Yang-Mills Gravity and Accelerated Cosmic Expansion* (Based on a Model with Generalized Gauge Symmetry)

Size: px
Start display at page:

Download "Yang-Mills Gravity and Accelerated Cosmic Expansion* (Based on a Model with Generalized Gauge Symmetry)"

Transcription

1 review research Yang-Mills Gravity and Accelerated Cosmic Expansion* (Based on a Model with Generalized Gauge Symmetry) Jong-Ping Hsu Physics Department, Univ. of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA *Collaborators: (1) Leonardo Hsu (Space-time symmetry and quantum Yang-Mills gravity, World Scientific), (2) Kazuo Cottrell ( A unified model with a generalized gauge symmetry and its cosmological implications.)

2 (I) A BIG PICTURE OF SPACE-TIME: There exists a fundamental (flat) space-time symmetry framework that can encompass all interactions in physics, including gravity, and is valid for both inertial and non-inertial frames. (II) A UNIFIED PICTURE OF ALL FORCES: There exist fundamental gauge symmetries, which dictate all basic interactions in nature. A. Gravity---Yang-Mills gravity---space-time translational gauge symmetry T 4 (external, exact) B. Electroweak---SU 2 x U 1 (spontaneous sym breaking) C.Strong force (QCD)---(SU 3 ) color (exact) D.Cosmic baryonic (& leptonic) forces---u 1b (exact)

3 Such a unified model follows the ideas of Glashow, Salam, Ward, and Weinberg. It can be formulated for both inertial and non-inertial frames. Symmetry appears to be the deepest foundation for our understanding of the physical universe.

4 Two basic frameworks in physics: 1. Flat space-time: All field theories for electroweak and strong interactions 2. Curved space-time: Einstein s gravity However, Einstein s symmetry principle of general coordinate invariance is a profound idea with highly non-trivial difficulties. Why?

5 Gravity??? F. Dyson: (A founder of QED, together with Tomonaga, Schwinger, & Feynman) Dyson stressed that The most glaring incompatibility of concepts in contemporary physics is that between Einstein s principle of general coordinate invariance and all the modern schemes for quantum-mechanical description of nature. ( Missed Opportunity, J. W. Gibbs Lecture at Amer. Math. Soc. 1972) This incompatibility is a MOTIVATION for our research..

6 Gravity??? E. P. Wigner, Symmetries and Reflections (MIT Press, 1967) pp The basic premise of this theory [general relativity] is that coordinates are only auxiliary quantities which can be given arbitrary values for every event. Hence, the measurement of position, that is, of the space coordinates, is certainly not a significant measurement if the postulates of the general theory are adopted. Most of us have struggled with the problem of how, under these premises, the general theory of relativity can make meaningful statements and predictions at all. Noether s theorem II: No conservation of energy in GR

7 To illustrate generalized gauge symmetry, I shall discuss (1) and Why should gauge symmetry in flat space-time be so successful for modeling all known interactions except gravity? Yang-Mills Gravity (with a generalized gauge symmetry) Yang-Mills Gravity enables us to have A UNIFIED PICTURE OF ALL FORCES based on gauge symmetry: (1)Yang-Mills gravity---space-time translational gauge symmetry T 4 (2) Electroweak forces--- SU 2 x U 1 symmetry (3) Strong force (QCD)--(SU 3 ) color symm (4) Baryonic force---u 1b (accelerated cosmic expansion). (5) Leptonic force---u 1l (accelerated cosmic expansion).

8 Gauge Symmetry in Flat Spacetime (a generalization of Yang-Mills internal gauge symmetry to include external gauge symmetry) Generalized Yang-Mills idea of gauge symmetry in Flat 4-dim space-time----- a profound idea Local space-time translation gauge symmetry T 4 x μ x μ +Λ μ (x), η μν =(1,-1,-1,-1), (c=ћ=1) Λ μ (x): infinitesimal arbitrary function of space-time 4-dim displacement operator p ν =i ν =i / x ν T(4) gauge symmetry dictates the tensor fields φ μν. Gauge covariant derivative Δ μ (x) : μ μ - igφ μν p ν = J μν ν = Δ μ. J μν = η μν + gφ μν, φ μν = φ νμ.

