Nuclear structure and the proton radius puzzle

Size: px
Start display at page:

Download "Nuclear structure and the proton radius puzzle"

Transcription

1 Nuclear structure and the proton radius puzzle Nir Nevo Dinur 1,2 Chen Ji 2,3, Javier Hernandez 2,5, Sonia Bacca 2,4, Nir Barnea 1 1 The Hebrew University of Jerusalem, Israel 2 TRIUMF, Vancouver, BC, Canada 3 ECT* and INFN-TIFPA, Trento, Italy 4 University of Manitoba, Winnipeg, Canada 5 University of British Columbia, BC, Canada INT May 5th 2016 Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 1 / 47

2 Outline Introduction The proton radius puzzle Lamb shift, charge radius & nuclear structure Calculation details Results µd µ 4 He + µ 3 He + µ 3 H Uncertainty estimates Summary Outlook Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 2 / 47

3 The proton radius puzzle How big is the proton? R. CREMA Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 3 / 47

4 Origins of the discrepancy? What is the source of the discrepancy? µh experiment / theory? eh spectroscopy? ep scattering? overlooked/underestimated effects? (e.g., exotic hadron structure) beyond standard model? (extra dimensions, quantum gravity, new force-carriers,... ) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

5 Origins of the discrepancy? Problem with µh experiment / theory? Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

6 Origins of the discrepancy? Problem with µh experiment / theory? probably not Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

7 Problem with eh spectroscopy? Origins of the discrepancy? Pohl et al., Annu. Rev. Nucl. Part. Sci. (2013) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

8 Problem with eh spectroscopy? possible Origins of the discrepancy? Pohl et al., Annu. Rev. Nucl. Part. Sci. (2013) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

9 Origins of the discrepancy? Problem(s) with ep scattering? G p E (Q2 ) = r2 p Q r 2 p 6dGp E (Q2 ) dq 2 Q 2 =0 Problem with measurements? Q 2 not small enough? Problem with fits? extrapolation to Q 2 = 0 depends on fit various groups obtain contradicting results Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

10 Origins of the discrepancy? Problem(s) with ep scattering? possible G p E (Q2 ) = r2 p Q r 2 p 6dGp E (Q2 ) dq 2 Q 2 =0 Problem with measurements? Q 2 not small enough? Problem with fits? extrapolation to Q 2 = 0 depends on fit various groups obtain contradicting results Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

11 Origins of the discrepancy? What is the source of the discrepancy? µh experiment / theory? probably not eh spectroscopy? possible ep scattering? possible overlooked/underestimated effects? Birse & McGovern, EPJA 12 vs. Miller, PLB 13 Hill & Paz, PRD 10; PRL 11 & Jentschura PRA 13 beyond standard model? new force carriers, address also (g 2) µ puzzle Tucker-Smith & Yavin, PRD 11; Batell, McKeen & Pospelov, PRL 11; Carlson & Rislow, PRD 12; PRD 14;... Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

12 Origins of the discrepancy? What is the source of the discrepancy? µh experiment / theory? probably not eh spectroscopy? possible ep scattering? possible overlooked/underestimated effects? possible Birse & McGovern, EPJA 12 vs. Miller, PLB 13 Hill & Paz, PRD 10; PRL 11 & Jentschura PRA 13 beyond standard model? possible (very constrained) new force carriers, address also (g 2) µ puzzle Tucker-Smith & Yavin, PRD 11; Batell, McKeen & Pospelov, PRL 11; Carlson & Rislow, PRD 12; PRD 14;... Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 4 / 47

13 Tucker-Smith & Yavin s prediction for µ 4 He + Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 5 / 47

14 Origins of the discrepancy? - more data! New scattering experiments to shed light on the puzzle JLab (windowless target) & MAMI (initial state radiation) ep scattering for Q GeV 2 (in progress) MUSE collaboration at PSI µ ± p (& e ± p) scattering experiment (in development) MAMI electron-deuteron experiment e d scattering (data taken) JLab 3 He & 3 H form factors extract 3 He 3 H charge radii difference (planned) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 6 / 47

