The size of the proton

Size: px
Start display at page:

Download "The size of the proton"

Transcription

1 The size of the proton from the Lamb shift in muonic hydrogen Randolf Pohl The size of the proton from the Lamb shift in muonic hydrogen for the CREMA collaboration Randolf Pohl Max-Planck-Institut für Quantenoptik Garching, Germany Randolf Pohl ACFC, 18 July 2011 p. 1

2 Outline Randolf Pohl ACFC, 18 July 2011 p. 2 The problem: Proton rms charge radius r p from muonic hydrogen µp is 4 % smaller than the values from elastic electron-proton scattering and hydrogen spectroscopy. That s 5σ σ. But the µp result is 10 times more accurate than any other measurement. Introduction: Hydrogen, fundamental constants, QED tests and all that. How large is the proton? Muonic hydrogen: (Finite) size does matter! Experiment: Principle Muon beam Laser system A solution of the proton size puzzle

3 Hydrogen energy levels Randolf Pohl ACFC, 18 July 2011 p. 3 Energy n=3 n=2 n=1 Bohr E = R /n 2 V 1/r

4 Hydrogen energy levels Randolf Pohl ACFC, 18 July 2011 p. 3 Energy n=3 n=2 2P 3/2 2S 1/2, 2P 1/2 n=1 Bohr E = R /n 2 V 1/r Shift: GHz 1S 1/2 Dirac e spin relativity

5 Hydrogen energy levels Randolf Pohl ACFC, 18 July 2011 p. 3 Energy n=3 n=2 2P 3/2 2S 1/2, 2P 1/2 2S 1/2 2P 1/2 n=1 Shift: GHz 1S 1/2 8.2 GHz Bohr Dirac Lamb E = R /n 2 V 1/r e spin relativity QED

6 Hydrogen energy levels Randolf Pohl ACFC, 18 July 2011 p. 3 Energy n=3 n=2 2P 3/2 2S 1/2, 2P 1/2 2S 1/2 2P 1/2 F=1 F=0 n=1 Shift: GHz 1S 1/2 8.2 GHz 1.4 GHz F=1 F=0 Bohr Dirac Lamb hfs-splitting E = R /n 2 V 1/r e spin relativity QED proton-spin H hfs µ p µ e

7 Hydrogen energy levels Randolf Pohl ACFC, 18 July 2011 p. 3 Energy n=3 n=2 2P 3/2 2S 1/2, 2P 1/2 2S 1/2 2P 1/2 F=1 F= MHz n=1 Shift: GHz 1S 1/2 8.2 GHz 1.4 GHz F=1 F=0 1.2 MHz Bohr Dirac Lamb hfs-splitting r p E = R /n 2 V 1/r e spin relativity QED proton-spin H hfs µ p µ e proton size V 1/r

8 The Rydberg constant Randolf Pohl ACFC, 18 July 2011 p. 4 Accuracy of the Rydberg constant fractional uncertainty single measurements least-square adjustments year 2006: R = ± m 1 (u r = ) is the 2 nd most accurately determined fundamental constant.

9 Test of bound-state QED Randolf Pohl ACFC, 18 July 2011 p. 5 1S Lamb shift in hydrogen: L 1S (r p ) = (4) r 2 p ep 1S Lamb shift precision 10-5 δr p / r p = Munich Paris Yale δr p / r p = year MHz slide from 1999 until now accuracy of QED calculations future? QED-test is limited by the uncertainty of the proton rms charge radius.

10 Proton radius vs. time Randolf Pohl ACFC, 18 July 2011 p. 6 The proton rms charge radius is not the most accurate quantity in the universe ±2% electron scattering slope of G E at Q 2 = 0 Proton radius (fm) Orsay, 1962 Stanford, 1963 Saskatoon, 1974 Mainz, 1980 Mainz, free norm. dispersion fit Paris, 1996 Garching, Paris, 1999 Rosenfelder, 2000 Eides, 2001 Sick, 2003 Pachucki Jentschura, 03 CODATA e-p scattering: r p = 0.895(18) fm (u r = 2 %) CODATA: r p = (69) fm (u r = 0.8 %) 2008 year hydrogen spectr. Lamb shift (S-states)

11 Proton radius vs. time Randolf Pohl ACFC, 18 July 2011 p. 6 The proton rms charge radius is not the most accurate quantity in the universe Electron scattering: r 2 ±2% p = dg E(Q 2 ) Q2 6 2 dq 2 =0 slope of G E at Q 2 = 0 electron scattering slope of G E at Q 2 = 0 Proton radius (fm) Orsay, 1962 Stanford, 1963 Saskatoon, 1974 Mainz, 1980 Mainz, free norm. dispersion fit Paris, 1996 Garching, Paris, 1999 Rosenfelder, 2000 Eides, 2001 Sick, 2003 Pachucki Jentschura, 03 CODATA e-p scattering: r p = 0.895(18) fm (u r = 2 %) CODATA: r p = (69) fm (u r = 0.8 %) Vanderhaeghen, Walcher year hydrogen spectr. Lamb shift (S-states)

12 Proton radius vs. time Randolf Pohl ACFC, 18 July 2011 p. 6 Proton radius (fm) The proton rms charge radius is not the most accurate quantity in the universe Hydrogen spectroscopy (Lamb shift): 1962 L 1S (r p ) = (4) r 2 p ±2% 8S 4S 3S 2S-8S 2S 1S-2S S-8D 2P D Orsay, 1962 Stanford, 1963 Saskatoon, 1974 Mainz, 1980 Mainz, free norm. dispersion fit Paris, 1996 Garching, E ns R n 2 + L 1S Paris, 1999 Rosenfelder, 2000 Eides, 2001 Sick, 2003 n 3 Pachucki Jentschura, 03 CODATA Lamb shift L e-p scattering: r p = 0.895(18) fm (u 1S r r = 2 %) p CODATA: 1S r p = (69) fm (u r = 0.8 %) MHz 2 unknowns 2 transitions Rydberg constant R 2008 year electron scattering slope of G E at Q 2 = 0 hydrogen spectr. Lamb shift (S-states)

13 Proton radius vs. time Randolf Pohl ACFC, 18 July 2011 p. 6 Proton radius (fm) The proton rms charge radius is not the most accurate quantity in the universe ±2% Orsay, 1962 Stanford, 1963 Saskatoon, 1974 Mainz, 1980 Mainz, free norm. dispersion fit Paris, 1996 Garching, our goal Paris, 1999 Rosenfelder, 2000 Eides, 2001 Sick, 2003 Pachucki Jentschura, 03 CODATA 2006 e-p scattering: r p = 0.895(18) fm (u r = 2 %) CODATA: r p = (69) fm (u r = 0.8 %) muonic hydrogen goal (1998): u r = 0.1 % electron scattering hydrogen spectr year slope of G E at Q 2 = 0 Lamb shift (S-states) 20x improvement (aim: 10x better QED test in H)

14 Proton charge radius and muonic hydrogen Randolf Pohl ACFC, 18 July 2011 p. 7 muonic hydrogen = µ p Bohr: r orbit Zα m r c n2 E finite size (nl) r 2 p Ψ(r = 0) 2 E finite size (nl) = 2(Zα)4 c n 3 mass m µ = 207 m e m 3 r r 2 p δ l0 Lamb shift in µp: E(2P F=2 3/2 2SF=1 1/2 ) = (49) r 2 p r 3 p [mev] µp(n=2) levels: 2P 3/2 2P 1/2 206 mev 50 THz 6 µm 8.4 mev F=2 F=1 F=1 F=0 finite size contribution is 2% of the µp Lamb shift measure E(2S-2P) to 30 ppm = 1.5 GHz r p to 10 3 Γ 2P = 18.6 GHz (Γ rad. ) fin. size: 3.8 mev 2S 1/2 F=1 23 mev F=0

15 µp Lamb shift experiment: Principle Randolf Pohl ACFC, 18 July 2011 p. 8 prompt (t 0) delayed (t 1 µs) n~14 2 S 1 % 99 % 2 P 2 kev γ 2 S Laser 2 P 2 kev γ 1 S 1 S µ stop in H 2 gas µp atoms formed (n 14) 99%: cascade to µp(1s), emitting prompt K α, K β... 1%: long-lived µp(2s) atoms lifetime τ 2S 1 µs at 1 mbar H 2 R. Pohl et. al., Phys. Rev. Lett. 97, (2006). fire laser (λ 6 µm, E 0.2 ev) induce µp(2s) µp(2p) observe delayed K α x-rays normalize delayed K α prompt K α x-rays

16 µp Lamb shift experiment: Principle Randolf Pohl ACFC, 18 July 2011 p. 8 time spectrum of 2 kev x-rays ( 13 hours of data) events in 25 ns time [us]

17 µp Lamb shift experiment: Principle Randolf Pohl ACFC, 18 July 2011 p. 8 time spectrum of 2 kev x-rays events in 25 ns prompt (t 0) n~14 2 S 1 S 1 % 99 % 2 P 2 kev γ time [us]

