Principle of Resonance Ionization

Size: px
Start display at page:

Download "Principle of Resonance Ionization"

Transcription

1 Content Lecture 3 Resonance Ionization Spectroscopy (RIS) Principle RILIS : Application as a Highly Selective Laser Ion Source In-Source Spectroscopy Collinear Resonance Ionization (CRIS) Gas-Cell Spectroscopy (here: Superheavy Spectroscopy)

2 Energie Principle of Resonance Ionization non-resonant ionization ionization via auto-ionizing states field-ionization of Rydberg states ~6 ev (5-9 ev) ionization potential nd excited state 1 st excited State E 1 0 ev ground state E 0 91

3 Proton Number Resonance Ionization for Selective Isotope Production Protonenzahl isotones isotopes isobars Neutronenzahl Number Si 14 Al 13 Mg 1 Na 11 Ne 10 F 9 Ti Sc 1 Ca 0 K 19 Ar 18 Cl 17 S 16 P 15 Ni 8 Co 7 Fe 6 N 5 Cr 4 V broadband pulsed lasers elemental selectivity high efficiency Mass Separation 9

4 Setup of the ISOLDE RILIS RILIS Dye Laser System Edgewave Dye SHG l meter 10 khz Master clock Dye 1 Narrowband Dye THG Delay generator Lumera Blaze GPS/HRS Photonics 1 Photonics RILIS Ti:Sa Laser System Ti:Sa SHG/THG/FHG Grating Ti:Sa Narrowband Ti:Sa Faraday cup pa meter l meter Target & Ion Source LabVIEW based DAQ

5 Hot-Cavity RILIS Slide: Bruce Marsh

6 RILIS Elements

7 RILIS statistics for 015 on-line operation 17 elements 3 RILIS runs 116 operating days Ag, Al, Au, Ba, Be, Ca, Cd, Cu, Dy, Ga, Hg, In, Mg, Mn, Po, Tl, Zn 550 hours (not including setup time of >1000 person-hours) > 75 % of ISOLDE Physics Statistics B. Marsh, K. Johnston

8 Strength of the RIS technique Sensitivity: Current record ~0.01 ions/s

9 In-Source Spectroscopy of Polonium CERN-KULeuven-Paisley-Gatchina-Mainz- Oulu-Orsay-Brussels collaboration T.E. Cocolios et al., Phys. Rev. Lett. 106, (011) 99

10 Volume and deformation-induced r Increasing Volume Deformation Homogenously charged sphere with sharp edge at r = R 0 = r 0 A 1/3 r r Sph Sph 3 5 R r Sph A 3 3 A A r 0 5 r 0 A A T.E. Cocolios et al., Phys. Rev. Lett. 106, (011)

11 Volume and deformation-induced r Increasing Volume Deformation Homogenously charged sphere with sharp edge at r = R 0 = r 0 A 1/3 r r Sph Sph 3 5 R r Sph A 3 3 A A r 0 5 r 0 A A R 0 R' 0 Def ( r ') Sph ( r ) 1 Y 0 r Def r AA' Sph 5 4 r Sph AA' Deformation T.E. Cocolios et al., Phys. Rev. Lett. 106, (011)

12 In-Source Spectroscopy of Polonium CERN-KULeuven-Paisley-Gatchina-Mainz- Oulu-Orsay-Brussels collaboration T.E. Cocolios et al., Phys. Rev. Lett. 106, (011) 10

13 1977: Odd-Even Staggering in Hg

14 In-Source Spectroscopy of Mercury Isotopes

15 In-Source Spectroscopy: Increasing Selectivity & MR-TOF

16 Resonance Spectra of Mercury Isotopes Slide: Bruce Marsh

17 Charge Radii of Mercury Isotopes

18 Combining Collinear Spectroscopy and Resonance Ionization: CRIS IP Ex 1064 nm Bunched radioactive ion beam from ISOLDE Laser light Neutralization of ion bunch GS 4.7 nm Resonance ionization of atom Count ions MCP Silicon detectors Use of ISCOOL for bunched beam to reduce duty-cycle losses associated with using pulsed / chopped cw lasers UHV region to minimize non-resonant collisional ionization to minimize background Measure radioactive decay Collinear geometry reduces thermal Doppler broadening to below natural linewidth of the hyperfine transition (GHz to MHz) Slide by K. Lynch