9 A Basic Observation: Dual interpretations of *** x μ x μ =x μ +Λ μ (x) (ia) a local shift (translation) in flat space-time, (ib) an arbitrary infinitesimal coordinate transformation in flat space-time. (ii) an arbitrary infinitesimal transformations of coordinates in curved space-time. (GR) ***This is the key conceptual departure from that of GR. (Early discussions of gravity based on flat space-time or translational gauge symmetry: A. A. Logunov, M.A. Mestvirishvili, A.A. Vlasov, Y.M. Cho, N. Wu and others.)

10 Interpretation (ia,ib) Yang-Mills gravity in flat space-time (for both inertial and non-inertial frames). T 4 Gauge symmetry postulates the replacement in the Lagrangian: μ μ +gφ μν ν =J μν ν = Δ μ, (c=ћ=1) (i) g is not dimensionless, (dimension of g=length) (ii) φ μν is not a vector field They differ from those in usual Yang-Mills gauge symmetry. [Δ μ, Δ ν ]=C μνα α T 4 Gauge curvature: C μνα C μνα = J μα ( α J να ) - J νβ ( β J να ), J μν = η μν + gφ μν,

11 Lagrangian and Field Equations L= - (1/2g 2 )(C μαβ C μβα - C μα αc μββ ) + L ψ, where C μαβ C μβα = C μαβ C μαβ /2. H μν = - g 2 T μν H μν = - λ {J λ αc αμν - J λ αc αβ βη μν + C μβ βj νλ } - C μαβ ν J αβ + C μβ β ν J α α-c λβ β ν J μ λ T μν = (1/2)[ψiγ μ ν ψ - (i ν ψ)γ μ ψ]

12 Interesting results: In the limit of geometric-optics (i.e., classical limit), the wave eqs. of massive fermions and bosons reduces to the same Hamilton-Jacobi type equation G μν μ S ν S = m 2, G μν =η αβ J αμ J βν, where G μν appears to be an effective Riemannian metric tensor for (and only for) a classical object. But for quantum fields and particles, the physical space-time is flat. Maxwell s eqs. (classical limit) eikonal equation with a slightly different metric tensor G L μν Effective curved space-time for the motion of classical objects in Yang-Mills gravity

13 Experimental Results: Perihelion shift-----`same as the usual result (within experimental accuracy) Red shift----`same Gravitational quadrupole radiation-----`same Bending of light ---- different Bending of Light Δφ=1.53 (only for light rays with optical frequency) 12% smaller than the usual value 1.75 Experimental accuracy: 10-20% (optical frequency)

14 Conclusions: A UNIFIED PICTURE OF ALL FORCES A total unified model, including Yang-Mills gravity, based on T 4 x (SU 3 ) color x (SU 2 xu 1 ) [xu 1b xu 1e ] in flat space-time, with the total gauge covariant derivative δ μ = μ +gφ μν ν +ig G μa λ a /2 + if W μb t b + if U μ +... Where a=1,2,3 8 (λ a =SU 3 generators) ; b=1,2,3 (t b =SU 2 generators). One new conceptual result of Yang-Mills gravity is that the apparent curvature of space-time appears to be simply a manifestation of the flat space-time translational gauge symmetry for the motion of quantum particles in the classical limit.

15 Accelerated cosmic expansion based on a generalized U 1 gauge symmetry associated with conservation of baryon number (or charge): B λ (x) = B λ (x) + Λ λ (x), U (x)=ω(x)u(x), Ω(x) = exp(-if ) Ū (x)=ū(x)ω -1 (x), L l U(x)=fermion field, Ω(x)=path-dependent phase factor In special case,in which Λ μ (x)= μ Λ(x), the previous generalized U 1 transformation simplify to the usual U 1 gauge transformation: Ω(x)= usual phase factor ò x ( x') dx' l