18 µp Lamb shift experiment: Principle Randolf Pohl ACFC, 18 July 2011 p. 8 time spectrum of 2 kev x-rays events in 25 ns prompt (t 0) n~14 2 S 1 S 1 % 99 % 2 P 2 kev γ delayed (t 1 µs) 2 S 1 S Laser 2 P 2 kev γ time [us]

19 µp Lamb shift experiment: Principle Randolf Pohl ACFC, 18 July 2011 p. 8 time spectrum of 2 kev x-rays events in 25 ns prompt (t 0) n~14 2 S 1 S 1 % 99 % 2 P 2 kev γ delayed (t 1 µs) 2 S 1 S Laser 2 P 2 kev γ normalize delayed K α prompt K α Resonance ] -4 delayed / prompt events [ time [us] laser frequency [THz]

20 Muon beam line Randolf Pohl ACFC, 18 July 2011 p. 9

21 Muon beam: inside 5 T solenoid Randolf Pohl ACFC, 18 July 2011 p. 10 PM 1 B=5 Tesla Collimator µ PM 2 S 1 10 cm e e ExB HV S 2 Laser pulse Gas Target PM 3

22 The laser system Randolf Pohl ACFC, 18 July 2011 p W Yb:YAG thin disk laser 500 W 43 mj Oscillator 1030 nm Oscillator 1030 nm 200 W 9 mj 9 mj Amplifier SHG Amplifier 500 W 43 mj SHG SHG 23 mj 515 nm 23 mj 1.5 mj TiSa Amp. cw TiSa laser Wave meter FP I / Cs 2 7 mj Verdi 5 W cw TiSa 708 nm 400 mw TiSa Osc. 708 nm, 15 mj Main components: Thin-disk laser fast response to detected µ Frequency doubling TiSa laser: frequency stabilized cw laser injection seeded oscillator multipass amplifier 6 µ m monitoring 20 m H O Ge filter 6 m 2 µ 0.25 mj Raman cell Raman cell 3 Stokes: 708 nm 6 µm λ 6 µm Target cavity µ 6 µ m cavity A. Antognini et. al., Opt. Comm. 253, 362 (2005).

23 The laser system Randolf Pohl ACFC, 18 July 2011 p W Yb:YAG thin disk laser 500 W 43 mj Oscillator 1030 nm Oscillator 1030 nm 200 W 9 mj 9 mj Amplifier SHG Amplifier 500 W 43 mj SHG SHG 23 mj 515 nm 23 mj 1.5 mj cw TiSa laser Wave meter FP I / Cs 2 7 mj Verdi 5 W cw TiSa 708 nm 400 mw Thin-disk laser Large pulse energy: 85 (160) mj Short trigger-to-pulse delay: 400 ns Random trigger Pulse-to-pulse delays down to 2 ms (rep. rate 500 Hz) TiSa Amp. TiSa Osc. 708 nm, 15 mj Each single µ triggers the laser system 2S lifetime 1 µs short laser delay 6 µ m µ monitoring 20 m H O Ge filter 6 m 2 µ 0.25 mj 6 µ m cavity Raman cell A. Antognini et. al., IEEE J. Quant. Electr. 45, 993 (2009).

24 The laser system Randolf Pohl ACFC, 18 July 2011 p W Yb:YAG thin disk laser 500 W 43 mj µ Oscillator 1030 nm Oscillator 1030 nm 200 W 9 mj 9 mj Amplifier SHG Amplifier 500 W 43 mj SHG 23 mj 515 nm 23 mj 1.5 mj 6 µ m monitoring TiSa Amp. 20 m H O Ge filter SHG 6 m 2 µ 0.25 mj 6 µ m cavity cw TiSa laser Wave meter FP I / Cs 2 7 mj Raman cell Verdi 5 W cw TiSa 708 nm 400 mw TiSa Osc. 708 nm, 15 mj MOPA TiSa laser: Cw frequency stabilized laser - referenced to a stable FP cavity - FP cavity calibrated with I 2, Rb, Cs lines ν FP = N FSR FSR = (6) MHz ν cw TiSa absolutely known to 30 MHz Γ 2P 2S = 18.6 GHz Seeded oscillator ν pulsed TiSa = ν cw TiSa (frequency chirp 100 MHz) Multipass amplifier (2f- configuration) gain=10

25 The laser system Randolf Pohl ACFC, 18 July 2011 p W Yb:YAG thin disk laser 500 W 43 mj Oscillator 1030 nm Oscillator 1030 nm 200 W 9 mj 9 mj Amplifier SHG Amplifier 500 W 43 mj SHG SHG cw TiSa laser Wave meter FP I / Cs 2 Verdi 5 W cw TiSa 708 nm 400 mw Raman cell: 708 nm st 1 Stokes H 2 nd rd 2 Stokes 3 Stokes 6.02 µ m 23 mj 515 nm 23 mj 1.5 mj TiSa Amp. 7 mj TiSa Osc. 708 nm, 15 mj 708 nm 4155 cm µ m v=1 v= µ m 6.02 µ m H 2 6 µ m monitoring H O 6 m 2 µ 0.25 mj 20 m ν 6µm = ν 708nm 3 ω vib Ge filter Raman cell tunable ω vib (p, T) = const µ 6 µ m cavity P. Rabinowitz et. al., IEEE J. QE 22, 797 (1986)

26 The laser system Randolf Pohl ACFC, 18 July 2011 p W Yb:YAG thin disk laser 500 W 43 mj Oscillator 1030 nm Oscillator 1030 nm 200 W 9 mj 9 mj Amplifier SHG Amplifier 500 W 43 mj SHG SHG cw TiSa laser Wave meter FP I / Cs 2 Verdi 5 W cw TiSa 708 nm 400 mw µ Laser pulse 2 mm 190 mm α 25 β 12 3 mm 23 mj 515 nm 23 mj 1.5 mj TiSa Amp. 7 mj TiSa Osc. 708 nm, 15 mj Horiz. plane Vert. plane Design: insensitive to misalignment Transverse illumination Large volume 6 µ m monitoring 20 m H O Ge filter 6 m 2 µ 0.25 mj Raman cell Dielectric coating with R 99.9% (at 6 µm ) Light makes 1000 reflections Light is confined for τ=50 ns µ 6 µ m cavity 0.15 mj saturates the 2S 2P transition

27 The laser system Randolf Pohl ACFC, 18 July 2011 p W Yb:YAG thin disk laser 500 W 43 mj Oscillator 1030 nm Oscillator 1030 nm 200 W 9 mj 9 mj Amplifier SHG Amplifier 500 W 43 mj SHG SHG 23 mj 515 nm 23 mj 1.5 mj cw TiSa laser Wave meter FP I / Cs 2 7 mj Verdi 5 W cw TiSa 708 nm 400 mw 0.7 Water absorption wavenumber (cm -1 ) 0.7 scan region 0.6 TiSa Amp. TiSa Osc. 708 nm, 15 mj µ m µ monitoring 20 m H O Ge filter 6 m 2 µ 0.25 mj 6 µ m cavity Raman cell wavenumber (cm -1 ) Vacuum tube for 6 µm beam transport. Direct frequency calibration at 6 µm.

28 6 µm wavelength calibration Randolf Pohl ACFC, 18 July 2011 p. 12 water-air dat water1662reverse-newcell dat water1695-air dat Intensity [ u.a.] Pos= 127 (57) MHz Width= 6799(228) MHz Pos= -47 (10) MHz Width= 1894(40) MHz Pos= 240 (78) MHz Width= 5453(227) MHz x 10 2 Frequency [ MHz ] Frequency [ MHz ] Frequency [ MHz ] 6 µm light calibration: H 2 O vapor absoprtion measurement in air / cell H 2 O absorption lines known to a few MHz (HITRAN) δν 300 MHz uncertainty (6 ppm of E 2S 2P ) due to our calibration accuracy over the whole wavelength range λ = µm Laser frequency detuning is measured in number of Fabry-Perot cavity fringes grid spacing of our measurement: FSR(FP) = (6) MHz all measured resonances are within ±70 FP fringes of a H 2 O line

29 Target, cavity and detectors Randolf Pohl ACFC, 18 July 2011 p. 13 Muons Laser pulse

30 Target, cavity and detectors Randolf Pohl ACFC, 18 July 2011 p. 13 Play movie: The Search Muons Laser pulse

31 There are surprises in physics. Randolf Pohl ACFC, 18 July 2011 p. 14

32 The resonance: discrepancy, sys., stat. Randolf Pohl ACFC, 18 July 2011 p. 15 Water-line/laser wavelength: 300 MHz uncertainty ν water-line to resonance: 200 khz uncertainty ] -4 delayed / prompt events [ e-p scattering CODATA-06 H 2 O calib. our value Systematics: 300 MHz Statistics: 700 MHz laser frequency [THz] Discrepancy: 5.0 σ 75 GHz δν/ν = R. Pohl et al., Nature 466, 213 (2010).