19 The Technique CRIS Website:

20 Slide: Bruce Marsh Ion Detection - Gaining Additional Information Collinear resonance ionization spectroscopy Laser-assisted nuclear decay spectroscopy MCP Count ions Sensitivity of technique comes from: Detection of resonant ions Efficient laser ionization Almost background free detection Silicon detectors Implantation of the resonant ions in a carbon foil allows their radioactive decay to be measured Provides additional information on the isotope (or isomer) under investigation

21 Reaching High-Rsolution R. P. de Groote et al., PRL 115, (015)

22 High-Resolution CRIS Initial Fr experiment used RILIS narrow-band Ti:Sa laser for the 4 nm resonant step Linewidth of 1.5 GHz achieved Enough to resolve lower-state splitting only Extraction of magnetic dipole moments New laser system produced frequency-doubled light from COLLAPS chopped Mattisse Ti:Sa CW laser 0 MHz 1.5 GHz IP 1064 nm Ex 4.7 nm P 3/ GS S 1/ The 4 nm CW laser light from the Matisse Ti:Sa laser was chopped into pulses of 100 ns The 1064 nm ionization step was delayed by 100 ns after start of the 4 nm excitation step Linewidths down to 0 MHz were achieved Upper-state splitting could now be resolved Extraction of quadrupole moments 4.7 nm 100 ns pulse 1064 nm 100 ns later Slide by K. Lynch

23 Quadrupole moment of 19 Fr extracted Qs = -1.1() eb Linewidth of 0(1) MHz R.P. de Groote et al., Phys. Rev. Lett (015) Hyperfine parameters of 3 (+), 7 (+) and 10 (- ) states of 06 Fr measured Laser-assisted nuclear decay spectroscopy performed on each state Branching ratios of 06 Fr and 0 At K.M. Lynch et al., Phys. Rev. C, Submitted (015) Hyperfine structure of 14 Fr Shortest-lived isotope (t 1/ = 5 ms) measured with laser spectroscopy online Possible due to 00 Hz repetition rate pulsed laser G.J. Farooq-Smith et al., In preparation (016) Slide by K. Lynch

24 Laser Spectroscopy of the Heaviest Elements Slides provided by Mustapha Laatiaoui (now KU Leuven)

25 Motivation - Atomic Physics: Study relativistic effects and how they influence the electronic structure Nobelium Atom Slide: M. Laatiaoui

26 Motivation - Atomic Physics: Study relativistic effects and how they influence the electronic structure Provide a benchmark for atomic theories - Nuclear Physics (via hyperfine structure studies): E f ( A, B, I, J ) HFS Study nuclear spin coupling Extraction of nuclear moments Be (0) V A ; B eqs IJ z - Nuclear Physics (via isotope shift measurements): Nobelium Atom Extraction of changes in the mean square charge radii r AA ' 1 AA' A A' M AA' F Slide: M. Laatiaoui

27 Step Resonance Ionization l l 1 onization potential Rydberg states Excited state l (a) (b) l 1 Ground state Scenario (a) about orders of magnitude less efficient compared with (b) Nobelium Atom Slide: M. Laatiaoui

28 Predicted ground-state transition in nobelium l l 1 Model calculations: Atomic ground state: [Rn]5f 14 7s 1 S 0 1, (MCDF): S.Fritzsche, Eur. Phys. J. D 33 (005) 15 3 (IHFSCC): A.Borschevsky et al., Phys. Rev. A 75 (007) (RCC): V.A.Dzuba et al., Phys. Rev. A 90 (014) (MCDF): Y.Liu et al., Phys. Rev. A 76 (007) Nobelium Atom 6 (MCDF): P.Indelicato et al., Eur. Phys. J. D 45 (007) (extrapolation): J.Sugar, J. Chem. Phys. 60 (1974) 4103 Slide: M. Laatiaoui

29 Nobelium & Lawrencium isotopes Isotope I P T 1/ (s) Nuclear reaction Max. production on target (1/s) 51 No Pb( 48 Ca,3n) 51 No No Pb( 48 Ca,n) 5 No No (9/ - ) Pb( 48 Ca,n) 53 No No Pb( 48 Ca,n) 54 No No (1/ + ) Pb( 48 Ca,1n) 55 No No (1/ + ) Bi( 48 Ca,n) 55 Lr EC Alpha energy (MeV) 55 Lr (1/ - ) Bi( 48 Ca,n) 55 Lr Slide: M. Laatiaoui