15 Origins of the discrepancy? - more data! New H-spectroscopy experiments to shed light on the puzzle York Univ. (Toronto) 2S-2P Ordinary Lamb shift aim at 0.6% accuracy for r p MPQ (Garching) 2S-4P Ordinary transitions (+ 1S-2S) aim at 2% accuracy for r p NPL (UK) 2S-nS,D Ordinary transitions (+ 1S-2S) LKB (Paris) & MPQ (Garching) 1S-3S Ordinary transitions (+ 1S-2S) two different methods, aim at 1% accuracy for r p NIST & ETHZ Rydberg const. using circular Rydberg atoms & positronium Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 7 / 47

16 Origins of the discrepancy? - more data! New µ-spectroscopy experiments to shed light on the puzzle CREMA collaboration at PSI Lamb shift (2S-2P) in µd (finishing) Lamb shift in µ 4 He + and µ 3 He + (both measured in 2014) Lamb shift in µ 3 H, µ 6 He +, and Z = 3, 4, 5 (wanted since 85) = Extract charge radii with high precision = proton puzzle, QED tests, He isotope shift, nuclear ab initio,... Hyperfine splitting (HFS) in µh & µ 3 He + (approved) = Extract magnetic radii Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 8 / 47

17 Origins of the discrepancy? - more data! New µ-spectroscopy experiments to shed light on the puzzle CREMA collaboration at PSI Lamb shift (2S-2P) in µd (finishing) Lamb shift in µ 4 He + and µ 3 He + (both measured in 2014) Lamb shift in µ 3 H, µ 6 He +, and Z = 3, 4, 5 (wanted since 85) = Extract charge radii with high precision = proton puzzle, QED tests, He isotope shift, nuclear ab initio,... Hyperfine splitting (HFS) in µh & µ 3 He + (approved) = Extract magnetic radii RIKEN / (J-PARC?) HFS in µh (planned) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 8 / 47

18 Origins of the discrepancy? - more data! New µ-spectroscopy experiments to shed light on the puzzle CREMA collaboration at PSI Lamb shift (2S-2P) in µd (finishing) Lamb shift in µ 4 He + and µ 3 He + (both measured in 2014) Lamb shift in µ 3 H, µ 6 He +, and Z = 3, 4, 5 (wanted since 85) = Extract charge radii with high precision = proton puzzle, QED tests, He isotope shift, nuclear ab initio,... Hyperfine splitting (HFS) in µh & µ 3 He + (approved) = Extract magnetic radii RIKEN / (J-PARC?) HFS in µh (planned) high-precision measurements accurate theoretical inputs Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 8 / 47

19 Lamb shift, charge radius & nuclear TPE Extract R c r 2 from Lamb shift measurement E 2S 2P = δ QED + δ size (R c ) + δ Zem + δ pol Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 9 / 47

20 Lamb shift, charge radius & nuclear TPE Extract R c r 2 from Lamb shift measurement E 2S 2P = δ QED + δ size (R c ) + δ Zem + δ pol QED corrections: vacuum polarization lepton self energy relativistic recoil effects Theory of µ-p, D, 3,4 He + reexamined Martynenko et al. 07, Borie 12, Krutov et al. 15 Karshenboim et al. 15, Krauth et al Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 9 / 47

21 Lamb shift, charge radius & nuclear TPE Extract R c r 2 from Lamb shift measurement E 2S 2P = δ QED + δ size (R c ) + δ Zem + δ pol Nuclear finite-size corrections (elastic): leading term: δ size = m3 r 12 (Zα)4 R 2 c Zemach/Friar term: δ Zem = m4 r 24 (Zα)5 r 3 (2) R 3 c can be calculated from g.s. charge distribution, Friar 79, Borie 12( 14), Krutov et al. 15 extracted from experimental form factors, Sick 14 or avoided due to cancellations with δ pol Pachucki 11 & Friar 13 (µd) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 9 / 47

22 Lamb shift, charge radius & nuclear TPE Extract R c r 2 from Lamb shift measurement E 2S 2P = δ QED + δ size (R c ) + δ Zem + δ pol Nuclear polarization corrections (inelastic): least well-known related to nuclear response functions: S O (ω) = ψf Ô ψ 0 2 δ(e f E 0 ω) can be calculated (continuum few-body problem) or extracted from data (very imprecise) sometimes rewritten as: δ TPE δ Zem + δ pol lepton Nucleus Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 9 / 47

23 Update from CREMA Case study µd Krauth et al., Ann. Phys. (Mar. 2016) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 10 / 47

