Structure of Schrödinger s Nucleon. Density Distributions and Zemach Momenta

Size: px
Start display at page:

Download "Structure of Schrödinger s Nucleon. Density Distributions and Zemach Momenta"

Transcription

1 Journal of Applied Mathematics and Physics, 5,, 4-4 Published Online November 5 in SciRes. Structure of Schrödinger s Nucleon. Density Distributions and Zemach Momenta Gintautas P. Kamuntavičius Vytautas Magnus University, Kaunas, Lithuania Received October 5; accepted November 5; published November 5 Copyright 5 by author and Scientific Research Publishing Inc. This wor is licensed under the Creative Commons Attribution International License (CC BY. Abstract The recently introduced Galilei invariant model of the nucleon as a system of three point particles, whose dynamics is governed by Schrödinger equation, is applied for nucleon structure investigation. The obtained charge, magnetism, mass and point particles density distributions of the proton and neutron are in satisfactory agreement with nown information about nucleon structure. The model predicts the third Zemach momentum of proton larger than the one obtained in dipole approximation and larger than following from electron-proton data analysis. Keywords Solutions of Wave Equations (Bound States, Potential Models, Proton and Neutron. Introduction The only source of experimental information about nucleon s charge and magnetism distributions are corresponding elastic form factors. However, the step from nown at some set of values of momentum transfer form factor to corresponding density is not easy. The density distribution is completely determined if form factor is nown for all values of momentum transfer q. At large values of q it is extremely difficult to obtain form factor, hence phenomenological approach for density distribution with a number of free parameters, reproducing measured values of form factors, is a common praxis. However, even more or less precisely defined density distribution is not the best tool for nucleon structure investigation. Obviously, it is enough for simple multiplicative operators expectation values calculation, but in more complex cases, when for observables description operators are needed, whose place is between bra and et functions, the density distribution carries crude information about nucleon. The first among these are currents operators, lie magnetic momenta. Microscopic model of the nucleon is necessary for calculation of expectation values of these operators. One of the alternatives for solution of this problem is simple, it is based on Hamiltonian dynamics, model [], How to cite this paper: Kamuntavičius, G.P. (5 Structure of Schrödinger s Nucleon. Density Distributions and Zemach Momenta. Journal of Applied Mathematics and Physics,,

2 considering the proton and neutron as different systems of three point particles (PP in correspondence with the Standard Model recommendations proton as the system of two up (upp and one down (dpp particle, while neutron as a system of one upp and two dpp particles. These particles should not be identified with the quars of the Standard Model because only their spins (, charges ( + e and e and baryon numbers (/ match the respective quars quantum numbers. Both PP of our model are different, thus isospin quantum number is not necessary. Therefore, the color quantum number, which is used in the Standard Model to antisymmetrize the wave function, is also unnecessary. In our model antisymmetry is ensured with a smaller number of wave-function s degrees of freedom. As usual, the baryon number is necessary to prevent the possibility of system excitation when one or two PP escape to continuous spectrum. The character of PPs, composing the nucleon, allows to define the magnetic momenta of structureless particles in Dirac s way. The interactions of different pairs of PP (uu, ud and dd contain the Coulomb and spring (three-dimensional harmonic oscillator potentials, having four free parameters. Thus, together with PP masses the model Hamiltonian has six parameters. It is shown that these parameters can be chosen so that the masses, magnetic momenta and charge distribution radii of the proton and neutron could be predicted with experimental, present in Particle Data Group 4 report [], precision. The model application for form factors and radii calculation gives results satisfactory agreeing with experimental information []. This paper is devoted for developed model application for nucleon s charge, magnetism, mass and point particles densities distributions and for Zemach momenta of proton investigation. The value of the third Zemach momentum of the proton is ey figure for current puzzle regarding the proton radius, determined from the muon and electron Lamb shifts in hydrogen, resolution [4]-[7]. The proton charge radius, recommended by CODATA compilation [], is.8775( 5 fm. ( However, a very precise measurement of the Lamb-shift in muonic hydrogen [8] has shown that proton charge radius equals (see Ref. [9]:.8487( 9 fm. ( Therefore, the remarable difference between proton charge radii of electronic and muonic hydrogen exists. The origin of this result is unnown yet. As pointed out in [5], the discrepancy between these results can be explained if the third Zemach momentum of the proton equals r = fm. ( This value is more than times larger than the result, obtained applying electron-proton scattering data [6]: r =.7 fm. (4 ( Similar value has been obtained in recent paper, Ref. [7]: r = fm. (5 Thus, the results of our model, giving possibility for Zemach momenta calculation applying original definition with charge and magnetic form factors convolution can provide some new information about this problem.. The Galilei Invariant Density Operator By definition, the elastic form factor of nucleon is density operator s Fourier image: Here ( A = A i( F, ; q ρ z exp q z d z. (6 = p denotes the proton, = n stands for the neutron, while A Aδ = ( z = d ( z z ρ (7 is density operator in the nucleon s center-of-mass reference frame. The z = r ξ, where m = ξ = r ν (8 4