30 Setup Slide: M. Laatiaoui

31 Radiation Detected Resonance Ionization Spectroscopy (RADRIS) l 1 l Beam on: 1- Stopping of fusion products - Accumulation on filament Beam off: 3- Evaporation 4- Two-step resonance ionization 5- Accumulation on detector Cycle independent: 6- Radioactive decay detection 100 mbar Argon Slide: M. Laatiaoui

32 Laser Systems OPO ~ 90 GHz Dye ~ 6 GHz E 1st Step /pulse > 150 µj E nd Step /pulse > µj M.Laatiaoui et al., Hyperfine Interact. 7 (014) 69 Slide: M. Laatiaoui

33 The Ground-State Transition Strong atomic transition from 1 S 0 ground state to 1 P 1 excited state observed. Saturation of signal already at energies on the order of a few µj/pulse 1 (cm -1 ) A ki (s -1 ) x10 8 Experiment [1] 9, (7) stat 4. (.6) stat IHFSCC [] 30,100(800) 5.0 MCDF [3] 30,650(800).7 [1] M. Laatiaoui et al., Nature 538 (016) 495 [] A. Borschevsky et al., Phys. Rev. A 75 (007) [3] P. Indelicato et al., Eur. Phys. J. D 45, (007) 155 Slide: M. Laatiaoui

34 RADRIS Efficiency: - Hyperfine spectroscopy on 53 No - Laser spectroscopy on 5 No (s= 500 nb, T 1/ =.4s): Less than 1 atom/s delivered to the cell Overall efficiency: 3.3±1.0 % RADRIS applicability: T 1/ -range ~ s 53 No 54 No 5 No Slide: M. Laatiaoui

35 Ionization Potential of No

36 Outlook Operating Collinear Laser Spectroscopy Setups ISOLDE (COLLAPS & MSU (BECOLA) Under Development: Collinear Laser ANL: 8 B and CARIBU Absolute Nuclear Charge Radii from He-like and Li-like systems Collinear Laser Spectroscopy and polarized ALTO Collinear Laser RIKEN Collinear Laser FAIR Resonance Ionization Gas-Jet Spectroscopy (Leuven, GSI) RILIS & In-Source ISOLDE TRIUMF Upcoming: GANIL, RIKEN, GANIL

37 Remember Resonance Ionization Spectroscopy (RIS) is an extremely sensitive tool to study short-lived isotopes RIS can be applied in hot cavities, gas cells, gas jets and on a fast atomic beam in collinear geometry Laser Ion Sources like the RILIS provide high efficiencies and clean beams Resolution and selectivity can be chosen by the linewidth of the lasers Nuclear deformation has a strong impact on the isotope shift The development of more and more sensitive and accurate techniques is still continuing and new techniques will become available in the future

Perspectives for laser spectroscopy of the heaviest elements

Perspectives for laser spectroscopy of the heaviest elements XXth Colloque GANIL 2017 Amboise, France October 15 20, 2017 Perspectives for laser spectroscopy of the heaviest elements Mustapha Laatiaoui Outline Motivation Broadband laser spectroscopy The RADRIS technique

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

JRA-4: RESIST RESonance Ionization techniques for SeparaTors. Spokesperson: Iain Moore, JYFL Deputy: Valentin Fedosseev, CERN

JRA-4: RESIST RESonance Ionization techniques for SeparaTors. Spokesperson: Iain Moore, JYFL Deputy: Valentin Fedosseev, CERN JRA-4: RESIST RESonance Ionization techniques for SeparaTors Spokesperson: Iain Moore, JYFL Deputy: Valentin Fedosseev, CERN Objectives of RESIST We aim to refine the highly successful Resonance Ionization

More information

Novel radioactive ion-beam production techniques Report on new schemes and novel laser-ion-source techniques

Novel radioactive ion-beam production techniques Report on new schemes and novel laser-ion-source techniques Novel radioactive ion-beam production techniques Report on new schemes and novel laser-ion-source techniques Subtask 1.1 (KU-Leuven): New LIS techniques (ion manipulation with DC electrical fields in gas