24 Previous calculations of S O (ω) & δ pol µd ( 2 H) Modern forces: AV14 - Leidemann & Rosenfelder 95 State-of-the-art: AV18 - Pachucki 11 underestimates nuclear physics uncertainty includes nucleon polarizability δ p pol (partial) π/eft: zero-range expansion - Friar 13 (under?) estimated uncertainty 1 2% includes nucleon-size corrections From e D scattering: Dispersion relations - Carlson et al. 14 estimate nuclear uncertainty 40% Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 11 / 47

25 Previous calculations of S O (ω) & δ pol µd ( 2 H) Modern forces: AV14 - Leidemann & Rosenfelder 95 State-of-the-art: AV18 - Pachucki 11 underestimates nuclear physics uncertainty includes nucleon polarizability δ p pol (partial) π/eft: zero-range expansion - Friar 13 (under?) estimated uncertainty 1 2% includes nucleon-size corrections From e D scattering: Dispersion relations - Carlson et al. 14 estimate nuclear uncertainty 40% µ 3,4 He + From photoabsorption: Bernabeu & Jarlskog 74; Rinker 76; Friar 77 δ A=3/4 pol = 4.9/ 3.1 mev ±20% (c.f. experimental requirement ±5%) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 11 / 47

26 Previous calculations of S O (ω) & δ pol µd ( 2 H) Modern forces: AV14 - Leidemann & Rosenfelder 95 State-of-the-art: AV18 - Pachucki 11 underestimates nuclear physics uncertainty includes nucleon polarizability δ p pol (partial) π/eft: zero-range expansion - Friar 13 (under?) estimated uncertainty 1 2% includes nucleon-size corrections From e D scattering: Dispersion relations - Carlson et al. 14 estimate nuclear uncertainty 40% µ 3,4 He + From photoabsorption: Bernabeu & Jarlskog 74; Rinker 76; Friar 77 δ A=3/4 pol = 4.9/ 3.1 mev ±20% (c.f. experimental requirement ±5%) µt ( 3 H) Very crude theoretical estimation: C. Joachain 61 (in French) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 11 / 47

27 Previous calculations of S O (ω) & δ pol µd ( 2 H) Modern forces: AV14 - Leidemann & Rosenfelder 95 State-of-the-art: AV18 - Pachucki 11 underestimates nuclear physics uncertainty includes nucleon polarizability δ p pol (partial) π/eft: zero-range expansion - Friar 13 (under?) estimated uncertainty 1 2% includes nucleon-size corrections From e D scattering: Dispersion relations - Carlson et al. 14 estimate nuclear uncertainty 40% µ 3,4 He + From photoabsorption: Bernabeu & Jarlskog 74; Rinker 76; Friar 77 δ A=3/4 pol = 4.9/ 3.1 mev ±20% (c.f. experimental requirement ±5%) µt ( 3 H) Very crude theoretical estimation: C. Joachain 61 (in French) Status of δ pol in light muonic atoms experimental input for S O is unsatisfactory Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 11 / 47

28 Previous calculations of S O (ω) & δ pol µd ( 2 H) Modern forces: AV14 - Leidemann & Rosenfelder 95 State-of-the-art: AV18 - Pachucki 11 underestimates nuclear physics uncertainty includes nucleon polarizability δ p pol (partial) π/eft: zero-range expansion - Friar 13 (under?) estimated uncertainty 1 2% includes nucleon-size corrections From e D scattering: Dispersion relations - Carlson et al. 14 estimate nuclear uncertainty 40% µ 3,4 He + From photoabsorption: Bernabeu & Jarlskog 74; Rinker 76; Friar 77 δ A=3/4 pol = 4.9/ 3.1 mev ±20% (c.f. experimental requirement ±5%) µt ( 3 H) Very crude theoretical estimation: C. Joachain 61 (in French) Status of δ pol in light muonic atoms experimental input for S O is unsatisfactory need to calculate δ pol using modern potentials and ab-initio methods Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 11 / 47

29 Our work: 2 < A We have performed the first ab-initio calculation of δ pol and δ Zem we use state-of-the-art forces AV18+UIX χeft = estimate nuclear physics uncertainty we employ established Few-body methods EIHH: Effective interaction Hyperspherical Harmonics (bound method) LIT: Lorentz Integral Transform (continuum method) LSR: A new method, based on the Lanczos algorithm NND et al., Phys. Rev. C (2016) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 12 / 47