3 is center-of-mass radius vector. ν = m+ m due to m = m. Operators and vectors here and below are mared by boldfaced letters. The corresponding lower-case letters mar operators mean values and radial coordinates of the vectors. d A are -th particle ( =,, characteristics. For charge density ( A E they equal the PP charge, for magnetization density ( A M the PP magnetic momentum operator µ, defined in [], while for mass distribution density ( A P the mass of the PP s m. For PP density distribution ( A= R they equal /, i.e. the baryon number of PP. The values of d A and d A coincide due to indistinguishability of these PP that is why we will use only one of them in the following expressions. The inverse of (6 defines the density operator in terms of form factor operator: ρ ( z A = F (, A; q exp i( q z d q. (9 ( π A few modifications of present definitions are useful. The electric and magnetic form factors of nucleon are defined as functions, independent of angles of momentum transfer q, hence in last equation integration by angles Ω due to relation q gives the following result: ( i ( Ω q = j ( qz exp q z d 4π ( ρ ( z A (, ; d. π A q j qz q q = F ( Therefore, the form factor, independent of angles produces the spherically symmetrical charge and magnetism of nucleon distributions. The next is introduction of dimensionless form factors defined as so that (, Aq ; ( Aq = ( Aq ( A G, ; F, ; F, ;. ( G value in zero equals one. From form factor definition it follows that ( A = A+ A F, ; d d. ( The only problem of this definition is the electric form factor of the neutron F ( ne, ;, which equals zero. G neq, ; to be dimensionless it is modified dividing by the elementary charge e. Introduction of dimensionless operators In order for f = d F, ;. (4 A A A in density definition is also useful. This modifies final expression of form factor operator, applied in a given below text, to the following form: where ( ( G, A; q = 4π w, A; z j qz z d, z (5 w(, Az ; = f Aδ ( z z. (6 z = The density presentation in terms of dimensionless form factor w(, A; z = (, A; q j ( qz q dq π G (7 can be obtained applying spherical Bessel functions orthogonality relation π j d. l qz jl qz q q = z z (8 z δ The well-nown for different evaluations the so called dipole form factor is 44

4 = + ( qq G Dq ;, where q = 4.7 fm (this corresponds the Q = q =.7 GeV c. The density distribution in dipole approximation, normalized as is This density distribution produces following momenta: (9 wdz ; zdz =, ( q q z wdz ( ; = e. ( m m+ m +! = ( ; d =, q z wdz z z ( hence root mean square radius of nucleon in this approximation equals.8 fm.. Density Distributions The density at given z equals the expectation value of operator (6. However, this operator is overcrowded by variables because the coordinates of point particles in reference system which origin is situated in center of mass of nucleon satisfies condition m = z =, ( hence only two of them are independent. These two linear combinations have to be chosen equal to the intrinsic Jacobi variables, present in wave function expression. The operator (6 written in these variables is: m m m zw(, Az ; = fa δ z ξ + fa δ z ξ ξ + δ z ξ+ ξ. (4 ν ν ν The integration gives ( = ( = + w, Az ; w, Az ; f I z f I z, (5 A A where mean values of operators f A α = f A α, obtained applying the model wave functions, are present in Table. The calculation of expectation value of the first part of this operator is straightforward and can be performed without any problems. y ( I z = u ( yz. (6 z ( Here y = ν m. The u ( x is radial wave function, defined in [], corresponding the Jacobi coordinate ξ. The second member of expansion is more complex but can be significantly simplified due to indis- Table. Expectation values of operators, present in density definition, Equation (5. The parameter of model γ = m m = u d A f f pa pa f f na na E, Charge density / 4/ / / M, Magnetism density 7γ/(45 + 7γ 45/(45 + 7γ 8/(8 + 45γ 45γ/(8 + 45γ P, Mass density /( + γ γ/( + γ γ/( + γ /( + γ R, Point particles density / / / / 45