More information

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape Iain Moore University of Jyväskylä, Finland Nordic Conference on Nuclear Physics 2011 Outline Introduction to

More information

In-gas jet laser ionization spectroscopy of heavy elements. Piet Van Duppen Department of Physics and Astronomy KU Leuven, Belgium

In-gas jet laser ionization spectroscopy of heavy elements. Piet Van Duppen Department of Physics and Astronomy KU Leuven, Belgium In-gas jet laser ionization spectroscopy of heavy elements Piet Van Duppen Department of Physics and Astronomy KU Leuven, Belgium 1 Outline Studying the heavy element region: motivation Basics of laser

More information

Resonant laser ionization of Po at ISOLDE

Resonant laser ionization of Po at ISOLDE Resonant laser ionization of Po at ISOLDE IKS, KULeuven T.E. Cocolios, M. Huyse, Yu. Kudryavtsev, P. Van Duppen ISOLDE, CERN V.N. Fedosseev, K. Johnston, B.A. Marsh IPNO, Orsay S. Franchoo Johannes Gutenberg

More information

In-gas cell laser spectroscopy of neutron-deficient silver isotopes

In-gas cell laser spectroscopy of neutron-deficient silver isotopes In-gas cell laser spectroscopy of neutron-deficient silver isotopes A.N. Andreyev, B. Bastin, N. Bree, J. Büscher, T.E. Cocolios, I. Darby, J. Elseviers, R. Ferrer, J. Gentens, M. Huyse, Yu. Kudryavtsev,

More information

Results from the collinear laser spectroscopy collaboration at ISOLDE-CERN

Results from the collinear laser spectroscopy collaboration at ISOLDE-CERN Results from the collinear laser spectroscopy collaboration at ISOLDE-CERN Gerda Neyens K.U. Leuven: K. Flanagan, D. Yordanov, P. Lievens, G. Neyens, M. De Rydt, P. Himpe, N. Vermeulen. Universität Mainz:

More information

The important message(s) from Lectures 1 & 2. [Periodic table]

The important message(s) from Lectures 1 & 2. [Periodic table] The important message(s) from Lectures 1 & 2 [Periodic table] The important message(s) from Lectures 1 & 2 1974 Mn58 3 +,4 + 65 s 1980 1988 Mn58 2 +,3 + 65 s (0 + ) Mn58 3 + 3.0 s 65 s b 3.8,.. g 810.8,

More information

Laser spectroscopy studies of neutron-rich nuclei

Laser spectroscopy studies of neutron-rich nuclei Laser spectroscopy studies of neutron-rich nuclei Ronald Fernando Garcia Ruiz The University of Manchester Walk on the neutron-rich side ECT* Trento, April 2017 The COLLAPS Collaboration M. Bissell, K.

More information

Recent developments at ISOL-based facilities. Piet Van Duppen KU Leuven, Belgium

Recent developments at ISOL-based facilities. Piet Van Duppen KU Leuven, Belgium Recent developments at ISOL-based facilities Piet Van Duppen KU Leuven, Belgium 1 Introductory remarks on RIB research Target materials Ion Sources Laser Resonance Ionization Ion manipulation Hg laser

More information

In-Gas Laser Ionization and Spectroscopy experiments at S 3 -GANIL

In-Gas Laser Ionization and Spectroscopy experiments at S 3 -GANIL In-Gas Laser Ionization and Spectroscopy experiments at S 3 -GANIL R. Ferrer, L. Ghys, M. Huyse, Yu. Kudryavtsev, D. Pauwels, D. Radulov, L. Rens, P. Van den Bergh, C. Van Beveren, and P. Van Duppen Instituut

More information

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, F.V. Moroz, K.A. Mezilev, S.Yu. Orlov, V.N. Panteleev, Yu.M. Volkov

More information

Synthesis of New Elements and New Approaches in SHE Research

Synthesis of New Elements and New Approaches in SHE Research ECOS Town Meeting Orsay 2014 Synthesis of New Elements and New Approaches in SHE Research Michael Block GSI Darmstadt and Helmholtz Institute Mainz Courtesy Ch.E. Düllmann Superheavy Elements Current Status

More information

Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy

Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser scopy, W. Dexters, M.D. Seliverstov, A.N. Andreyev, S. Antalic, A.E. Barzakh, B.