33 The resonance: discrepancy, sys., stat. Randolf Pohl ACFC, 18 July 2011 p. 15 Water-line/laser wavelength: 300 MHz uncertainty ν water-line to resonance: 200 khz uncertainty ] -4 delayed / prompt events [ events measured 6 on resonance e-p scattering where 155 bgr events are expected fit Lorentz + flat bgr χ 2 /dof = 28.1/28 width agrees with expectation bgr agrees with laser OFF data χ 2 /dof = 283/31 for flat line 16σ CODATA-06 H 2 O calib. our value Systematics: 300 MHz Statistics: 700 MHz laser frequency [THz] Discrepancy: 5.0 σ 75 GHz δν/ν = R. Pohl et al., Nature 466, 213 (2010).

34 The time spectra Randolf Pohl ACFC, 18 July 2011 p. 16 events in 25 ns events Laser ON resonance events Laser OFF resonance time [µs]

35 Uncertainty budget and sensitivity Randolf Pohl ACFC, 18 July 2011 p. 17 Statistics Center position uncertainty ( 4% of Γ) Systematics Laser frequency (H 2 0 calibration) AC and DC stark shift Zeeman shift (5 Tesla) Doppler shift Collisional shift Total uncertainty of the line determination 700 MHz 300 MHz < 1 MHz < 30 MHz < 1 MHz 2 MHz 760 MHz Theory: proton polarizability Discrepancy with CODATA prediction 1200 MHz MHz Systematic effects are small since they scale like 1/m Finite size effect scales like m 3

36 Proton radius Randolf Pohl ACFC, 18 July 2011 p. 18 ν(2s1/2 F=1 2P3/2 F=2 L exp. = (32) mev ) = (76) GHz. L th. = (49) r 2 p r 3 p mev r p = (67) fm (u r = ) r p= (36)(56) fm u exp = u theo = r p is 4% smaller CODATA 2006: r p = ( ± ) fm Hydrogen: r p = (0.876 ± 0.008) fm e-p scattering: r p = (0.895 ± 0.018) fm (Sick 2005) 5.0σ from CODATA σ from H 3.1σ from e-p scatt. R. Pohl et al., Nature 466, 213 (2010).

37 Proton radius Randolf Pohl ACFC, 18 July 2011 p. 18 ν(2s1/2 F=1 2P3/2 F=2 L exp. = (32) mev ) = (76) GHz. L th. = (49) r 2 p r 3 p mev r p = (67) fm (u r = ) r p= (36)(56) fm u exp = u theo = CODATA 2006: r p = ( ± ) fm Hydrogen: r p = (0.876 ± 0.008) fm e-p scattering: r p = (0.894 ± 0.008) fm (Sick 2011) r p = (0.879 ± 0.008) fm (Mainz 2010) r p = (0.875 ± 0.010) fm (JLab Hall A 2011) r p is 4% smaller 5.0σ from CODATA σ from H 8.4σ from scatt.

38 What s wrong?? Randolf Pohl ACFC, 18 July 2011 p. 19

39 What is wrong? Randolf Pohl ACFC, 18 July 2011 p. 20 µp experiment: discrepancy 75 GHz 100σ 4 Γ nat two independent wavelength calibrations one very significant line, no satellite fitted width = natural width another transition in µp confirms our r p µp theory: discrepancy 0.31 mev 60σ 0.15% of the total Lamb shift 4th largest term several independent calculations H theory: L 1S off by 100 khz 25σ most terms only calculated by 2 groups + methods convergence?

40 What is wrong? Randolf Pohl ACFC, 18 July 2011 p. 20 µp experiment: discrepancy 75 GHz 100σ ok 4 Γ nat two independent wavelength calibrations one very significant line, no satellite fitted width = natural width another transition in µp confirms our r p µp theory: discrepancy 0.31 mev 60σ 0.15% of the total Lamb shift 4th largest term several independent calculations H theory: L 1S off by 100 khz 25σ most terms only calculated by 2 groups + methods convergence?

41 What is wrong? Randolf Pohl ACFC, 18 July 2011 p. 20 µp experiment: discrepancy 75 GHz 100σ ok 4 Γ nat two independent wavelength calibrations one very significant line, no satellite fitted width = natural width another transition in µp confirms our r p µp theory: discrepancy 0.31 mev 60σ ok H theory: 0.15% of the total Lamb shift 4th largest term several independent calculations L 1S off by 100 khz 25σ most terms only calculated by 2 groups + methods convergence?

42 What is wrong? Randolf Pohl ACFC, 18 July 2011 p. 20 µp experiment: discrepancy 75 GHz 100σ ok 4 Γ nat two independent wavelength calibrations one very significant line, no satellite fitted width = natural width another transition in µp confirms our r p µp theory: discrepancy 0.31 mev 60σ ok H theory: likely ok 0.15% of the total Lamb shift 4th largest term several independent calculations L 1S off by 100 khz 25σ most terms only calculated by 2 groups + methods convergence?

43 What is wrong? Randolf Pohl ACFC, 18 July 2011 p. 20 µp experiment: discrepancy 75 GHz 100σ ok 4 Γ nat two independent wavelength calibrations one very significant line, no satellite fitted width = natural width another transition in µp confirms our r p µp theory: discrepancy 0.31 mev 60σ 0.15% of the total Lamb shift ok 4th largest term several independent calculations H theory: likely ok Are H spectroscopy and e-p scattering really obviously correct? L 1S off by 100 khz 25σ most terms only calculated by 2 groups + methods convergence?

44 Hydrogen spectroscopy Randolf Pohl ACFC, 18 July 2011 p. 21 2S 1/2-2P 1/2 2S 1/2-2P 1/2 2S 1/2-2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 1S-2S + 2S- 8D 5/2 1S-2S + 2S-12D 3/2 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/ proton charge radius (fm)

45 Hydrogen spectroscopy Randolf Pohl ACFC, 18 July 2011 p. 21 2S 1/2-2P 1/2 2S 1/2-2P 1/2 2S 1/2-2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 1S-2S + 2S- 8D 5/2 1S-2S + 2S-12D 3/2 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/2 µp : fm proton charge radius (fm)

46 Hydrogen spectroscopy Randolf Pohl ACFC, 18 July 2011 p. 21 2S 1/2-2P 1/2 2S 1/2-2P 1/2 2S 1/2-2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 1S-2S + 2S- 8D 5/2 1S-2S + 2S-12D 3/2 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/2 H avg = fm µp : fm proton charge radius (fm)

47 Hydrogen spectroscopy Randolf Pohl ACFC, 18 July 2011 p. 21 2S 1/2-2P 1/2 2S 1/2-2P 1/2 2S 1/2-2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 1S-2S + 2S- 8D 5/2 1S-2S + 2S-12D 3/2 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/2 H avg = fm µp : fm proton charge radius (fm)

48 Hydrogen spectroscopy Randolf Pohl ACFC, 18 July 2011 p. 21 2S 1/2-2P 1/2 2S 1/2-2P 1/2 2S 1/2-2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 New measurements of the Rydberg constant are urgently needed to resolve the puzzle µp vs. H NPL: 2S ns, D : n > 4 [Flowers et al., IEEE Trans. Instr. Meas. 56, 331 (2007)] NIST: Ne 9+ [Tan et al., Phys. Scr. T144, (2011)] MPQ: 2S 4P 1S-2S + 2S- 8D 5/2 1S-2S + 2S-12D 3/2 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/2 H avg = fm µp : fm proton charge radius (fm)

49 r p from electron scattering Randolf Pohl ACFC, 18 July 2011 p. 22 Rosenbluth cross section Sachs form factor r p dσ dσ dω = Ros. dω Mott εg E 2 + τg M 2 ε(1 + τ) ε = 1 + 2(1 + τ)tan 2 θ 2 PhD thesis J.C. Bernauer 1 ; τ = Q2 4m 2 p G E and G M are the Fourier transforms of the charge and magnetization distributions G E (0) = 1 (charge), and G M (0) = µ p (magnetic moment) r 2 p = 6 2 dg E(Q 2 ) dq 2 Q2 =0 rms charge radius = slope of G E at Q 2 = 0

50 Electron scattering Randolf Pohl ACFC, 18 July 2011 p. 23 r el fm Rosenfelder, Phys Lett B 479, 381 (2000) Blunden, Sick, PRC 72, (2005) Sick, Few Body Syst. (2011) Belushkin et al., PRC 75, (2007) JLab Hall A 2011 MAMI A Borisyuk 2010 Belushkin et al Sick 2011 Blunden, Sick 2005 Rosenfelder 2000 Borisyuk, Nucl Phys A 843, 59 (2010) MAMI A1 Bernauer et al., PRL 105, (2010) JLab Hall A Zhan et al., (nucl-ex) (2011)