5 tinguishability of the second and the third PP. The wave function of nucleon is antisymmetric in respect of these particles permutation, sum of the second and the third delta functions of (4 is symmetrical, hence mean values of both deltas coincide, i.e., thus m m δ z = δ z +, ν ξ ξ ν ξ ξ (7 I z z m = δ ξ + ξ z ν 4 The expectation value of this delta-function calculation requires Dirac delta argument modification, applying the following expression: δ ( f ( x ( x xj f ( xj. (8 δ =, (9 j where x are roots of equation f j ( x =. This modifies the argument of delta in a way necessary for integral calculation. After this transformation the delta function, present in (8, equals z δ ( ξ y, ( y where Thus, the second integral taes the form: By definition, both integrals are normalized and due to the obvious condition m. = z ξ ν y ν z m ( u y ( ξ d ξ. z y ( I z = u ( I z z dz = ( α f + f =, (4 A A the normalization is valid also for charge and magnetism densities of the proton and magnetism density of neutron. As mentioned above, the only exception is charge density of neutron. In this case f + f =. (5 The radial density distributions, defined as hence normalized in following way: are present in Figures Zemach Momenta The Zemach momenta [] are defined as: A A ( ( g, Az ; = zw, Az ;, (6 ( = δ, nδ, g, Az ; dz AE, (7 46

6 Figure. The proton s radial charge density distribution. Figure. The proton s radial magnetism density distribution. ( em, ; r r r, ; r drd r. (8 r = w p E w p M Here w( per, ; is charge density distribution, while (, ; w pmr is magnetism density distribution of proton, =, and. The alternative definition, applying convoluted density, is where r = w p, EM ; r r d, r (9 ( = ( w pem, ; r w pe, ; s w pm, ; r s d. s (4 47

7 Figure. The neutron s radial charge density distribution. Figure 4. The neutron s radial magnetism density distribution. There is an interesting possibility to express these densities in terms of corresponding elastic form factors, and obtain the following convoluted density presentation w( pem = G( peqg ( pmq i( qr, ; r, ;, ; e d. q (4 ( π Zemach momenta evaluations with coinciding both density distributions, equal the dipole or charge density distribution are the best nown. In dipole approximation the convoluted density can be present as w( pdr = G ( Dq i( qr, ; ; e d. ( π q (4 This density again is spherically symmetrical, i.e. independent of angles of r, hence normalized in following 48

8 way: It equals w w pdr, ; rdr =. (4 qr ( pdr = 6 j= ( 4 j! ( qr j! ( j! j q e, ;. (44 Therefore, the Zemach momenta in dipole approximation are defined by the following expression: dipole j ( j ( + j+ r = 6 q j = j! ( j! The numerical values of first three Zemach momenta (,, obtained applying our model, are present in Table. 5. Conclusions 4!!. (45 = in this approximation together with values, The obtained density distributions demonstrate good enough comparison with nown information about nucleon structure. The proton has a negatively charged dpp situated near the center of mass and cloud of positive charge, created by upps, and neutron shows an opposite picture. As mentioned in [] and follows from the present consideration, the distributions of electric and magnetic charges within the nucleon are significantly different and neutron appears as a more compact structure than the proton. Obtained mass and point particles distribution g nrz are not present due to trivial dependence on radial variable. They loo lie the corresponding magnetism density distributions with slightly different maximum positions and slight shape modifications. As mentioned earlier, the form factors are the source of information about nucleon density distributions. Different parametrizations of form factors produce different density distributions and radii of nucleon. However, the basic for these modifications is dipole form factor, predicting exponential density dependence, Equation (. This prediction and our result for proton charge density are presented in Figure 5. The difference is obvious. However, the charge form factors of proton, obtained in dipole approximation, Equation (9; the charge form factor, given by the best fit to experimental data []; and corresponding form factor, obtained applying our model, are not so different in region of small momentum transfer values, as it follows from Figure 6. Obviously, the reason of significant difference of proton s charge distributions is caused by elastic form factor dependence at larger values of momentum transfer. The dipole form factor is smooth function of momentum transfer, taing positive values at any momentum transfer. The model form factor dependence is significantly different. Our form factor possesses the nodes, producing diffraction minima of cross section at larger values of momentum transfer, characteristic for form factor of quantum system with complex intrinsic structure. densities g( ppz, ;, g( prz, ;, g( npz, ; and (, ; The theoretical value of the Lamb shift in the reads [5]: µ p atom in mev units for energy and fm units for the radii L r r Table. Zemach momenta of the proton in dipole approximation densities convolution ( ee ( th = (46 ( dipole ( r and obtained applying our model with charge r and charge and magnetic densities convolution according the original definition ( dipole r r ( ee ( em r, fm , fm.6.7.9, fm ( em ( r. 49