More information

ISCC meeting, February 16, ISCC meeting, February 16, ISOLDE ISOLDE scientific scientific coordinator s s report

ISCC meeting, February 16, ISCC meeting, February 16, ISOLDE ISOLDE scientific scientific coordinator s s report ISOLDE ISOLDE scientific scientific coordinator s s report report ISCC meeting, February 16, 2009 ISCC meeting, February 16, 2009, CERN PH-SME SME-IS Running period 2008 Status of INTC shifts Status of

More information

Laser spectroscopy of actinides at the IGISOL facility, JYFL. Iain Moore University of Jyväskylä, Finland

Laser spectroscopy of actinides at the IGISOL facility, JYFL. Iain Moore University of Jyväskylä, Finland Laser spectroscopy of actinides at the IGISOL facility, JYFL Iain Moore University of Jyväskylä, Finland Outline Motivation for heavy element studies Laser ionization and spectroscopy of plutonium Comparison

More information

The Island of of Inversion from a nuclear moments perspective

The Island of of Inversion from a nuclear moments perspective The Island of of Inversion from a nuclear moments perspective Gerda Neyens Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Belgium the LISE-NMR collaboration @ GANIL: E437 (,32,33 g-factors) E437a

More information

beta-nmr: from nuclear physics to biology

beta-nmr: from nuclear physics to biology beta-nmr: from nuclear physics to biology University of Copenhagen CERN KU Leuven M. Stachura, L. Hemmingsen D. Yordanov M. Bissell, G. Neyens Free University Berlin University of Saarland University of

More information

Introduction to REX-ISOLDE concept and overview of (future) European projects

Introduction to REX-ISOLDE concept and overview of (future) European projects Introduction to REX-ISOLDE concept and overview of (future) European projects Thanks to: Y. Blumenfeld, P. Butler, M. Huyse, M. Lindroos, K. Riisager, P. Van Duppen Energetic Radioactive Beam Facilities

More information

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements T. Kieck 1, H. Dorrer 1, Ch. E. Düllmann 1,2, K. Eberhardt 1, L. Gamer 3, L. Gastaldo 3, C. Hassel 3, U. Köster 4, B. Marsh 5, Ch. Mokry 1, S. Rothe

More information

High-Resolution Laser Spectroscopy for Nuclear-Structure Studies

High-Resolution Laser Spectroscopy for Nuclear-Structure Studies Collinear Laser Spectroscopy @ ISOLDE High-Resolution Laser Spectroscopy for Nuclear-Structure Studies D. T. Yordanov 1, D. L. Balabanski 2, M. L. Bissell 3, K. Blaum 1, I. Budinčević 3, B. Cheal 4, M.

More information

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock Direct identification of the elusive 229m Th isomer: Milestone towards a Nuclear Clock P.G. Thirolf, LMU München 229m Th properties and prospects Experimental approach & setup Measurements on 229m Th:

More information

Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy

Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy, W. Dexters, M.D. Seliverstov, A.N. Andreyev, S. Antalic, A.E. Barzakh,

More information

In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP

In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP ISOLTRAP experimental setup In-trap decay: principle application for mass measurements Trap-assisted decay spectroscopy: principle and purpose

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF. stephan ettenauer for the TITAN collaboration

Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF. stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF stephan ettenauer for the TITAN collaboration Weakly Bound Systems in Atomic and Nuclear Physics, March 2010 1 Outline Overview:

More information

LIST - Development at Mainz for ISOLDE

LIST - Development at Mainz for ISOLDE LIST - Development at Mainz for ISOLDE K. Wendt, T. Gottwald, Ch. Mattolat, C. Ohlert, F. Schwellnus, K. Wies & K. Blaum, Universität Mainz V. Fedoseyev, F. Österdahl, M. Menna, ISOLDE, CERN, Geneva Ch.