16 As usual, the generalized U 1 gauge covariant derivative is defined as μ μ - ifb μ = Δ bμ The U 1 gauge curvature is given by [Δ bμ, Δ bν ]= if B μν (x), where B μν (x)= ν B μ - μ B ν, However, B μν (x) is not gauge invariant: B μν (x)=b μν (x)+ μ Λ ν (x) - ν Λ μ (x) B μν (x)

17 Only the divergence of the gauge curvature is gauge invariant: μ B μν (x)= μ B μν (x), Provided the vector gauge function Λ μ (x) satisfy the constraint μ μ Λ ν (x) - ν μ Λ μ (x) = 0 The generalized U 1b gauge invariant Lagrangian: L= - (L b2 /2) μ F μβ ν F νβ + ψ[iγ μ ( μ +ifb μ )-m]ψ. The baryonic gauge field equation is the fourth-order eq. 2 μ B μν (x)- (f/l b2 ) ψγ μ B μ ψ=0.

18 The static equation for B 0 (r) is L b2 ΔΔB 0 = (f/l b2 ) ψγ 0 ψ. For a spheric static solution of a point source, we find B 0 (r)=f/(8πl b2 ) r linear in r! This linear potential will lead to a constant force between baryons in the universe. ò This baryonic force will dominate the motion in extremely large distance, no matter how small the baryonic coupling constant f is. Such a baryonic force resembles the U1 electromagnetic force and it is repulsive between two baryons (protons and neutrons).

19 Experimental test of accelerated cosmic expanison due to baryonic force. Consider a supernova with mass m s located in a sphere of roughly 100 billion galaxies (as reveal by Hubble). We idealize baryonic galaxies as points uiformly distributed in a big sphere with a radius R o and a constant baryon density. We can calculate the total force of the sphere that acts on a supernova at a distance r < R o. We obtain* d 2 r/dt 2 =(9f 2 M)/(8L b2 m p2 )[1-r 2 /{5R o2 }](r/r o ), [Gauge] For comparison, in the conventional model with a cosmological constant in Einstein equation, one has d 2 r/dt 2 = C r, C = const. [General Rela.] *JP Hsu and L. Hsu, A model of cosmic acceleration of a supernova and exp.

20 Conclusions: Yang-Mills gravity suggests that the apparent curvature of space-time appears to be simply a manifestation of the flat space-time translational gauge symmetry for the motion of quantum particles in the classical limit. We can have a field-theoretic understanding of the accelerated cosmic expansion based on a generalized gauge symmetry (involving baryon number conservation, vector gauge functions and path-dependent phases.)

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Two Fundamental Principles of Nature s Interactions

Two Fundamental Principles of Nature s Interactions Two Fundamental Principles of Nature s Interactions Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid I. Gravity and Principle of Interaction Dynamics PID)

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Do You Need to Understand General Relativity to Understand Gravitation?

Do You Need to Understand General Relativity to Understand Gravitation? Do You Need to Understand General Relativity to Understand? Institute of Mathematical Sciences, Chennai IIAP-Bangalore 13 June 2006 Newton s Three Laws Figure: Newton s Laws. Newton The fundamental law

More information

Elementary particles and typical scales in high energy physics

Elementary particles and typical scales in high energy physics Elementary particles and typical scales in high energy physics George Jorjadze Free University of Tbilisi Zielona Gora - 23.01.2017 GJ Elementary particles and typical scales in HEP Lecture 1 1/18 Contents

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Genesis of Electroweak. Unification

Genesis of Electroweak. Unification Unification Tom Kibble Imperial College London ICTP October 2014 1 Outline Development of the electroweak theory, which incorporates the idea of the Higgs boson as I saw it from my standpoint in Imperial

More information

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS. LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS Merab Gogberashvili a and Paul Midodashvili b a Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 3877, Georgia E-mail: gogber@hotmail.com

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

Stephen Blaha, Ph.D. M PubHsMtw

Stephen Blaha, Ph.D. M PubHsMtw Quantum Big Bang Cosmology: Complex Space-time General Relativity, Quantum Coordinates,"Dodecahedral Universe, Inflation, and New Spin 0, 1 / 2,1 & 2 Tachyons & Imagyons Stephen Blaha, Ph.D. M PubHsMtw