9 Figure 5. The proton s charge density distribution w(p, E; z (solid line and density distribution corresponding the dipole form factor, Equation ( (dashed line. The experimental value equals [9]: Figure 6. The electric form factor for the proton (solid line. The best fit of corresponding form factor from Ref. [] (dashed line and the standard dipole form factor, Equation (9 (dotted line are shown for comparison. L = mev. (47 ex At proton charge radius, equal ( the Zemach radius, necessary for L ex reproduction is r =.667 fm. Taing the CODATA charge radius ( one needs significantly larger value of Zemach momentum, equal (. Our model predicts the third Zemach momentum of proton larger than obtained in dipole approximation and larger than following from electron-proton data analysis, but significantly smaller than necessary for CODATA value. In dipole form factor approximation L th = mev. Our result is L th = mev. Therefore, the obtained precision of nucleon description allows to conclude that the calculations of other characteristics of the proton and neutron with model wave function may give some interesting and rather reliable results investigating the modifications of nucleon structure when it is present in an atomic nucleus. References [] Kamuntavičius, G.P. (4 Nucleon as a Nonrelativistic Three Point Particles System. SOP Transactions on Theoretical Physics,,

10 [] Olive, K.A., et al. (Particle Data Group (4 Review of Particle Physics. Chinese Physics C, 8, 9. [] Kamuntavičius, G.P. (5 Structure of Schrödinger s Nucleon: Elastic Form-Factors and Radii. Journal of Applied Mathematics and Physics,, [4] Cloët, I.C. and Miller, G.A. ( Third Zemach Moment of the Proton. Physical Review C, 8, (R. [5] De Rújula, A. ( QED Is Not Endangered by the Proton s Size. Physics Letters B, 69, [6] Friar, J.L. and Sic, I. (5 Muonic Hydrogen and the Third Zemach Moment. Physical Review A, 7, 45(R. [7] Graczy, K.M. and Juszcza, C. (5 Zemach Moments of the Proton from Bayesian Inference. Physical Review C, 9, [8] Pohl, R., et al. ( The Size of the Proton. Nature (London, 466, [9] Antognini, A., et al. ( Proton Structure from the Measurement of s-p Transition Frequencies of Muonic Hydrogen. Science, 9, [] Zemach, A.C. (956 Proton Structure and the Hyperfine Shift in Hydrogen. Physical Review, 4, [] Venat, S., Arrington, J., Miller, G.A. and Zhan, X. ( Realistic Transverse Images of the Proton Charge and Magnetization Densities. Physical Review C, 8,

Basic quantum Hamiltonian s relativistic corrections. Abstract

Basic quantum Hamiltonian s relativistic corrections. Abstract Basic quantum Hamiltonian s relativistic corrections Gintautas P. Kamuntavičius Physics Department, Vytautas Magnus University, Vileikos 8, Kaunas 44404, Lithuania (Dated: 2013.03.28) arxiv:1302.0491v2

More information

NEW VALUE OF PROTON CHARGE rms RADIUS

NEW VALUE OF PROTON CHARGE rms RADIUS NEW VALUE OF PROTON CHARGE rms RADIUS Institute of Physics SAS, Bratislava and Dept. of Theoretical Physics, Comenius University, Bratislava, Slovakia September 22, 2011 Erice School 2001: From Quarks

More information

The general harmonic-oscillator brackets: compact expression, symmetries, sums and Fortran code

The general harmonic-oscillator brackets: compact expression, symmetries, sums and Fortran code The general harmonic-oscillator brackets: compact expression, symmetries, sums and Fortran code G.P. Kamuntavičius a, R.K. Kalinauskas b, B.R. Barrett c, S. Mickevičius a, and D. Germanas a a Vytautas

More information

arxiv: v1 [physics.gen-ph] 6 Jan 2014

arxiv: v1 [physics.gen-ph] 6 Jan 2014 Kinematic relativity of quantum Hamiltonian Gintautas P. Kamuntavičius Department of Physics, Vytautas Magnus University, Vileikos 8, Kaunas 44404, Lithuania arxiv:1401.1098v1 [physics.gen-ph] 6 Jan 2014

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Scattering from nuclei For low energies and under conditions where the electron does not penetrate the nucleus, the electron scattering

More information

Proton Size Puzzle: Fat or Thin?