51 Electron scattering Randolf Pohl ACFC, 18 July 2011 p. 23 r el µp fm Rosenfelder, Phys Lett B 479, 381 (2000) Blunden, Sick, PRC 72, (2005) Sick, Few Body Syst. (2011) Belushkin et al., PRC 75, (2007) JLab Hall A 2011 MAMI A Borisyuk 2010 Belushkin et al Sick 2011 Blunden, Sick 2005 Rosenfelder 2000 Borisyuk, Nucl Phys A 843, 59 (2010) MAMI A1 Bernauer et al., PRL 105, (2010) JLab Hall A Zhan et al., (nucl-ex) (2011)

52 Electron scattering Randolf Pohl ACFC, 18 July 2011 p. 23 r el µp H fm Rosenfelder, Phys Lett B 479, 381 (2000) Blunden, Sick, PRC 72, (2005) Sick, Few Body Syst. (2011) Belushkin et al., PRC 75, (2007) JLab Hall A 2011 MAMI A Borisyuk 2010 Belushkin et al Sick 2011 Blunden, Sick 2005 Rosenfelder 2000 Borisyuk, Nucl Phys A 843, 59 (2010) MAMI A1 Bernauer et al., PRL 105, (2010) JLab Hall A Zhan et al., (nucl-ex) (2011)

53 Electron scattering Randolf Pohl ACFC, 18 July 2011 p. 23 r el µp H JLab Hall A 2011 MAMI A Borisyuk 2010 Belushkin et al Sick 2011 Blunden, Sick 2005 Rosenfelder fm Rosenfelder, Phys Lett B 479, 381 (2000) Blunden, Sick, PRC 72, (2005) Sick, Few Body Syst. (2011) Belushkin et al., PRC 75, (2007) r mag Borisyuk, Nucl Phys A 843, 59 (2010) MAMI A1 Bernauer et al., PRL 105, (2010) JLab Hall A Zhan et al., (nucl-ex) (2011) fm

54 Electron scattering Randolf Pohl ACFC, 18 July 2011 p. 23 r el µp H = 4% JLab Hall A 2011 MAMI A Borisyuk 2010 Belushkin et al Sick 2011 Blunden, Sick 2005 Rosenfelder fm Rosenfelder, Phys Lett B 479, 381 (2000) Blunden, Sick, PRC 72, (2005) Sick, Few Body Syst. (2011) Belushkin et al., PRC 75, (2007) 3.4σ = 11%! r mag Borisyuk, Nucl Phys A 843, 59 (2010) MAMI A1 Bernauer et al., PRL 105, (2010) JLab Hall A Zhan et al., (nucl-ex) (2011) fm

55 Electron scattering Randolf Pohl ACFC, 18 July 2011 p. 23 r el µp H JLab Hall A 2011 MAMI A Borisyuk 2010 Belushkin et al Sick 2011 Blunden, Sick 2005 Rosenfelder fm Rosenfelder, Phys Lett B 479, 381 (2000) Blunden, Sick, PRC 72, (2005) Sick, Few Body Syst. (2011) Belushkin et al., PRC 75, (2007) H r mag Borisyuk, Nucl Phys A 843, 59 (2010) MAMI A1 Bernauer et al., PRL 105, (2010) JLab Hall A Zhan et al., (nucl-ex) (2011) r mag (H) Volotka et al., Eur Phys J D33, 23 (2005) fm

56 r p from electron scattering Randolf Pohl ACFC, 18 July 2011 p. 24 Rosenbluth cross section Sachs form factor r p dσ dσ dω = Ros. dω Mott εg E 2 + τg M 2 ε(1 + τ) ε = 1 + 2(1 + τ)tan 2 θ 2 PhD thesis J.C. Bernauer 1 ; τ = Q2 4m 2 p G E and G M are the Fourier transforms of the charge and magnetization distributions G E (0) = 1 (charge), and G M (0) = µ p (magnetic moment) r 2 p = 6 2 dg E(Q 2 ) dq 2 Q2 =0 rms charge radius = slope of G E at Q 2 = 0 extrapolation to Q 2 0 required Q 2 [ (GeV/c) 2 ] = ( (µp) > (e-p scatt.)

57 r p from electron scattering Randolf Pohl ACFC, 18 July 2011 p. 24 Extrapolation non-trivial - Presence of bump/dip structure at lower Q 2? - Model assumption of the functional behavior of the form factor? - Normalization problems. Fitting with G E (Q 2 = 0) = 1 uncertainty underestimated. r p from new scattering data with 1% accuracy. Is that realistic?

58 r p from electron scattering Randolf Pohl ACFC, 18 July 2011 p. 24 Extrapolation non-trivial - Presence of bump/dip structure at lower Q 2? - Model assumption of the functional behavior of the form factor? - Normalization problems. Fitting with G E (Q 2 = 0) = 1 uncertainty underestimated. New Mainz data: G E /G dipole vs. Q 2 world s most accurate data at low Q 2 Vanderhaeghen and Walcher, r p = (0.879 ± stat ± syst ± model ) fm Bernauer et al., PRL 105, (2010)

59 r p from electron scattering Randolf Pohl ACFC, 18 July 2011 p. 24 Bernauer et al., PRL 105, (2010) r p = (0.879 ± stat ± syst ± model ) fm Bernauer, PhD thesis (2010) Fig (top): The dependence of the extracted electric radius of the different flexible models on the number of parameters. µp ±0.005 fm

60 r p from electron scattering Randolf Pohl ACFC, 18 July 2011 p. 24 Bernauer et al., PRL 105, (2010) r p = (0.879 ± stat ± syst ± model ) fm Bernauer, PhD thesis (2010) Fig (top): The dependence of the extracted electric radius of the different flexible of χ 2 models on the Fig. 8.3: Dependence red on the number of parameters N p ofnumber the formof factor parameters. parametrizations... µp

61 Mainz scattering data at lowest Q 2 Randolf Pohl ACFC, 18 July 2011 p. 25 r 2 p = 6 2 dg E(Q 2 ) dq 2 Q2 =0 New Mainz data: G E /G dipole vs. Q 2 rms charge radius = slope of G E at Q 2 = 0 Vanderhaeghen and Walcher, extrapolation to Q 2 0 required

62 Mainz scattering data at lowest Q 2 Randolf Pohl ACFC, 18 July 2011 p. 25 r 2 p = 6 2 dg E(Q 2 ) dq 2 Q2 =0 rms charge radius = slope of G E at Q 2 = 0 1 Lower half of 180MeV data extrapolation to Q 2 0 required G E µp Bernauer et al PhD thesis J. Bernauer Q 2 (GeV 2 /c 2 ) r p (fm)

63 Mainz scattering data at lowest Q 2 Randolf Pohl ACFC, 18 July 2011 p. 25 r 2 p = 6 2 dg E(Q 2 ) dq 2 Q2 =0 rms charge radius = slope of G E at Q 2 = 0 G E Fitting a straight line straight line fit P0 = P1 = / GeV 2 Rp = fm extrapolation to Q 2 0 required µp Bernauer et al straight line r p (fm) Q 2 (GeV 2 /c 2 )

64 Mainz scattering data at lowest Q 2 Randolf Pohl ACFC, 18 July 2011 p. 25 r 2 p = 6 2 dg E(Q 2 ) dq 2 Q2 =0 rms charge radius = slope of G E at Q 2 = 0 1 Polynomial, G E (0) = 1 extrapolation to Q 2 0 required G E µp Bernauer et al parabola with fixed normalization P0 = P1 = / GeV 2 P2 = / GeV 4 Rp = fm Q 2 (GeV 2 /c 2 ) straight line polynomial + fixed norm r p (fm)

65 Mainz scattering data at lowest Q 2 Randolf Pohl ACFC, 18 July 2011 p. 25 r 2 p = 6 2 dg E(Q 2 ) dq 2 Q2 =0 rms charge radius = slope of G E at Q 2 = 0 G E Extrapolation is subtle straight line fit P0 = P1 = / GeV 2 Rp = fm extrapolation to Q 2 0 required µp Bernauer et al parabola with fixed normalization P0 = P1 = / GeV 2 P2 = / GeV 4 Rp = fm straight line polynomial + fixed norm r p (fm) Q 2 (GeV 2 /c 2 )

66 Proton radius 2011 Randolf Pohl ACFC, 18 July 2011 p r p = (36) exp (56) theo fm Proton radius (fm) Orsay, 1962 Stanford, 1963 Saskatoon, 1974 Mainz, 1980 Sick, 2003 Hydrogen our result CODATA 2006 Pohl, 2010 MAMI, 2010 JLab, 2011 Sick, 2011 CODATA 2010 year R. Pohl et al., Nature 466, 213 (2010).

67 Rydberg constant 2011 Randolf Pohl ACFC, 18 July 2011 p. 27 R = (16) m 1 [1.5 parts in 10 Accuracy of the Rydberg constant 12 ] fractional uncertainty single measurements least-square adjustments muonic hydrogen + H(1S-2S) year R. Pohl et al., Nature 466, 213 (2010).