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

Lecture VIII: Linearized gravity

Lecture VIII: Linearized gravity Lecture VIII: Linearized gravity Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: November 5, 2012) I. OVERVIEW We are now ready to consider the solutions of GR for the case of

More information

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. http://preposterousuniverse.com/grnotes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been framed

More information

Unified Field Equations Coupling Force Forces. Tian Ma, Shouhong Wang Supported in part by NSF and ONR

Unified Field Equations Coupling Force Forces. Tian Ma, Shouhong Wang Supported in part by NSF and ONR Unified Field Equations Coupling Force Forces Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid 1 Outline I. Motivations II. PID III. Unified Field Equations Coupling

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Metric-affine theories of gravity

Metric-affine theories of gravity Introduction Einstein-Cartan Poincaré gauge theories General action Higher orders EoM Physical manifestation Summary and the gravity-matter coupling (Vinc) CENTRA, Lisboa 100 yy, 24 dd and some hours later...

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

Unified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy

Unified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy Unified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid 1 Outline I. Motivations II.

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

Lecture IX: Field equations, cosmological constant, and tides

Lecture IX: Field equations, cosmological constant, and tides Lecture IX: Field equations, cosmological constant, and tides Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: October 28, 2011) I. OVERVIEW We are now ready to construct Einstein

More information

New Blackhole Theorem and its Applications to Cosmology and Astrophysics

New Blackhole Theorem and its Applications to Cosmology and Astrophysics New Blackhole Theorem and its Applications to Cosmology and Astrophysics I. New Blackhole Theorem II. Structure of the Universe III. New Law of Gravity IV. PID-Cosmological Model Tian Ma, Shouhong Wang

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis International Francqui Chair Inaugural Lecture Leuven, 11 February 2005 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model

More information

The Correct Interpretation of the Kaluza-Klein Theory

The Correct Interpretation of the Kaluza-Klein Theory Copyright 2014 by Sylwester Kornowski All rights reserved The Correct Interpretation of the Kaluza-Klein Theory Sylwester Kornowski Abstract: Here, within the Scale-Symmetric Everlasting Theory (S-SET),

More information

INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY

INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY Living script Astro 405/505 ISU Fall 2004 Dirk Pützfeld Iowa State University 2004 Last update: 9th December 2004 Foreword This material was prepared by

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations Outline General Relativity from Basic Principles General Relativity as an Extended Canonical Gauge Theory Jürgen Struckmeier GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany j.struckmeier@gsi.de,

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 Masses for Vectors: the Higgs mechanism April 6, 2012 The momentum-space propagator

More information

Continuity Equations and the Energy-Momentum Tensor

Continuity Equations and the Energy-Momentum Tensor Physics 4 Lecture 8 Continuity Equations and the Energy-Momentum Tensor Lecture 8 Physics 4 Classical Mechanics II October 8th, 007 We have finished the definition of Lagrange density for a generic space-time

More information

The Cosmological Principle

The Cosmological Principle Cosmological Models John O Byrne School of Physics University of Sydney Using diagrams and pp slides from Seeds Foundations of Astronomy and the Supernova Cosmology Project http://www-supernova.lbl.gov

More information

Variational Principle and Einstein s equations

Variational Principle and Einstein s equations Chapter 15 Variational Principle and Einstein s equations 15.1 An useful formula There exists an useful equation relating g µν, g µν and g = det(g µν ) : g x α = ggµν g µν x α. (15.1) The proof is the

More information

16. Einstein and General Relativistic Spacetimes

16. Einstein and General Relativistic Spacetimes 16. Einstein and General Relativistic Spacetimes Problem: Special relativity does not account for the gravitational force. To include gravity... Geometricize it! Make it a feature of spacetime geometry.