Proton Size Puzzle: Fat or Thin? Proton Size Puzzle: Fat or Thin? A.E. Dorokhov (JINR, Dubna) Fat and Thin famous Anton Chekhov novel R.N. Faustov (Institute of Informatics in Education, FRC CSC RAS, Moscow) N.I. Kochelev (JINR, Dubna;

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum

Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the

More information

Lamb shift in muonic hydrogen and the proton charge radius puzzle

Lamb shift in muonic hydrogen and the proton charge radius puzzle Lamb shift in muonic hydrogen and the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw Mainz, April 17, 2013 Proton charge radius puzzle global fit

More information

arxiv: v2 [physics.atom-ph] 24 Mar 2012

arxiv: v2 [physics.atom-ph] 24 Mar 2012 UK/1-01 Weak Interaction Contributions in Light Muonic Atoms Michael I. Eides Department of Physics and Astronomy, arxiv:101.979v [physics.atom-ph] 4 Mar 01 University of Kentucky, Lexington, KY 40506,

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

Proton radius puzzle

Proton radius puzzle Proton radius puzzle Krzysztof Pachucki Universiy of Warsaw Frascati, December 21, 2016 Measurements of atomic spectra Measurement of transition frequencies can be very accurate [Garching, 2013] ν(1s 2S)

More information

Charge density distributions and charge form factors of some even-a p-shell nuclei

Charge density distributions and charge form factors of some even-a p-shell nuclei International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 974-49, ISSN(Online):455-9555 Vol.1 No.6, pp 956-963, 17 Charge density distributions and charge form factors of some even-a p-shell

More information

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects Method: Rayleigh-Schrödinger Perturbation Theory Step 1: Find the eigenvectors ψ n and eigenvalues ε n

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II)

New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II) New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II) Ulrich D. Jentschura Missouri University of Science and Technology Rolla, Missouri, USA Bled Workshop on What Comes Beyond

More information

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2 The proton radius puzzle Proton Hadron Charge: +1 Composition: 2 up quarks 1 down quark Spin: 1/2 1 How to measure the (rms) radius of the proton https://muhy.web.psi.ch/wiki/index.php/main/news Method

More information

Directions toward the resolution of the proton charge radius puzzle

Directions toward the resolution of the proton charge radius puzzle Directions toward the resolution of the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw ECT workshop on the proton radius puzzle, November 1, 2012

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers Quantum Mechanics for Scientists and Engineers Syllabus and Textbook references All the main lessons (e.g., 1.1) and units (e.g., 1.1.1) for this class are listed below. Mostly, there are three lessons

More information

Investigation of the Nuclear Structure for Some p-shell Nuclei by Harmonic Oscillator and Woods-Saxon Potentials

Investigation of the Nuclear Structure for Some p-shell Nuclei by Harmonic Oscillator and Woods-Saxon Potentials Investigation of the Nuclear Structure for Some p-shell Nuclei by Harmonic Oscillator and Woods-Saxon Potentials Ahmed N. Abdullah Department of Physics, College of Science, University of Baghdad, Baghdad-Iraq.

More information

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Hyperfine effects in atomic physics are due to the interaction of the atomic electrons with the electric and magnetic multipole

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

Effective Field Theory for Cold Atoms I

Effective Field Theory for Cold Atoms I Effective Field Theory for Cold Atoms I H.-W. Hammer Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI School on Effective Field Theory across Length Scales, ICTP-SAIFR, Sao Paulo,

More information

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1 Physics 624, Quantum II -- Exam 1 Please show all your work on the separate sheets provided (and be sure to include your name) You are graded on your work on those pages, with partial credit where it is

More information

A natural solution of the proton charge radius puzzle.