68 Yeah! Randolf Pohl ACFC, 18 July 2011 p. 28

69 More measurements Randolf Pohl ACFC, 18 July 2011 p. 29

70 2nd line in muonic hydrogen Randolf Pohl ACFC, 18 July 2011 p. 30 signal Prediction (with new r p ) 357 events 106 bgr. (still preliminary) 2P 3/2 2P 1/2 8.4 mev F=2 F=1 F=1 F= mev 55 THz 5.5 µm laser frequency (a.u.) 2S 1/2 F=1 23 mev F=0 σ position = 1.1 GHz 25 ppm (Γ = 18.6 GHz) Position fits perfectly with theory using new r p Extract HFS and r Zemach

71 Muonic DEUTERIUM Randolf Pohl ACFC, 18 July 2011 p. 31 delayed / prompt events x10 PRELIMINARY 2.5 resonances in muonic deuterium µd [ 2S 1/2 (F=3/2) 2P 3/2 (F=5/2) ] 20 ppm (stat., online) µd [ 2S 1/2 (F=1/2) 2P 3/2 (F=3/2) ] 45 ppm (stat., online) delayed / prompt events laser frequency (FP fringes) PRELIMINARY µd [ 2S 1/2 (F=1/2) 2P 3/2 (F=1/2) ] 70 ppm (stat., online) only 5σ significant identifies F=3/2 line 2P 3/2 2P 1/2 F=5/2 F=1/2 F=3/2 F=3/2 F=1/2 3 F=3/2 2 2S 1/ laser frequency (FP fringes) F=1/2

72 Summary Randolf Pohl ACFC, 18 July 2011 p. 32 muonic hydrogen 2S 1/2 (F=1) 2P 3/2 (F=2) to 15 ppm (stat.+syst.) r p to (experimental precision ) 10 r p = ± fm is 5σ away from CODATA σ The proton is 4% smaller, and the Rydberg constant R is sigma off muonic hydrogen 2S 1/2 (F=0) 2P 3/2 (F=1) to 18 ppm (to be published) exactly at the position deduced with our new r p 2S hyperfine splitting to 220 ppm Zemach radius to a few % (radius of the magnetic moment distribution) muonic deuterium 2S 1/2 (F=3/2) 2P 3/2 (F=5/2) to 20 ppm (stat., online) Theory: missing QED and nuclear structure corrections deuteron charge radius and polarizability muonic deuterium 2S 1/2 (F=1/2) 2P 3/2 (F=3/2 and F=1/2) HFS, check calculations in µd

73 µp Lamb shift collaboration in 2009 Randolf Pohl ACFC, 18 July 2011 p. 33 F. KOTTMANN ETH Zürich, Switzerland A. ANTOGNINI, T.W. HÄNSCH, T. NEBEL, MPQ, Garching, Germany R. POHL D. TAQQU PSI, Switzerland E.-O. Le BIGOT, F. BIRABEN, P. INDELICATO, L. JULIEN, F. NEZ F.D. AMARO, J.M.R. CARDOSO, D.S. COVITA, L.M.P. FERNANDES, J.A.M. LOPEZ, C.M.B. MONTEIRO, J.M.F. DOS SANTOS, J.F.C.A. VELOSO Laboratoire Kastler Brossel, Paris, France Department of Physics, Coimbra, Portugal A. GIESEN, K. SCHUHMANN Dausinger + Giesen, Stuttgart, Germany T. GRAF Institut für Strahlwerkzeuge, Stuttgart, Germany C.-Y. KAO, Y.-W. LIU National Tsing Hua University, Hsinchu, Taiwan P. RABINOWITZ Department of Chemistry, Princeton, USA A. DAX, P. KNOWLES, L. LUDHOVA, former members, spent holidays at run 2009 F. MULHAUSER, L. SCHALLER

74 Outlook: Lamb shift in muonic helium Randolf Pohl ACFC, 18 July 2011 p. 34 CREMA collaboration: Charge Radius Experiment with Muonic Atoms Exp. R10-01 approved at PSI in Feb Goal: Measure E(2S-2P) in µ 4 He, µ 3 He alpha particle and helion charge radius to ( fm)

75 Outlook: Lamb shift in muonic helium Randolf Pohl ACFC, 18 July 2011 p. 34 CREMA collaboration: Charge Radius Experiment with Muonic Atoms Exp. R10-01 approved at PSI in Feb Goal: Measure E(2S-2P) in µ 4 He, µ 3 He alpha particle and helion charge radius to ( fm) 2P 3/2 2P 1/2 206 mev 50 THz 6 µm 8.4 mev F=2 F=1 F=1 F=0 2P 146 mev µp µ 4 He µ 3 He 812 nm 898 nm 2P 3/2 2P 1/2 2P 2P 3/2 2P 1/2 145 mev F=1 F=2 F=0 F=1 fin. size: 3.8 mev 2S 1/2 F=1 23 mev F=0 2S 1/2 fin. size effect 290 mev 2S 1/2 F=0 F=1 167 mev fin. size effect 397 mev

76 Outlook: Lamb shift in muonic helium Randolf Pohl ACFC, 18 July 2011 p. 34 CREMA collaboration: Charge Radius Experiment with Muonic Atoms Exp. R10-01 approved at PSI in Feb Goal: Measure E(2S-2P) in µ 4 He, µ 3 He alpha particle and helion charge radius to ( fm) aims: help to solve the proton size puzzle absolute charge radii of helion, alpha low-energy effective nuclear models: 1 H, 2 D, 3 He, 4 He QED test with He + (1S-2S) MPQ, Amsterdam]

77 Outlook: Lamb shift in muonic helium Randolf Pohl ACFC, 18 July 2011 p. 34 CREMA collaboration: Charge Radius Experiment with Muonic Atoms Exp. R10-01 approved at PSI in Feb Goal: Measure E(2S-2P) in µ 4 He, µ 3 He alpha particle and helion charge radius to ( fm) aims: help to solve the proton size puzzle absolute charge radii of helion, alpha low-energy effective nuclear models: 1 H, 2 D, 3 He, 4 He QED test with He + (1S-2S) MPQ, Amsterdam] identical muon beam similar laser, no Raman cell ( more pulse energy) similar, maybe better x-ray detectors (8.2 kev) event rate: events per hour (not 6 per hour, µp) line with 300 GHz (1 nm!)

78 Randolf Pohl ACFC, 18 July 2011 p. 35

News from the Proton Radius Puzzle muonic deuterium

News from the Proton Radius Puzzle muonic deuterium News from the Proton Radius Puzzle muonic deuterium Muonic news Muonic hydrogen and deuterium Randolf Pohl Randolf Pohl Max-Planck-Institut für Quantenoptik Garching, Germany 1 Outline The problem: Proton

More information

Hyperfine splitting in µp and µ 3 He +

Hyperfine splitting in µp and µ 3 He + ==================================== Hyperfine splitting in µp and µ 3 He + µ CREMA collaboration A. Antognini PSAS 2016, Jerusalem 25.05.2016 p. 1 Hyperfine splitting in µp and µ 3 He + CREMA collaboration

More information

Proton radius puzzle

Proton radius puzzle Proton radius puzzle Krzysztof Pachucki Universiy of Warsaw Frascati, December 21, 2016 Measurements of atomic spectra Measurement of transition frequencies can be very accurate [Garching, 2013] ν(1s 2S)

More information

Muonic news. Laser spectroscopy of light muonic atoms. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration. The proton radius puzzle

Muonic news. Laser spectroscopy of light muonic atoms. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration. The proton radius puzzle Laser spectroscopy of light muonic atoms Muonic news Muonic hydrogen and deuterium Randolf Pohl The proton radius puzzle Randolf Pohl MPQ, Garching for the CREMA collaboration 1 Not-so-high precision spectroscopy

More information

Update on CREMA s work towards the Proton Radius Puzzle

Update on CREMA s work towards the Proton Radius Puzzle Update on CREMA s work towards the Proton Radius Puzzle Beatrice Franke, TRIUMF Research Scientist (former MPQ postdoc) INT Seattle 2018, Fundamental Physics with Electroweak Probes of Light Nuclei Thanks

More information

Muonic Hydrogen Lamb Shift

Muonic Hydrogen Lamb Shift ==================================== Muonic Hydrogen Lamb Shift The Proton Radius Puzzle A. Antognini Max Planck Institut für Quantenoptik, Garching, Germany ETH, Zürich, Switzerland A. Antognini, Zürich

More information

Proton radius and Rydberg constant from electronic and muonic atoms

Proton radius and Rydberg constant from electronic and muonic atoms Proton radius and Rydberg constant from electronic and muonic atoms Randolf Pohl Johannes Gutenberg-Universität Mainz Institut für Physik, QUANTUM und PRISMA before: Max-Planck Institute of Quantum Optics

More information

Muonic news. Shrinking the Proton. Randolf Pohl JGU, Mainz MPQ, Garching. Muonic hydrogen and deuterium. CREMA collaboration