More information

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016 The Divergence Myth in Gauss-Bonnet Gravity William O. Straub Pasadena, California 91104 November 11, 2016 Abstract In Riemannian geometry there is a unique combination of the Riemann-Christoffel curvature

More information

Lectures April 29, May

Lectures April 29, May Lectures 25-26 April 29, May 4 2010 Electromagnetism controls most of physics from the atomic to the planetary scale, we have spent nearly a year exploring the concrete consequences of Maxwell s equations

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

Tutorial I General Relativity

Tutorial I General Relativity Tutorial I General Relativity 1 Exercise I: The Metric Tensor To describe distances in a given space for a particular coordinate system, we need a distance recepy. The metric tensor is the translation

More information

Physical Laws of Nature vs Fundamental First Principles

Physical Laws of Nature vs Fundamental First Principles Physical Laws of Nature vs Fundamental First Principles Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid I. Laws of Gravity, Dark Matter and Dark Energy

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Spinors in Curved Space

Spinors in Curved Space December 5, 2008 Tetrads The problem: How to put gravity into a Lagrangian density? The problem: How to put gravity into a Lagrangian density? The solution: The Principle of General Covariance The problem:

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

Properties of Traversable Wormholes in Spacetime

Properties of Traversable Wormholes in Spacetime Properties of Traversable Wormholes in Spacetime Vincent Hui Department of Physics, The College of Wooster, Wooster, Ohio 44691, USA. (Dated: May 16, 2018) In this project, the Morris-Thorne metric of

More information

PHYM432 Relativity and Cosmology 17. Cosmology Robertson Walker Metric

PHYM432 Relativity and Cosmology 17. Cosmology Robertson Walker Metric PHYM432 Relativity and Cosmology 17. Cosmology Robertson Walker Metric Cosmology applies physics to the universe as a whole, describing it s origin, nature evolution and ultimate fate. While these questions

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

Note 1: Some Fundamental Mathematical Properties of the Tetrad.

Note 1: Some Fundamental Mathematical Properties of the Tetrad. Note 1: Some Fundamental Mathematical Properties of the Tetrad. As discussed by Carroll on page 88 of the 1997 notes to his book Spacetime and Geometry: an Introduction to General Relativity (Addison-Wesley,

More information

Birth of electroweak theory from an Imperial perspective

Birth of electroweak theory from an Imperial perspective Birth of electroweak theory from an Imperial perspective Tom Kibble King s College London 2 Oct 2012 Electroweak theory Oct 2012 1 Outline Story of spontaneous symmetry breaking in gauge theories and electro-weak

More information

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model Lecture 8 September 21, 2017 Today General plan for construction of Standard Model theory Properties of SU(n) transformations (review) Choice of gauge symmetries for the Standard Model Use of Lagrangian

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v2 23 Feb 2004 100871 Beijing, China Abstract In this paper, complex

More information

Stress-energy tensor is the most important object in a field theory and have been studied

Stress-energy tensor is the most important object in a field theory and have been studied Chapter 1 Introduction Stress-energy tensor is the most important object in a field theory and have been studied extensively [1-6]. In particular, the finiteness of stress-energy tensor has received great

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

General Relativity Lecture 20

General Relativity Lecture 20 General Relativity Lecture 20 1 General relativity General relativity is the classical (not quantum mechanical) theory of gravitation. As the gravitational interaction is a result of the structure of space-time,

More information

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor EJTP 6, No. 22 (2009) 189 196 Electronic Journal of Theoretical Physics Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor Walaa. I. Eshraim and Nasser. I. Farahat Department of

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v3 10 Mar 2004 100871 Beijing, China Abstract In this paper, complex

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Cosmic Bubble Collisions

Cosmic Bubble Collisions Outline Background Expanding Universe: Einstein s Eqn with FRW metric Inflationary Cosmology: model with scalar field QFTà Bubble nucleationà Bubble collisions Bubble Collisions in Single Field Theory

More information

Ta-Pei Cheng PCNY 9/16/2011

Ta-Pei Cheng PCNY 9/16/2011 PCNY 9/16/2011 Ta-Pei Cheng For a more quantitative discussion, see Relativity, Gravitation & Cosmology: A Basic Introduction (Oxford Univ Press) 2 nd ed. (2010) dark matter & dark energy Astronomical

More information

Higgs-Field Gravity. H. Dehnen and H. Frommert. Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach West Germany