30 Nuclear potentials: two approaches Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 13 / 47

31 Nuclear potentials: Traditional (phen.) Argonne v18 fitted to 1787 pp & 2514 np observables for E lab 350 MeV with χ 2 /datum = 1.1 nn scattering length & D binding energy Urbana IX V ijk = Vijk 2πP + Vijk R Illinois +Vijk 2πS + V ijk 3π R Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 14 / 47

32 Nuclear potentials: Traditional (phen.) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 15 / 47

33 Nuclear potentials: Chiral-EFT Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 16 / 47

34 Nuclear potentials: 4 He Photoabsorption electric dipole photoabsorption cross section σ γ (ω) = 4π 2 αωs D1 (ω) 5 Arkatov et al. (1979) Shima et al. (2005) AV18+UIX (2006) Nilsson et al. (2005) Nakayama et al. (2007) NN(N 3 LO)+3N(N 2 LO) (2007) 4 Tornow et al. (2012) σ γ [mb] ω [MeV] Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 17 / 47

35 Nuclear polarization: basic idea Hamiltonian for muonic atoms H = H nucl + H µ + H H µ = p2 Zα 2m r r p Ri 4 He n n p r µ Corrections to the point Coulomb from protons Z Z ( ) 1 H = α V (r, R i) α r 1 r R i i Evaluate inelastic effects of H on muonic spectrum i in 2 nd -order perturbation theory δ pol = 1 N 0 µ 0 H Nµ Nµ H µ 0 N 0 E N0 E N + ɛ µ0 ɛ µ N N 0,µ µ 0 : muon wave function for 2S/2P state Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 18 / 47

36 Nuclear polarization: contributions Systematic contributions to nuclear polarization δ NR Non-Relativistic limit δ L + δ T Longitudinal and Transverse relativistic corrections δ C Coulomb distortions δ NS Corrections from finite Nucleon Size Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 19 / 47

37 Non-relativistic limit Neglect Coulomb interactions in the intermediate state lepton Nucleus Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 20 / 47

38 Non-relativistic limit Neglect Coulomb interactions in the intermediate state Expand muon matrix element in powers of η 2m r ω R R lepton Nucleus Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 20 / 47

39 Non-relativistic limit Neglect Coulomb interactions in the intermediate state Expand muon matrix element in powers of η 2m r ω R R lepton Nucleus R R = virtual distance the proton travels in 2γ exchange uncertainty principal R R 1/ 2m N ω η mr m N 0.3 Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 20 / 47

40 Non-relativistic limit Neglect Coulomb interactions in the intermediate state Expand muon matrix element in powers of η 2m r ω R R lepton Nucleus R R = virtual distance the proton travels in 2γ exchange uncertainty principal R R 1/ 2m N ω η mr m N 0.3 P m3 r(zα) 5 [ 2mr R R 2 2mr ω R R 3 + m ] rω 12 ω 4 10 R R 4 δ NR = δ (0) NR + δ(1) NR + δ(2) NR = η2 + η 3 + η 4 Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 20 / 47

41 NR limit at LO: δ (0) NR δ NR = δ (0) NR + δ(1) NR + δ(2) NR δ (0) NR η2 δ (0) D1 = 2πm3 r (Zα) 5 dω 9 ω th 2mr ω S D 1 (ω) S D1 (ω) = electric dipole response function [ ˆD 1 = R Y 1 ( ˆR) ] δ (0) D1 is the dominant contribution to δ pol Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 21 / 47

42 NR limit at LO: δ (0) NR δ NR = δ (0) NR + δ(1) NR + δ(2) NR δ (0) NR η2 δ (0) D1 = 2πm3 r (Zα) 5 dω 9 ω th 2mr ω S D 1 (ω) S D1 (ω) = electric dipole response function [ ˆD 1 = R Y 1 ( ˆR) ] δ (0) D1 is the dominant contribution to δ pol = Rel. and Coulomb corrections added at this order Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 21 / 47

43 NR limit at NLO: δ (1) NR δ NR = δ (0) NR + δ(1) NR + δ(2) NR δ (1) NR η3 δ (1) NR = δ(1) R3pp + δ(1) Z3 δ (1) R3pp = m4 r 24 (Zα)5 δ (1) Z3 = m4 r 24 (Zα)5 drdr R R 3 N 0 ˆρ (R)ˆρ(R ) N 0 drdr R R 3 ρ 0(R)ρ 0(R ) δ (1) R3pp 3rd-order proton-proton correlation δ (1) Z3 = 3rd Zemach moment Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 22 / 47