More information

Mass measurements of n-rich nuclei with A~70-150

Mass measurements of n-rich nuclei with A~70-150 Mass measurements of n-rich nuclei with A~70-150 Juha Äystö Helsinki Institute of Physics, Helsinki, Finland in collaboration with: T. Eronen, A. Jokinen, A. Kankainen & IGISOL Coll. with theory support

More information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-7NA27344. Lawrence Livermore National Security, LLC The ITER tokamak Tungsten (W) is attractive as

More information

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum ECT* Trento The Lead Radius Precision measurements of nuclear ground state properties for nuclear structure studies Klaus Blaum 04.08.2009 Outline Introduction, history and methods Principle of laser spectroscopy

More information

Recent Results from ISOLDE and new Opportunities with HIE- ISOLDE

Recent Results from ISOLDE and new Opportunities with HIE- ISOLDE Recent Results from ISOLDE and new Opportunities with HIE- ISOLDE Mark Huyse IKS, K.U.Leuven, Belgium 7/05/2009 Mark Huyse 1 The many lives of ISOLDE Prof. Bjorn JONSON (Chalmers University of Technology)

More information

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Euroschool on Physics with Exotic Beams, Mainz 005 Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Klaus Blaum Johannes Gutenberg-University Mainz

More information

Collinear laser spectroscopy of radioactive isotopes at IGISOL 4 Liam Vormawah

Collinear laser spectroscopy of radioactive isotopes at IGISOL 4 Liam Vormawah Collinear laser spectroscopy of radioactive isotopes at IGISOL 4 Liam Vormawah University of Liverpool Introduction Collinear laser spectroscopy Nuclear properties from hyperfine structures Isotope shifts

More information

A universal slow RI-beam facility at RIKEN RIBF

A universal slow RI-beam facility at RIKEN RIBF A universal slow RI-beam facility at RIKEN RIBF M. Wada RIKEN Slow RI-beams of all elements with high purity and small emittance 1. Overview of the facility 2. Technical developments 3. Possible experiments

More information

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: b decay mirror b decay future work

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: b decay mirror b decay future work Bertram Blank CEN Bordeaux-Gradignan Germanium detector calibration experimental studies: 0 + - 0 + b decay mirror b decay future work Beta-Decay Weak Interaction Studies in the Era of the LHC International

More information

RITU and the GREAT Spectrometer

RITU and the GREAT Spectrometer RITU and the GREAT Spectrometer Cath Scholey Department of Physics University of Jyväskylä 19 th March 2006 3rd TASCA Detector Group Meeting, GSI Darmstadt C. Scholey (JYFL, Finland) RITU and the GREAT

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

CHAPTER VI RIB SOURCES

CHAPTER VI RIB SOURCES CHAPTER VI RIB SOURCES 6.1 General criteria for target and ion-sources The ion-sources dedicated to the production of Radioactive Ion Beams (RIB) have to be highly efficient, selective (to reduce the isobar

More information

Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region

Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region Christa Haase, Jinjun Liu, Frédéric Merkt, Laboratorium für physikalische Chemie, ETH Zürich current address:

More information

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN Fundamental physics with antihydrogen and antiprotons at the AD Michael Doser CERN What measurements are we talking about? 1) Precise spectroscopic comparison between H and H tests of fundamental symmetry

More information

Towards TASCA

Towards TASCA TASCA Workshop 2009 Towards SHIPTRAP @ TASCA Michael Block SHIPTRAP Physics Program High-Precision Mass Measurements Trap-Assisted Nuclear Spectroscopy In-Trap Nuclear Spectroscopy Laser Spectroscopy Chemistry?

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) The Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the most important spectroscopic methods to explore the structure and dynamic

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: decay mirror decay future work

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: decay mirror decay future work Bertram Blank CEN Bordeaux-Gradignan Germanium detector calibration experimental studies: 0 + -0 + decay mirror decay future work 20 th Colloque de GANIL, Amboise, October 15th 20th, 2017 Nuclear beta

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #3 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

Present ISOLDE facility Aims of HIE-ISOLDE upgrade First steps towards HIE-ISOLDE

Present ISOLDE facility Aims of HIE-ISOLDE upgrade First steps towards HIE-ISOLDE The HIE-ISOLDE ISOLDE Project Alexander Herlert, CERN Present ISOLDE facility Aims of HIE-ISOLDE upgrade First steps towards HIE-ISOLDE Hirschegg Workshop 2008 B. Jonson s talk at the last ISOLDE workshop

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

Nuclear physics: Magdalena Kowalska CERN, PH Dept.

Nuclear physics: Magdalena Kowalska CERN, PH Dept. Nuclear physics: the ISOLDE facility Magdalena Kowalska CERN, PH Dept on behalf of the CERN ISOLDE team www.cern.ch/isolde Outline Forces inside atomic nuclei Nuclei and QCD, nuclear models Nuclear landscape

More information

Radiometric Dating (tap anywhere)

Radiometric Dating (tap anywhere) Radiometric Dating (tap anywhere) Protons Neutrons Electrons Elements on the periodic table are STABLE Elements can have radioactive versions of itself called ISOTOPES!! Page 1 in your ESRT has your list!