Higgs-Field Gravity. H. Dehnen and H. Frommert. Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach West Germany Higgs-Field Gravity. H. Dehnen and H. Frommert Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach 55 60 West Germany Summary It is shown that any excited Higgs-field mediates an attractive

More information

arxiv: v1 [gr-qc] 17 May 2008

arxiv: v1 [gr-qc] 17 May 2008 Gravitation equations, and space-time relativity arxiv:0805.2688v1 [gr-qc] 17 May 2008 L. V. VEROZUB Kharkov National University Kharkov, 61103 Ukraine Abstract In contrast to electrodynamics, Einstein

More information

Einstein Double Field Equations

Einstein Double Field Equations Einstein Double Field Equations Stephen Angus Ewha Woman s University based on arxiv:1804.00964 in collaboration with Kyoungho Cho and Jeong-Hyuck Park (Sogang Univ.) KIAS Workshop on Fields, Strings and

More information

Astro 596/496 PC Lecture 9 Feb. 8, 2010

Astro 596/496 PC Lecture 9 Feb. 8, 2010 Astro 596/496 PC Lecture 9 Feb. 8, 2010 Announcements: PF2 due next Friday noon High-Energy Seminar right after class, Loomis 464: Dan Bauer (Fermilab) Recent Results from the Cryogenic Dark Matter Search

More information

Scalar Electrodynamics. The principle of local gauge invariance. Lower-degree conservation

Scalar Electrodynamics. The principle of local gauge invariance. Lower-degree conservation . Lower-degree conservation laws. Scalar Electrodynamics Let us now explore an introduction to the field theory called scalar electrodynamics, in which one considers a coupled system of Maxwell and charged

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

Espansione a grandi N per la gravità e 'softening' ultravioletto

Espansione a grandi N per la gravità e 'softening' ultravioletto Espansione a grandi N per la gravità e 'softening' ultravioletto Fabrizio Canfora CECS Valdivia, Cile Departimento di fisica E.R. Caianiello NFN, gruppo V, CG Salerno http://www.sa.infn.it/cqg , Outline

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

arxiv:gr-qc/ v3 10 Nov 1994

arxiv:gr-qc/ v3 10 Nov 1994 1 Nonsymmetric Gravitational Theory J. W. Moffat Department of Physics University of Toronto Toronto, Ontario M5S 1A7 Canada arxiv:gr-qc/9411006v3 10 Nov 1994 Abstract A new version of nonsymmetric gravitational

More information

Jackiw-Pi Model: A Superfield Approach

Jackiw-Pi Model: A Superfield Approach Jackiw-Pi Model: A Superfield Approach Saurabh Gupta The Institute of Mathematical Sciences CIT Campus, Chennai, India July 29, 2013 Saurabh Gupta (IMSc) 3D Jackiw-Pi Model July 29, 2013 1 / 31 This talk

More information

Unified Theory of Dark Energy and Dark Matter

Unified Theory of Dark Energy and Dark Matter Unified Theory of Dark Energy and Dark Matter Tian Ma, 1 Shouhong Wang 2 1 Department of Mathematics, Sichuan University, Chengdu, P. R. China 2 Department of Mathematics, Indiana University, Bloomington,

More information

A Generally Covariant Field Equation For Gravitation And Electromagnetism

A Generally Covariant Field Equation For Gravitation And Electromagnetism 3 A Generally Covariant Field Equation For Gravitation And Electromagnetism Summary. A generally covariant field equation is developed for gravitation and electromagnetism by considering the metric vector

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Fundamental Theories of Physics in Flat and Curved Space-Time

Fundamental Theories of Physics in Flat and Curved Space-Time Fundamental Theories of Physics in Flat and Curved Space-Time Zdzislaw Musielak and John Fry Department of Physics The University of Texas at Arlington OUTLINE General Relativity Our Main Goals Basic Principles

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

A solution in Weyl gravity with planar symmetry

A solution in Weyl gravity with planar symmetry Utah State University From the SelectedWorks of James Thomas Wheeler Spring May 23, 205 A solution in Weyl gravity with planar symmetry James Thomas Wheeler, Utah State University Available at: https://works.bepress.com/james_wheeler/7/

