement of plasma

4) Magnetic confinement of plasma 4) Magneti onfineent of plasa Due to the shielding in the plasa, thee is alost no ontol with eleti fields. A ontol is possible with agneti fields, as patiles ae bound to the field lines. This is alled

More information

Electrostatic Potential

Electrostatic Potential Chapte 23 Electostatic Potential PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Copyight 2008 Peason Education Inc., publishing as Peason

More information

Electromagnetic Theory 1

Electromagnetic Theory 1 / lectomagnetic Theoy uestion : lectostatic Potential negy A sphee of adius caies a positive chage density ρ constant Obviously the spheical coodinates system is appopiate hee Take - C m - and cm τ a)

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

Experiment 1 Electric field and electric potential

Experiment 1 Electric field and electric potential Expeiment 1 Eleti field and eleti potential Pupose Map eleti equipotential lines and eleti field lines fo two-dimensional hage onfiguations. Equipment Thee sheets of ondutive papes with ondutive-ink eletodes,

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information