Muonic news. Shrinking the Proton. Randolf Pohl JGU, Mainz MPQ, Garching. Muonic hydrogen and deuterium. CREMA collaboration Shrinking the Proton Laser spectroscopy for nuclear physics and fundamental constants Muonic news Muonic hydrogen and deuterium Randolf Pohl Randolf Pohl JGU, Mainz MPQ, Garching for the CREMA collaboration

More information

Muonic news. Shrinking the Proton. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration

Muonic news. Shrinking the Proton. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration Shrinking the Proton Randolf Pohl JGU, Mainz MPQ, Garching Exotic and not-so-exotic atoms for nuclear physics and fundamental constants Muonic news Muonic hydrogen and deuterium Randolf Pohl for the CREMA

More information

Lamb shift in muonic hydrogen and the proton charge radius puzzle

Lamb shift in muonic hydrogen and the proton charge radius puzzle Lamb shift in muonic hydrogen and the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw Mainz, April 17, 2013 Proton charge radius puzzle global fit

More information

Proton charge radius puzzle

Proton charge radius puzzle Proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw KMMF, January 24, 2013 Proton charge radius puzzle global fit to H and D spectrum: r p = 0.8758(77)

More information

Directions toward the resolution of the proton charge radius puzzle

Directions toward the resolution of the proton charge radius puzzle Directions toward the resolution of the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw ECT workshop on the proton radius puzzle, November 1, 2012

More information

Proton charge radius. Michael O. Distler for the A1 MAMI

Proton charge radius. Michael O. Distler for the A1 MAMI "2011 JLab Users Group Meeting" - June 6-8, 2011 - Jefferson Lab, Newport News, VA Proton charge radius Michael O. Distler for the A1 collaboration @ MAMI Institut für Kernphysik Johannes Gutenberg-Universität

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Scattering from nuclei For low energies and under conditions where the electron does not penetrate the nucleus, the electron scattering

More information

The Proton Radius: Are We Still Puzzled? E. J. Downie

The Proton Radius: Are We Still Puzzled? E. J. Downie The Proton Radius: Are We Still Puzzled? E. J. Downie on behalf of the MUSE Collaboration Award DE-SC0012485 Awards PHY-1309130,1314148,1614850 Outline Why are we puzzled: What is a radius? How do we measure

More information

Size does matter. Another example where. Aldo Antognini for the CREMA collaboration ====================================

Size does matter. Another example where. Aldo Antognini for the CREMA collaboration ==================================== ==================================== Another example where Size does matter Aldo Antognini for the CREMA collaboration A. Antognini, Electron-Nucleus Scattering XII, Isola d Elba, 27.06.2012 p. 1 The proton

More information

Muonic hydrogen and the Proton Radius Puzzle

Muonic hydrogen and the Proton Radius Puzzle Randolf Pohl MPQ, Garching for the CREMA collaboration Muonic hydrogen and the Proton Radius Puzzle Muonic news Muonic hydrogen and deuterium Randolf Pohl Nuclear structure from Laser spectroscopy of light

More information

QED, Lamb shift, `proton charge radius puzzle' etc.

QED, Lamb shift, `proton charge radius puzzle' etc. QED, Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik (Garching) Outline Different methods to determine

More information

The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute

The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute 1. Motivation for a muon scattering experiment 2. Components of the MUSE experiment 3. Projected results Steffen Strauch for

More information

A natural solution of the proton charge radius puzzle.

A natural solution of the proton charge radius puzzle. A natural solution of the proton charge radius puzzle. Thomas Walcher Institute for Nuclear Physics Johannes-Gutenberg University Mainz INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 37th Course Probing Hadron

More information

The PRad Experiment Physics Overview

The PRad Experiment Physics Overview The PRad Experiment Physics Overview The PRad Experiment Readiness Review November 12, 2015 Haiyan Gao Duke University and Duke Kunshan University 1 Proton Charge Radius An important property of the nucleon

More information

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО( РАН) ) (St. Petersburg) & Max-Planck Planck-Institut für Quantenoptik (Garching)

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

NEW VALUE OF PROTON CHARGE rms RADIUS

NEW VALUE OF PROTON CHARGE rms RADIUS NEW VALUE OF PROTON CHARGE rms RADIUS Institute of Physics SAS, Bratislava and Dept. of Theoretical Physics, Comenius University, Bratislava, Slovakia September 22, 2011 Erice School 2001: From Quarks

More information

Muonic atoms: Aldo Antognini. from atomic to to nuclear and particle physics ==================================== ETH Zurich & PSI Villigen

Muonic atoms: Aldo Antognini. from atomic to to nuclear and particle physics ==================================== ETH Zurich & PSI Villigen ==================================== Aldo Antognini ETH Zurich & PSI Villigen for the CREMA collaboration µ Muonic atoms: from atomic to to nuclear and particle physics A. Antognini EINN, Cyprus 05.11.2015

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

MUSEing on the Proton Radius Puzzle. W.J. Briscoe and E.J. Downie

MUSEing on the Proton Radius Puzzle. W.J. Briscoe and E.J. Downie Award DE-SC0012485 MUSEing on the Proton Radius Puzzle W.J. Briscoe and E.J. Downie on behalf of the MUSE Collaboration Awards PHY-1309130,1314148,1614850,1714833 2 Outline u Why are we puzzled: è What

More information

Electron-proton scattering puzzle

Electron-proton scattering puzzle See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3165496 Electron-proton scattering puzzle Presentation December 017 CITATIONS 0 READS 4 1 author:

More information

Precise Determination of the Electric and Magnetic Form Factors of the Proton

Precise Determination of the Electric and Magnetic Form Factors of the Proton Precise Determination of the Electric and Magnetic Michael O. Distler for the A1 collaboration @ MAMI Institut für Kernphysik Johannes Gutenberg-Universität Mainz GDR Nucleon meeting at CEA/SPhN Saclay,

More information

Experimental tests of QED in bound and isolated systems

Experimental tests of QED in bound and isolated systems QED & Quantum Vaccum, Low Energy Frontier, 03001 (2012) DOI: 10.1051/iesc/2012qed03001 Owned by the authors, published by EDP Sciences, 2012 Experimental tests of QED in bound and isolated systems Lucile

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

The New Proton Charge Radius Experiment at JLab

The New Proton Charge Radius Experiment at JLab The New Proton Charge Radius Experiment at JLab Dipangkar Dutta Mississippi State University (for the PRad Collaboration) INPC 2016 Sept 12, 2016 Adelaide, Australia Outline 1. The Proton Charge Radius

More information

Experiments towards resolving the proton charge radius puzzle

Experiments towards resolving the proton charge radius puzzle EPJ Web of Conferences 113, 01006 (016) DOI: 10.1051/ epjconf/ 016113 01006 C Owned by the authors, published by EDP Sciences, 016 Experiments towards resolving the proton charge radius puzzle A. Antognini

More information

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab) Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering

More information

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2 The proton radius puzzle Proton Hadron Charge: +1 Composition: 2 up quarks 1 down quark Spin: 1/2 1 How to measure the (rms) radius of the proton https://muhy.web.psi.ch/wiki/index.php/main/news Method

More information

arxiv: v3 [physics.atom-ph] 10 Oct 2013

arxiv: v3 [physics.atom-ph] 10 Oct 2013 Lifetime and population of the state in muonic hydrogen and deuterium arxiv:07.6775v [physics.atom-ph] Oct 0 Marc Diepold, Fernando D. Amaro, Aldo Antognini,, François Biraben, João M. R. Cardoso, Daniel

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

Progress towards a new precise microwave measurement of the 2S-2P Lamb shift in atomic hydrogen. Eric Hessels York University Toronto, Canada

Progress towards a new precise microwave measurement of the 2S-2P Lamb shift in atomic hydrogen. Eric Hessels York University Toronto, Canada Progress towards a new precise microwave measurement of the 2S-2P Lamb shift in atomic hydrogen Eric Hessels York University Toronto, Canada The image cannot be displayed. Your computer may not have enough

More information

Cross section measurements of the elastic electron - deuteron scattering

Cross section measurements of the elastic electron - deuteron scattering Cross section measurements of the elastic electron - deuteron scattering for the A1 Collaboration Institut für Kernphysik, Johannes Gutenberg-Universität Mainz Johann-Joachim-Becher-Weg 45, 55128 Mainz

More information

Proton charge radius extracted from unpolarized electron scattering

Proton charge radius extracted from unpolarized electron scattering Proton charge radius extracted from unpolarized electron scattering John Arrington Argonne National Laboratory Fundamental Constants 2015, Eltville, Germany, 2 Feb Graphic by Joshua Rubin, ANL Outline

More information

French-Ukrainian Workshop on the instrumentation developments for high energy physics. ProRad. An electron-proton scattering experiment