More information

Hot Topics in Physics. OLLI lectures Fall 2016 Horst D Wahl lecture 3, 25 Oct 2016

Hot Topics in Physics. OLLI lectures Fall 2016 Horst D Wahl lecture 3, 25 Oct 2016 1 Hot Topics in Physics OLLI lectures Fall 2016 Horst D Wahl (hwahl@fsu.edu) lecture 3, 25 Oct 2016 2 Outline of 2 nd class Recap Present paradigm, cont d Particles, cont d Cosmos Neutrinos (maybe??) 3

More information

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 6 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 14, 2017 General Relativity Chapter 2 Special Relativity

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

Gravity and action at a distance

Gravity and action at a distance Gravitational waves Gravity and action at a distance Newtonian gravity: instantaneous action at a distance Maxwell's theory of electromagnetism: E and B fields at distance D from charge/current distribution:

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

Electroweak Theory & Neutrino Scattering

Electroweak Theory & Neutrino Scattering Electroweak Theory & 01.12.2005 Electroweak Theory & Contents Glashow-Weinberg-Salam-Model Electroweak Theory & Contents Glashow-Weinberg-Salam-Model Electroweak Theory & Contents Glashow-Weinberg-Salam-Model

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis Universitat Barcelona Miami, 23 April 2009 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model Basic building blocks, quarks,

More information

arxiv:gr-qc/ v1 14 Jul 1994

arxiv:gr-qc/ v1 14 Jul 1994 LINEAR BIMETRIC GRAVITATION THEORY arxiv:gr-qc/9407017v1 14 Jul 1994 M.I. Piso, N. Ionescu-Pallas, S. Onofrei Gravitational Researches Laboratory 71111 Bucharest, Romania September 3, 2018 Abstract A general

More information

Curved Spacetime... A brief introduction

Curved Spacetime... A brief introduction Curved Spacetime... A brief introduction May 5, 2009 Inertial Frames and Gravity In establishing GR, Einstein was influenced by Ernst Mach. Mach s ideas about the absolute space and time: Space is simply

More information

The Hamiltonian formulation of gauge theories

The Hamiltonian formulation of gauge theories The Hamiltonian formulation of gauge theories I [p, q] = dt p i q i H(p, q) " # q i = @H @p i =[q i, H] ṗ i = @H =[p @q i i, H] 1. Symplectic geometry, Hamilton-Jacobi theory,... 2. The first (general)

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

A873: Cosmology Course Notes. II. General Relativity

A873: Cosmology Course Notes. II. General Relativity II. General Relativity Suggested Readings on this Section (All Optional) For a quick mathematical introduction to GR, try Chapter 1 of Peacock. For a brilliant historical treatment of relativity (special

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Abstract. Invited talk at the 8th General Meeting, European Women in Mathematics, December, 1997, Trieste, Italy, to appear in the Proceedings.

Abstract. Invited talk at the 8th General Meeting, European Women in Mathematics, December, 1997, Trieste, Italy, to appear in the Proceedings. Symmetry and symmetry breaking in particle physics TSOU Sheung Tsun Mathematical Institute, Oxford University 24 29 St. Giles, Oxford OX1 3LB United Kingdom. tsou @ maths.ox.ac.uk Abstract Symmetry, in

More information

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc.

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc. Chapter 29 Lecture Particle Physics Prepared by Dedra Demaree, Georgetown University Particle Physics What is antimatter? What are the fundamental particles and interactions in nature? What was the Big

More information

An Introduction to Kaluza-Klein Theory

An Introduction to Kaluza-Klein Theory An Introduction to Kaluza-Klein Theory A. Garrett Lisi nd March Department of Physics, University of California San Diego, La Jolla, CA 993-39 gar@lisi.com Introduction It is the aim of Kaluza-Klein theory

More information

arxiv: v3 [hep-ph] 4 Dec 2018

arxiv: v3 [hep-ph] 4 Dec 2018 About electrodynamics, standard model and the quantization of the electrical charge Renata Jora a a National Institute of Physics and Nuclear Engineering PO Box MG-6, Bucharest-Magurele, Romania (Dated:

More information