A natural solution of the proton charge radius puzzle. A natural solution of the proton charge radius puzzle. Thomas Walcher Institute for Nuclear Physics Johannes-Gutenberg University Mainz INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 37th Course Probing Hadron

More information

arxiv: v1 [hep-ph] 14 Sep 2016

arxiv: v1 [hep-ph] 14 Sep 2016 Extraction of the proton charge radius from experiments N. G. Kelkar 1, T. Mart 2 and M. Nowakowski 1 1 Departamento de Física, Universidad de los Andes, Cra.1E No.18A-10, Santafe de Bogotá, Colombia 2

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

Problem Set # 1 SOLUTIONS

Problem Set # 1 SOLUTIONS Wissink P640 Subatomic Physics I Fall 2007 Problem Set # 1 S 1. Iso-Confused! In lecture we discussed the family of π-mesons, which have spin J = 0 and isospin I = 1, i.e., they form the isospin triplet

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Intermediate Energy Pion- 20 Ne Elastic Scattering in the α+ 16 O Model of 20 Ne

Intermediate Energy Pion- 20 Ne Elastic Scattering in the α+ 16 O Model of 20 Ne Commun. Theor. Phys. 60 (2013) 588 592 Vol. 60, No. 5, November 15, 2013 Intermediate Energy Pion- 20 Ne Elastic Scattering in the α+ 16 O Model of 20 Ne YANG Yong-Xu ( ), 1, Ong Piet-Tjing, 1 and LI Qing-Run

More information

Proton charge radius. Michael O. Distler for the A1 MAMI

Proton charge radius. Michael O. Distler for the A1 MAMI "2011 JLab Users Group Meeting" - June 6-8, 2011 - Jefferson Lab, Newport News, VA Proton charge radius Michael O. Distler for the A1 collaboration @ MAMI Institut für Kernphysik Johannes Gutenberg-Universität

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

Invariance Principles and Conservation Laws

Invariance Principles and Conservation Laws Invariance Principles and Conservation Laws Outline Translation and rotation Parity Charge Conjugation Charge Conservation and Gauge Invariance Baryon and lepton conservation CPT Theorem CP violation and

More information

charges q r p = q 2mc 2mc L (1.4) ptles µ e = g e

charges q r p = q 2mc 2mc L (1.4) ptles µ e = g e APAS 5110. Atomic and Molecular Processes. Fall 2013. 1. Magnetic Moment Classically, the magnetic moment µ of a system of charges q at positions r moving with velocities v is µ = 1 qr v. (1.1) 2c charges

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

Jacopo Ferretti Sapienza Università di Roma

Jacopo Ferretti Sapienza Università di Roma Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05 Three quark QM vs qd Model A relativistic Interacting

More information

An Introduction to Hyperfine Structure and Its G-factor

An Introduction to Hyperfine Structure and Its G-factor An Introduction to Hyperfine Structure and Its G-factor Xiqiao Wang East Tennessee State University April 25, 2012 1 1. Introduction In a book chapter entitled Model Calculations of Radiation Induced Damage

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

On the Heisenberg and Schrödinger Pictures

On the Heisenberg and Schrödinger Pictures Journal of Modern Physics, 04, 5, 7-76 Published Online March 04 in SciRes. http://www.scirp.org/ournal/mp http://dx.doi.org/0.436/mp.04.5507 On the Heisenberg and Schrödinger Pictures Shigei Fuita, James

More information

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1 L1.P1 Lecture #1 Review Postulates of quantum mechanics (1-3) Postulate 1 The state of a system at any instant of time may be represented by a wave function which is continuous and differentiable. Specifically,

More information

Proton charge radius puzzle

Proton charge radius puzzle Proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw KMMF, January 24, 2013 Proton charge radius puzzle global fit to H and D spectrum: r p = 0.8758(77)

More information

Spin, Isospin and Strong Interaction Dynamics

Spin, Isospin and Strong Interaction Dynamics October, 11 PROGRESS IN PHYSICS Volume 4 Spin, Isospin and Strong Interaction Dynamics Eliahu Comay Charactell Ltd. P.O. Box 3919, Tel Aviv 6139 Israel. E-mail: elicomay@post.tau.ac.il The structure of

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Muon as a Composition of Massless Preons: A Confinement Mechanism beyond the Standard Model