More information

Development of a gas cell-based laser ion source for RIKEN PALIS

Development of a gas cell-based laser ion source for RIKEN PALIS Hyperfine Interact (2013) 216:103 107 DOI 10.1007/s10751-013-0817-6 Development of a gas cell-based laser ion source for RIKEN PALIS T. Sonoda M. Wada H. Tomita C. Sakamoto T. Takatsuka T. Noto H. Iimura

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE T.E. Cocolios a,b, H.H. Al Suradi c, J. Billowes a, I. Budinčević d, R.P. de Groote d, S. De Schepper d, V.N. Fedosseev

More information

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Thomas Aumann December 11 th 2013 27 th Texas Symposium on Relativistic Astrophysics Dallas, Texas Supported by the BMBF under contract

More information

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics Winter Meeting on Nuclear Physics, Bormio, Italy 2014 Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics Klaus Blaum Jan 27, 2014 Klaus.blaum@mpi-hd.mpg.de

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

KEK isotope separation system for β-decay spectroscopy of r-process nuclei

KEK isotope separation system for β-decay spectroscopy of r-process nuclei 2 nd Workshop on Inelastic Reaction Isotope Separator for Heavy Elements Nov. 19, 2010 KEK isotope separation system for β-decay spectroscopy of r-process nuclei Y.X. Watanabe, RNB group (KEK) 1. Outline

More information

Accelerated radioactive beams and the future of nuclear physics. David Jenkins

Accelerated radioactive beams and the future of nuclear physics. David Jenkins Accelerated radioactive beams and the future of nuclear physics David Jenkins Particle accelerators 1930s: Cockcroft and Walton 1990s: Superconducting niobium cavities Energetic Radioactive Beam Facilities

More information

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University Exotic Nuclei II Neutron-rich nuclides Michael Thoennessen FRIB/NSCL Michigan State University Most neutron-rich nuclides N/Z = 1 n X not a nuclide but a nucleon N/Z = 3 8 He 11 Li: N/Z = 2.67 N/Z = 3

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

single-layer transition metal dichalcogenides MC2

single-layer transition metal dichalcogenides MC2 single-layer transition metal dichalcogenides MC2 Period 1 1 H 18 He 2 Group 1 2 Li Be Group 13 14 15 16 17 18 B C N O F Ne 3 4 Na K Mg Ca Group 3 4 5 6 7 8 9 10 11 12 Sc Ti V Cr Mn Fe Co Ni Cu Zn Al Ga

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7 Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7 Outline 1. Background 1.1 Decay for proton-rich nuclei 1.2 Astrophysical implications 2. Experiments 2.1 Introduction 2.2 Experimental

More information

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei R.Avigo 1,2, O.Wieland 1, A.Bracco 1,2, F.Camera 1,2 on behalf of the AGATA and DALI2 collaborations 1 INFN, sezione di Milano 2 Università

More information

Muonic Radioactive Atoms

Muonic Radioactive Atoms Muonic Radioactive Atoms Patrick Strasser Muon Science Laboratory, KEK & Muon Section, Materials and Life Science Division, J-PARC Center Contents: (1) Muonic atoms (2) Muonic X-ray spectroscopy (3) Formation

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

Nuclear and Radiation Physics

Nuclear and Radiation Physics 501503742 Nuclear and Radiation Physics Why nuclear physics? Why radiation physics? Why in Jordan? Interdisciplinary. Applied? 1 Subjects to be covered Nuclear properties. Nuclear forces. Nuclear matter.