44 NR limit at NLO: δ (1) NR δ NR = δ (0) NR + δ(1) NR + δ(2) NR δ (1) NR η3 δ (1) NR = δ(1) R3pp + δ(1) Z3 δ (1) R3pp = m4 r 24 (Zα)5 δ (1) Z3 = m4 r 24 (Zα)5 δ (1) R3pp 3rd-order proton-proton correlation δ (1) Z3 drdr R R 3 N 0 ˆρ (R)ˆρ(R ) N 0 drdr R R 3 ρ 0(R)ρ 0(R ) = m4 r 24 (Zα)5 r 3 (2) = 3rd Zemach moment cancels elastic Zemach moment of finite-size corrections c.f. Pachucki 11 & Friar 13 (µd) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 22 / 47

45 NR limit at NLO: δ (1) NR δ NR = δ (0) NR + δ(1) NR + δ(2) NR δ (1) NR η3 δ (1) NR = δ(1) R3pp + δ(1) Z3 δ (1) R3pp = m4 r 24 (Zα)5 δ (1) Z3 = m4 r 24 (Zα)5 δ (1) R3pp 3rd-order proton-proton correlation δ (1) Z3 drdr R R 3 N 0 ˆρ (R)ˆρ(R ) N 0 drdr R R 3 ρ 0(R)ρ 0(R ) = m4 r 24 (Zα)5 r 3 (2) = 3rd Zemach moment cancels elastic Zemach moment of finite-size corrections c.f. Pachucki 11 & Friar 13 (µd) = δ TPE δ Zem + δ pol Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 22 / 47

46 NR limit at N 2 LO: δ (2) NR δ NR = δ (0) NR + δ(1) NR + δ(2) NR δ (2) NR η4 δ (2) NR = m5 r 18 (Zα)5 ω dω ω th 2m r S R 2(ω) = monopole response function S Q (ω) = quadrupole response function [ S R 2(ω) + 16π 25 S Q(ω) + 16π ] 5 S D 1D 3 (ω) S D1D 3 (ω) = interference between D 1 and D 3 [ ˆD 3 = R 3 Y 1 ( ˆR) ] Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 23 / 47

47 Test: δ (0) in µd Test Run: electric-dipole polarization effects in µd previous δ pol in µd (AV18): Pachucki 11 we calculate δ (0) from dipole response of D (AV18) [S D1 (ω) from Bampa, Leidemann & Arenhövel 11] The difference in δ (0) L δ (0) [mev] Pachucki 11 Our work non-rel dipole δ (0) D relativistic δ (0) L δ (0) T Coulomb δ (0) C is due to small energy expansion used in Pachucki 11 Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 24 / 47

48 4 He: Calculating few-body response functions Few-body bound-states: EIHH Effective Interaction Hyperspherical Harmonics Rapidly converging, based on symmetrized hyperspherical functions Barnea & Novoselsky, Ann. Phys. (1997); Barnea et al., Phys. Rev. C (2000)... Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 25 / 47

49 4 He: Calculating few-body response functions Few-body bound-states: EIHH Effective Interaction Hyperspherical Harmonics Rapidly converging, based on symmetrized hyperspherical functions Barnea & Novoselsky, Ann. Phys. (1997); Barnea et al., Phys. Rev. C (2000)... Few-body continuum: LIT Lorentz Integral Transform Transforms calculation of response S(ω) into two-steps: 1. Solving a Schroedinger-like (bound-state) equation 2. Inverting an integral transform (with Lorentzian kernel) Efros, Leidemann, & Orlandini, Phys. Lett. B (1994) Efros, Leidemann, Orlandini & Barnea, J. Phys. G (2007) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 25 / 47

50 4 He: Calculating few-body response functions Few-body bound-states: EIHH Effective Interaction Hyperspherical Harmonics Rapidly converging, based on symmetrized hyperspherical functions Barnea & Novoselsky, Ann. Phys. (1997); Barnea et al., Phys. Rev. C (2000)... Few-body continuum: LIT Lorentz Integral Transform Transforms calculation of response S(ω) into two-steps: 1. Solving a Schroedinger-like (bound-state) equation 2. Inverting an integral transform (with Lorentzian kernel) Efros, Leidemann, & Orlandini, Phys. Lett. B (1994) Efros, Leidemann, Orlandini & Barnea, J. Phys. G (2007) Uses Lanczos to diagonalize low-energy spectrum of H nucl Marchisio, Barnea, Leidemann, & Orlandini, Few-body Sys. (2003) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 25 / 47