Muon as a Composition of Massless Preons: A Confinement Mechanism beyond the Standard Model International Journal of Advanced Research in Physical Science (IJARPS) Volume 4, Issue 10, 2017, PP 7-11 ISSN No. (Online) 2349-7882 www.arcjournals.org Muon as a Composition of Massless Preons: A Confinement

More information

Cross section measurements of the elastic electron - deuteron scattering

Cross section measurements of the elastic electron - deuteron scattering Cross section measurements of the elastic electron - deuteron scattering for the A1 Collaboration Institut für Kernphysik, Johannes Gutenberg-Universität Mainz Johann-Joachim-Becher-Weg 45, 55128 Mainz

More information

Bound Electron g Factor

Bound Electron g Factor Bound Electron g Factor Lepton Moments ' 06 Cape Cod, 20 JUN 2006 Ulrich D. Jentschura Max Planck Institute for Nuclear Physics, Heidelberg, Germany Contents Theory of hydrogen and deuterium spectra and

More information

Precise Determination of the Electric and Magnetic Form Factors of the Proton

Precise Determination of the Electric and Magnetic Form Factors of the Proton Precise Determination of the Electric and Magnetic Michael O. Distler for the A1 collaboration @ MAMI Institut für Kernphysik Johannes Gutenberg-Universität Mainz GDR Nucleon meeting at CEA/SPhN Saclay,

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

B. PHENOMENOLOGICAL NUCLEAR MODELS

B. PHENOMENOLOGICAL NUCLEAR MODELS B. PHENOMENOLOGICAL NUCLEAR MODELS B.0. Basic concepts of nuclear physics B.0. Binding energy B.03. Liquid drop model B.04. Spherical operators B.05. Bohr-Mottelson model B.06. Intrinsic system of coordinates

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 01/13 (3.11.01) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 6, 3.101 Content of Today Structure of the proton: Inelastic proton scattering can be described by elastic scattering

More information

Practical Quantum Mechanics

Practical Quantum Mechanics Siegfried Flügge Practical Quantum Mechanics With 78 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Volume I I. General Concepts 1. Law of probability

More information

The PRad Experiment Physics Overview

The PRad Experiment Physics Overview The PRad Experiment Physics Overview The PRad Experiment Readiness Review November 12, 2015 Haiyan Gao Duke University and Duke Kunshan University 1 Proton Charge Radius An important property of the nucleon

More information

Form Factors with Electrons and Positrons

Form Factors with Electrons and Positrons HUGS2013, JLab, May 28 June 14, 2013 Form Factors with Electrons and Positrons Part 2: Proton form factor measurements Michael Kohl Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News,

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542)

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Class: Tu & Th from 11:30 am to 1:00 pm (Compton 241 mostly) Extra hour: Mo 4 pm make-up hour for planned trips to Tokyo, San Francisco, and

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 IPM? Atoms? Nuclei: more now Other questions about last class? Assignment for next week Wednesday ---> Comments? Nuclear shell structure Ground-state

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Lecture 01. Introduction to Elementary Particle Physics

Lecture 01. Introduction to Elementary Particle Physics Introduction to Elementary Particle Physics Particle Astrophysics Particle physics Fundamental constituents of nature Most basic building blocks Describe all particles and interactions Shortest length

More information

INTRODUCTION TO THE STRUCTURE OF MATTER

INTRODUCTION TO THE STRUCTURE OF MATTER INTRODUCTION TO THE STRUCTURE OF MATTER A Course in Modern Physics John J. Brehm and William J. Mullin University of Massachusetts Amherst, Massachusetts Fachberelch 5?@8hnlsdie Hochschule Darmstadt! HochschulstraSa

More information

Quark model. Jan 30, 2006 Lecture 8 1

Quark model. Jan 30, 2006 Lecture 8 1 Quark model Jan 30, 2006 Lecture 8 1 Quark model of hadrons!!!! Developed long before QCD was recognized as the appropriate quantum field theory of the strong interactions Postulate that 1.! All baryons

More information

Non-relativistic scattering

Non-relativistic scattering Non-relativistic scattering Contents Scattering theory 2. Scattering amplitudes......................... 3.2 The Born approximation........................ 5 2 Virtual Particles 5 3 The Yukawa Potential

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

The Proton. Gerald A. Miller University of Washington

The Proton. Gerald A. Miller University of Washington The Proton Gerald A. Miller University of Washington The Proton Gerald A. Miller University of Washington Everything that rises, Martin Puryear The Proton Gerald A. Miller University of Washington Everything

More information

Physics 129, Fall 2010; Prof. D. Budker

Physics 129, Fall 2010; Prof. D. Budker Physics 129, Fall 2010; Prof. D. Budker Some introductory thoughts Reductionists science Identical particles are truly so (bosons, fermions) We will be using (relativistic) QM where initial conditions

More information

An Alternative Approach to Modelling Elementary Particles. S. Reucroft * and E. G. H. Williams ThinkIncubate, Inc., Wellesley, Mass.