More information

Collinear Laser Spectroscopy of Manganese Isotopes using the Radio Frequency Quadrupole Cooler and Buncher at ISOLDE

Collinear Laser Spectroscopy of Manganese Isotopes using the Radio Frequency Quadrupole Cooler and Buncher at ISOLDE Collinear Laser Spectroscopy of Manganese Isotopes using the Radio Frequency Quadrupole Cooler and Buncher at ISOLDE Thesis submitted in accordance with the requirements of the University of Liverpool

More information

Body-centred-cubic (BCC) lattice model of nuclear structure

Body-centred-cubic (BCC) lattice model of nuclear structure Body-centred-cubic (BCC) lattice model of nuclear structure Gamal A. Nasser Faculty of science, Mansoura University, Egypt. E-mail: chem.gamal@hotmail.com. Abstract: This model is development of solid

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Trap assisted decay spectroscopy setup at ISOLTRAP

Trap assisted decay spectroscopy setup at ISOLTRAP Trap assisted decay spectroscopy setup at ISOLTRAP Motivation Penning traps: masses and isobaric selectivity ISOLTRAP mass spectrometer at ISOLDE/CERN Decay spectroscopy at ISOLTRAP: setup and 1 st run

More information

(C) Pavel Sedach and Prep101 1

(C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach

More information

Production and decay studies of 261 Rf, 262. Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS

Production and decay studies of 261 Rf, 262. Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS Production and decay studies of 261 Rf, 262 Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS RIKEN Nishina Center Hiromitsu Haba for RIKEN SHE Chemistry Collaboration CONTENTS 1.

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG Beta-decay studies with proton-rich rich nuclei Super-allowed Fermi transitions Mirror decays proton-rich nuclei in the calcium-to-nickel region branching ratios, half-lives, decay schemes, masses isospin

More information

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives.

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives. Experiments with exotic nuclei I Thursday Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives Friday Motivation Nuclear structure at extreme N/Z ratios or high A? Changes

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). 170 LIGHT wavelength Diffraction frequency = wavelengths / time = - Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). - Einstein noted that viewing light as a particle

More information

The Periodic Table of the Elements

The Periodic Table of the Elements The Periodic Table of the Elements All matter is composed of elements. All of the elements are composed of atoms. An atom is the smallest part of an element which still retains the properties of that element.

More information

HYPERFINE STRUCTURE CONSTANTS IN THE 102D3/2 AND 112D 3/2 STATES OF 85Rb M. GLOW

HYPERFINE STRUCTURE CONSTANTS IN THE 102D3/2 AND 112D 3/2 STATES OF 85Rb M. GLOW Vol. 83 (1993) ACTA PHYSICA POLONICA A No. 2 HYPERFINE STRUCTURE CONSTANTS IN THE 102D3/2 AND 112D 3/2 STATES OF 85Rb M. GLOW Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46, 02-668

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 175 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

610B Final Exam Cover Page

610B Final Exam Cover Page 1 st Letter of Last Name NAME: 610B Final Exam Cover Page No notes or calculators of any sort allowed. You have 3 hours to complete the exam. CHEM 610B, 50995 Final Exam Fall 2003 Instructor: Dr. Brian

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Useful Constants and equations: K = o C + 273 Avogadro's number = 6.022 x 10 23 d = density = mass/volume R H = 2.178 x 10-18 J c = E = h = hc/ h = 6.626 x 10-34 J s c = 2.998 x 10 8 m/s E n = -R H Z 2

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

Beta-delayed fission: from neutrondeficient to neutron-rich nuclei

Beta-delayed fission: from neutrondeficient to neutron-rich nuclei Beta-delayed fission: from neutrondeficient to neutron-rich nuclei Andrei Andreyev University of York, UK 200,202,204Fr N/Z~1.25 192,194,196At 186,188Bi 178,180,182Tl Z=82 Tl 178 150 ms 1 10th ASRC Workshop.

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

Spectroscopy of 252No to Investigate its K-isomer

Spectroscopy of 252No to Investigate its K-isomer Spectroscopy of to Investigate its K-isomer Edward Parr Motivation in Superheavies PROTONS Single Particle Energy (MeV) Single Particle Energy (MeV) NEUTRONS Next shell gaps predicted for Superheavy spherical

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Stability Nuclear & Electronic (then ion formation/covalent bonding)

Stability Nuclear & Electronic (then ion formation/covalent bonding) Stability Nuclear & Electronic (then ion formation/covalent bonding) Most elements are not stable in their atomic form. (Exceptions to that? ) They become stable by gaining or losing e! to form ions, or

More information

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer Production of superheavy elements Seminar: Key experiments in particle physics 26.06.09 Supervisor: Kai Schweda Thorsten Heußer Outline 1. Introduction 2. Nuclear shell model 3. (SHE's) 4. Experiments

More information