French-Ukrainian Workshop on the instrumentation developments for high energy physics. ProRad. An electron-proton scattering experiment French-Ukrainian Workshop on the instrumentation developments for high energy physics ProRad An electron-proton scattering experiment @ Mostafa HOBALLAH on behalf of the ProRad collaboration hoballah@ipno.in2p3.fr

More information

arxiv: v2 [physics.atom-ph] 24 Mar 2012

arxiv: v2 [physics.atom-ph] 24 Mar 2012 UK/1-01 Weak Interaction Contributions in Light Muonic Atoms Michael I. Eides Department of Physics and Astronomy, arxiv:101.979v [physics.atom-ph] 4 Mar 01 University of Kentucky, Lexington, KY 40506,

More information

Two topics: Proton Radius Puzzle, and Twisted Photons

Two topics: Proton Radius Puzzle, and Twisted Photons Two topics: Proton Radius Puzzle, and Twisted Photons Carl E. Carlson William and Mary JGU, Mainz (Visitor) SFB 1044 School Boppard, 28 August 01 September 2017 CEC (W&M/JGU) Proton Radius Puzzle SFB-Boppard

More information

Muonic news. Shrinking the Proton. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration

Muonic news. Shrinking the Proton. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration Shrinking the Proton Randolf Pohl JGU, Mainz MPQ, Garching Exotic and not-so-exotic atoms for nuclear physics and fundamental constants Muonic news Muonic hydrogen and deuterium Randolf Pohl for the CREMA

More information

Møller Polarimetry on Atomic Hydrogen

Møller Polarimetry on Atomic Hydrogen E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen 1 Møller Polarimetry on Atomic Hydrogen E.Chudakov 1 1 JLab Meeting at UVA Outline E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen

More information

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron mass ratio Fukuoka, August 2012 Masaki Hori Max Planck Institute of Quantum Optics A. Sótér, D. Barna, A.

More information

The Proton Radius Puzzle. Carl Carlson William and Mary QCD for New Physics at the Precision Frontier 30 September 2015

The Proton Radius Puzzle. Carl Carlson William and Mary QCD for New Physics at the Precision Frontier 30 September 2015 The Proton Radius Puzzle Carl Carlson William and Mary QCD for New Physics at the Precision Frontier 30 September 2015 The puzzle Measure charge radius of the proton different ways, get different answers

More information

arxiv: v2 [physics.atom-ph] 30 May 2013

arxiv: v2 [physics.atom-ph] 30 May 2013 Proton Radius Puzzle 1 Muonic hydrogen and the proton radius arxiv:1301.0905v2 [physics.atom-ph] 30 May 2013 puzzle Randolf Pohl Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany Ronald Gilman

More information

New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II)

New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II) New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II) Ulrich D. Jentschura Missouri University of Science and Technology Rolla, Missouri, USA Bled Workshop on What Comes Beyond

More information

arxiv: v1 [hep-ph] 14 Sep 2016

arxiv: v1 [hep-ph] 14 Sep 2016 Extraction of the proton charge radius from experiments N. G. Kelkar 1, T. Mart 2 and M. Nowakowski 1 1 Departamento de Física, Universidad de los Andes, Cra.1E No.18A-10, Santafe de Bogotá, Colombia 2

More information

Nuclear structure and the proton radius puzzle

Nuclear structure and the proton radius puzzle Nuclear structure and the proton radius puzzle Nir Nevo Dinur 1,2 Chen Ji 2,3, Javier Hernandez 2,5, Sonia Bacca 2,4, Nir Barnea 1 1 The Hebrew University of Jerusalem, Israel 2 TRIUMF, Vancouver, BC,

More information

Proton Charge Radius

Proton Charge Radius Proton Charge Radius 7 th Workshop on Hadron Physics in China and Opportunities Worldwide Kunshan, August 3-7, 2015 Haiyan Gao Duke University and Duke Kunshan University 1 QCD: still unsolved in non-perturbative

More information

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

Møller Polarimetry for PV Experiments at 12 GeV

Møller Polarimetry for PV Experiments at 12 GeV Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller Polarimetry 1 Møller Polarimetry for PV Experiments at 12 GeV E.Chudakov 1 1 JLab MOLLER Review Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller

More information

Form Factors with Electrons and Positrons

Form Factors with Electrons and Positrons HUGS2013, JLab, May 28 June 14, 2013 Form Factors with Electrons and Positrons Part 2: Proton form factor measurements Michael Kohl Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News,

More information

Lepton universality test in the photoproduction of e - e + versus " - " + pairs on a proton target

Lepton universality test in the photoproduction of e - e + versus  -  + pairs on a proton target 2011-2014 PhD in theoretical physics under supervision of Prof. Dr. Marc Vanderhaeghen at Johannes Gutenberg University Mainz. Thesis title Light-by-light scattering and the muon s anomalous magnetic moment

More information

arxiv: v2 [physics.atom-ph] 19 Aug 2017

arxiv: v2 [physics.atom-ph] 19 Aug 2017 THE PROTON RADIUS PUZZLE arxiv:1706.00696v2 [physics.atom-ph] 19 Aug 2017 J. J. Krauth, 1,2 K. Schuhmann, 3,4,5 M. Abdou Ahmed, 6 F. D. Amaro, 7 P. Amaro, 8 F. Biraben, 9 J. M. R. Cardoso, 7 M. L. Carvalho,

More information

Proton Size Puzzle: Fat or Thin?

Proton Size Puzzle: Fat or Thin? Proton Size Puzzle: Fat or Thin? A.E. Dorokhov (JINR, Dubna) Fat and Thin famous Anton Chekhov novel R.N. Faustov (Institute of Informatics in Education, FRC CSC RAS, Moscow) N.I. Kochelev (JINR, Dubna;

More information

The latest on proton charge radius

The latest on proton charge radius The latest on proton charge radius Nuclear Physics Seminar University of Virginia, Nov 8, 2011 Haiyan Gao Duke University and TUNL Outline Introduction Proton EM form factors and charge radius Proton charge

More information

Proton Radius Puzzle and the PRad Experiment at JLab

Proton Radius Puzzle and the PRad Experiment at JLab Proton Radius Puzzle and the PRad Experiment at JLab NC A&T State University, NC USA for the PRad collaboration Spokespersons:, H. Gao, M. Khandaker, D. Dutta Outline The Proton Radius Puzzle Recent status

More information

Spin Feedback System at COSY

Spin Feedback System at COSY Spin Feedback System at COSY 21.7.2016 Nils Hempelmann Outline Electric Dipole Moments Spin Manipulation Feedback System Validation Using Vertical Spin Build-Up Wien Filter Method 21.7.2016 Nils Hempelmann

More information

Beam Polarimetry (for Future Experiments at JLab)

Beam Polarimetry (for Future Experiments at JLab) Outline E.Chudakov June 24, 2009, PAVI-09 Beam Polarimetry 1 Beam Polarimetry (for Future Experiments at JLab) E.Chudakov 1 1 JLab PAVI-09 Outline E.Chudakov June 24, 2009, PAVI-09 Beam Polarimetry 2 Outline

More information

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005 A new determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice arxiv:physics/0510101v2 [physics.atom-ph] 12 Dec 2005 Pierre Cladé, 1 Estefania

More information

Polarimetry in Hall A

Polarimetry in Hall A Outline E.Chudakov Moller-12 Workshop, Aug 2008 Polarimetry in Hall A 1 Polarimetry in Hall A E.Chudakov 1 1 Hall A, JLab Moller-12 Workshop, Aug 2008 Outline E.Chudakov Moller-12 Workshop, Aug 2008 Polarimetry

More information

Nucleon Form Factors. Ulrich Müller A1 Collaboration Institut für Kernphysik Universität Mainz

Nucleon Form Factors. Ulrich Müller A1 Collaboration Institut für Kernphysik Universität Mainz Nucleon Form Factors Ulrich Müller A1 Collaboration Institut für Kernphysik Universität Mainz Introduction Elastic form factors of the proton High-accuracy H(e, e )p experiment Measurement of G En Previous

More information

Fundamental constants and tests of theory in Rydberg states of hydrogen like ions

Fundamental constants and tests of theory in Rydberg states of hydrogen like ions International Conference on Precision Physics of Simple Atomic Systems University of Windsor, July 21 26, 2008 Fundamental constants and tests of theory in Rydberg states of hydrogen like ions Ulrich Jentschura,

More information

Nuclear Structure Studies with Lepton Probes. Guy Ron INT, June 2018

Nuclear Structure Studies with Lepton Probes. Guy Ron INT, June 2018 Nuclear Structure Studies with Lepton Probes Guy Ron INT, June 2018 Caveat/Disclaimer. I am not a neutrino scatterer, nor do I do I study PDFs/DIS/ parity/etc My talk will be limited to what I do know.