An Alternative Approach to Modelling Elementary Particles. S. Reucroft * and E. G. H. Williams ThinkIncubate, Inc., Wellesley, Mass. An Alternative Approach to Modelling Elementary Particles S. Reucroft * and E. G. H. Williams ThinkIncubate, Inc., Wellesley, Mass., USA January, 2016. Revised July, 2016. Abstract: We suggest that electrons,

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t.

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t. General properties of Schrödinger s Equation: Quantum Mechanics Schrödinger Equation (time dependent) m Standing wave Ψ(x,t) = Ψ(x)e iωt Schrödinger Equation (time independent) Ψ x m Ψ x Ψ + UΨ = i t +UΨ

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclear and Particle Physics (5110) March 13, 009 Nuclear Shell Model continued 3/13/009 1 Atomic Physics Nuclear Physics V = V r f r L r S r Tot Spin-Orbit Interaction ( ) ( ) Spin of e magnetic

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

221B Lecture Notes Scattering Theory II

221B Lecture Notes Scattering Theory II 22B Lecture Notes Scattering Theory II Born Approximation Lippmann Schwinger equation ψ = φ + V ψ, () E H 0 + iɛ is an exact equation for the scattering problem, but it still is an equation to be solved

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Nucleon Electromagnetic Form Factors: Introduction and Overview

Nucleon Electromagnetic Form Factors: Introduction and Overview Nucleon Electromagnetic Form Factors: Introduction and Overview Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Scattering and Annihilation Electromagnetic Processes Trento, 18- February 013

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41 The Hydrogen Atom Chapter 18 P. J. Grandinetti Chem. 4300 Nov 6, 2017 P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, 2017 1 / 41 The Hydrogen Atom Hydrogen atom is simplest atomic system where

More information

The Structure of Hadrons

The Structure of Hadrons 1 The Structure of Hadrons Paul Hoyer University of Helsinki CP 3 Inauguration 24 November 2009 What are Hadrons? Strongly interacting elementary particles 2 Hadrons are extended objects and can be classified

More information

Electron-positron production in kinematic conditions of PrimEx

Electron-positron production in kinematic conditions of PrimEx Electron-positron production in kinematic conditions of PrimEx Alexandr Korchin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine 1 We consider photoproduction of e + e pairs on a nucleus

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Fine Structure Calculations of Atomic Data for Ar XVI

Fine Structure Calculations of Atomic Data for Ar XVI Journal of Modern Physics, 2015, 6, 1609-1630 Published Online September 2015 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/10.4236/jmp.2015.611163 Fine Structure Calculations of Atomic

More information

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV Mass and Charge Patterns in Hadrons To tame the particle zoo, patterns in the masses and charges can be found that will help lead to an explanation of the large number of particles in terms of just a few

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Bohr s Correspondence Principle Bohr s Correspondence Principle states that quantum mechanics is in agreement with classical physics when the energy differences between quantized

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

In-medium properties of the nucleon within a pirho-omega model. Ju-Hyun Jung in collaboration with Hyun-Chul Kim and Ulugbek Yakhshiev

In-medium properties of the nucleon within a pirho-omega model. Ju-Hyun Jung in collaboration with Hyun-Chul Kim and Ulugbek Yakhshiev In-medium properties of the nucleon within a pirho-omega model Ju-Hyun Jung in collaboration with Hyun-Chul Kim and Ulugbek Yakhshiev Outline 1. In-medium modified π ρ ω mesonic Lagrangian 2. Structure

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1.

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1. NERS311/Fall 2014 Revision: August 27, 2014 Index to the Lecture notes Alex Bielajew, 2927 Cooley, bielajew@umich.edu NERS 311 Current Old notes notes Chapter 1 1 1 Chapter 1: Introduction to the course

More information