More information

Status of the PRad Experiment (E )

Status of the PRad Experiment (E ) Status of the PRad Experiment (E12-11-106) NC A&T State University for the PRad collaboration Outline PRad Physics goals ep-scattering and the proton radius PRad experiment experimental setup development

More information

Current status of the project for the measurement of the hyperfine splitting in the ground state of muonic hydrogen

Current status of the project for the measurement of the hyperfine splitting in the ground state of muonic hydrogen Current status of the project for the measurement of the hyperfine splitting in the ground state of muonic hydrogen June 2012 Andrea Vacchi, Andrzej Adamczak, Dimitar Bakalov, Miltcho Danilov, Lyubomir

More information

Electron scattering experiment off proton at ultra-low Q 2

Electron scattering experiment off proton at ultra-low Q 2 Electron scattering experiment off proton at ultra-low Q 2 Toshimi Suda Research Center for Electron-Photon Science, Tohoku University, Sendai Proton Radius Puzzle NEUROSCIENCE People Who Remember Everything

More information

Recent results from MAMI

Recent results from MAMI Recent results from MAMI Ulrich Müller Institut für Kernphysik Johannes-Gutenberg-Universität Mainz The Mainz Microtron MAMI A: Electron scattering Proton form factors Electric form factor of the neutron

More information

Latest on the Proton Charge Radius from the PRad Experiment. Haiyan Gao Duke University and Duke Kunshan University

Latest on the Proton Charge Radius from the PRad Experiment. Haiyan Gao Duke University and Duke Kunshan University Latest on the Proton Charge Radius from the PRad Experiment Haiyan Gao Duke University and Duke Kunshan University 1 Lepton scattering: powerful microscope! Clean probe of hadron structure Electron (lepton)

More information

The Lamb shift in muonic hydrogen 1

The Lamb shift in muonic hydrogen 1 37 The Lamb shift in muonic hydrogen 1 Randolf Pohl, Aldo Antognini, François Nez, Fernando D. Amaro, François Biraben, João M.R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Luis M.P. Fernandes,

More information

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD γ* γ N N MERIEM BENALI November 09, 016 LPC-Clermont-Ferrand GDR-QCD Plan Generalized Polarizabilities (GPs) of the proton Extraction methods of GPs at Q²=0.45 GeV²: - Low Energy expansion approach (LEX)

More information

On the rms-radius of the proton

On the rms-radius of the proton On the rms-radius of the proton arxiv:nucl-ex/0310008v1 9 Oct 2003 Ingo Sick Dept. für Physik und Astronomie, Universität Basel CH-4056 Basel, Switzerland Abstract We study the world data on elastic electron-proton

More information

New JLab (PRad) Experiment on Proton Charge Radius

New JLab (PRad) Experiment on Proton Charge Radius New JLab (PRad) Experiment on Proton Charge Radius 10 th International Workshop on e + e - Collisions from Phi to Psi USTC, September 23-26, 2015 Haiyan Gao Duke University and Duke Kunshan University

More information

On the helium-4 charge rms-radius. Ingo Sick

On the helium-4 charge rms-radius. Ingo Sick /helium/elba08q On the helium-4 charge rms-radius Ingo Sick Recent interest in Helium charge radii: measurement isotope shift 3 He 4 He (Shiner et al. ) measurement isotope shift of unstable 6 He 4 He

More information

Experiments with hydrogen - discovery of the Lamb shift

Experiments with hydrogen - discovery of the Lamb shift Experiments with hydrogen - discovery of the Lamb shift Haris Ðapo Relativistic heavy ion seminar, October 26, 2006 Outline 1 Pre-Lamb experiment The beginning (Bohr s formula) Fine structure (Dirac s

More information

Precision VUV spectroscopy of Ar I at 105 nm

Precision VUV spectroscopy of Ar I at 105 nm J. Phys. B: At. Mol. Opt. Phys. 32 (999) L5 L56. Printed in the UK PII: S0953-4075(99)05625-4 LETTER TO THE EDITOR Precision VUV spectroscopy of Ar I at 05 nm I Velchev, W Hogervorst and W Ubachs Vrije

More information

New and accelerator research facility, using MW-class high power proton beams at both 3 GeV and 30 GeV. J-PARC Tokai KEK Tsukuba LINAC 400 MeV Rapid Cycle Synchrotron Energy : 3 GeV Repetition : 25 Hz

More information

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, F.V. Moroz, K.A. Mezilev, S.Yu. Orlov, V.N. Panteleev, Yu.M. Volkov

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

E : Ratio of the electric form factor in the mirror nuclei 3 He and 3 H (The 3 He 3 H Charge Radius Difference)

E : Ratio of the electric form factor in the mirror nuclei 3 He and 3 H (The 3 He 3 H Charge Radius Difference) E12 14 009: Ratio of the electric form factor in the mirror nuclei 3 He and 3 H (The 3 He 3 H Charge Radius Difference) Luke Myers Hall A Winter Meeting December 9, 2014 Measuring r 2 Absolute methods

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack Low-Energy Accelerators for High Precision Measurements Sebastian Baunack Johannes Gutenberg-Universität Mainz EINN 2017, Oct. 31 - Nov 4, 2017 Paphos, Cyprus 1 Outline New type of accelerators: ERL High

More information

Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth

Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth Towards a test of time dilation: Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth.07.008 /3 Outline Introduction: test theories for SRT Tools for modern test of time

More information

Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment

Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth Antiprotonic Helium 10-14 September 2012, Stara Lesna, Slovakia p. 1/37 Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth on behalf of the ASACUSA Collaboration

More information

The Electromagnetic Form Factors of the Nucleon

The Electromagnetic Form Factors of the Nucleon The Electromagnetic Form Factors of the Nucleon Introduction Proton Form Factors Neutron Form Factors Summary September 28, 2006 R. Alarcon @ MIT Symposium e i k r Form factor in quantum mechanics Elastic

More information

Møller Polarimetry for PV Experiments at 12 GeV

Møller Polarimetry for PV Experiments at 12 GeV Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller Polarimetry 1 Møller Polarimetry for PV Experiments at 12 GeV E.Chudakov 1 1 JLab MOLLER Review Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller

More information

Principle of Resonance Ionization

Principle of Resonance Ionization Content Lecture 3 Resonance Ionization Spectroscopy (RIS) Principle RILIS : Application as a Highly Selective Laser Ion Source In-Source Spectroscopy Collinear Resonance Ionization (CRIS) Gas-Cell Spectroscopy

More information

The Proton. Gerald A. Miller University of Washington

The Proton. Gerald A. Miller University of Washington The Proton Gerald A. Miller University of Washington The Proton Gerald A. Miller University of Washington Everything that rises, Martin Puryear The Proton Gerald A. Miller University of Washington Everything

More information

The Proton Polarizability Contribution: Lamb Shift and Elastic Scattering

The Proton Polarizability Contribution: Lamb Shift and Elastic Scattering The Proton Polarizability Contribution: Lamb Shift and Elastic Scattering Gerald A. Miller, University of Washington It is Thursday 11 am, so and you all know what the proton radius puzzle is The Lamb

More information

Nucleon form factors and quark charge densities

Nucleon form factors and quark charge densities Nucleon form factors and quark charge densities Carl E. Carlson The College of William and Mary in Virginia MAMI and Beyond 30 March 03 April 2009 Nucleon form factors and quark charge densities Show some

More information

Schrödinger equation solved for the hydrogen molecule with unprecedented accuracy. and Jacek Komasa

Schrödinger equation solved for the hydrogen molecule with unprecedented accuracy. and Jacek Komasa Schrödinger equation solved for the hydrogen molecule with unprecedented accuracy Krzysztof Pachucki 1, a) 2, b) and Jacek Komasa 1) Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw,

More information

muonic hydrogen ground state hyperfine splitting towards the high precision measurement

muonic hydrogen ground state hyperfine splitting towards the high precision measurement muonic hydrogen ground state hyperfine splitting towards the high precision measurement 27 May 2016 A.Vacchi INFN Trieste Italy on behalf of the FAMU Collaboration OUTLINE background short history beam

More information

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN Anti-Apple g? g? Pauline Yzombard (1), on behalf of the AEgIS (2) collaboration (1) Laboratoire Aimé Cotton,

More information

Hans-Jürgen Arends Mainz University

Hans-Jürgen Arends Mainz University Recent Results from MAMI Hans-Jürgen Arends Mainz University Dec. 2008: 1557 MeV Sept. 2009: 1604 MeV KAOS spectrometer High-precision p(e,e )p measurement at MAMI Motivation (see J. Friedrich and Th.

More information

Structure of Schrödinger s Nucleon. Density Distributions and Zemach Momenta

Structure of Schrödinger s Nucleon. Density Distributions and Zemach Momenta Journal of Applied Mathematics and Physics, 5,, 4-4 Published Online November 5 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/.46/jamp.5.69 Structure of Schrödinger s Nucleon. Density

More information

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich Muon g 2 Physics 403 Advanced Modern Physics Laboratory 4-16-2013 Matthias Grosse Perdekamp Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich 1 /53 Outline Introduction & Motivation Method Experiment

More information

Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charg

Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charg Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charge Radius Puzzle refers to 7 σ discrepancy between the

More information