51 LSR: Lanczos sum rule method Nuclear polarization = energy-dependent sum rules of the response functions δ pol I O = 0 dω S O (ω) g (ω) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 26 / 47

52 LSR: Lanczos sum rule method Nuclear polarization = energy-dependent sum rules of the response functions δ pol I O = 0 dω S O (ω) g (ω) The Lanczos algorithm is an efficient method calculate the LIT of S O. It can be extended to calculate the sum rules. Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 26 / 47

53 LSR: Lanczos sum rule method Nuclear polarization = energy-dependent sum rules of the response functions δ pol I O = 0 dω S O (ω) g (ω) The Lanczos algorithm is an efficient method calculate the LIT of S O. It can be extended to calculate the sum rules. With the Lanczos sum rule (LSR) method, we directly calculate I O, without explicitly solving S O. Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 26 / 47

54 LSR: Lanczos sum rule method Nuclear polarization = energy-dependent sum rules of the response functions δ pol I O = 0 dω S O (ω) g (ω) The Lanczos algorithm is an efficient method calculate the LIT of S O. It can be extended to calculate the sum rules. With the Lanczos sum rule (LSR) method, we directly calculate I O, without explicitly solving S O. The calculated I O converges as the LIT of S O, if g (ω) is smooth. NND, Barnea, Ji, and Bacca, Phys. Rev. C 89, (2014) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 26 / 47

55 LSR: Example 4 He dipole response sum-rules (Model space size M 10 5 ) NND, Barnea, Ji, and Bacca, Phys. Rev. C 89, (2014) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 27 / 47

56 Nuclear polarization in µ 4 He + [mev] AV18+UIX χeft δ (0) δ (0) D δ (0) L δ (0) T δ (0) C NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 28 / 47

57 Nuclear polarization in µ 4 He + [mev] AV18+UIX χeft δ (0) δ (0) D δ (0) L δ (0) T δ (0) C δ (1) δ (1) R3pp δ (1) Z NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 28 / 47

58 Nuclear polarization in µ 4 He + [mev] AV18+UIX χeft δ (0) δ (0) D δ (0) L δ (0) T δ (0) C δ (1) δ (1) R3pp δ (1) Z δ (2) (2) δr δ (2) Q δ (2) D1D NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 28 / 47

59 Nuclear polarization in µ 4 He + [mev] AV18+UIX χeft δ (0) δ (0) D δ (0) L δ (0) T δ (0) C δ (1) δ (1) R3pp δ (1) Z δ (2) δ NS (2) δr δ (2) Q δ (2) D1D (1) δr1pp δ (1) Z δ (2) NS NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 28 / 47

60 Nuclear polarization in µ 4 He + [mev] AV18+UIX χeft δ (0) δ (0) D δ (0) L δ (0) T δ (0) C δ (1) δ (1) R3pp δ (1) Z δ (2) δ NS (2) δr δ (2) Q δ (2) D1D (1) δr1pp δ (1) Z δ (2) NS δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 28 / 47

61 Nuclear polarization in µ 4 He + [mev] AV18+UIX χeft δ (0) Convergence from δ (0) to δ (2) from an expansion in η m r /M N 0.3 δ (1) δ (2) δ NS NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) δ pol Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 28 / 47

62 Nuclear polarization in µ 4 He + [mev] AV18+UIX χeft δ (0) δ (1) Convergence from δ (0) to δ (2) from an expansion in η m r /M N 0.3 δ pol with AV18+UIX & χeft differ: 5.5% (0.134 mev) δ (2) δ NS NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) δ pol Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 28 / 47

63 Nuclear physics uncertainty 4 He obesrvable AV18+UIX χeft-em Difference µ 4 He + nuclear polarization δ pol [mev] % Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 29 / 47

64 Nuclear physics uncertainty 4 He obesrvable AV18+UIX χeft-em Difference binding energy B 0 [MeV] % point-proton nuclear radius R pp [fm] % electric-dipole polarizability α E [fm 3 ] % µ 4 He + nuclear polarization δ pol [mev] % B 0, R pp & α E in good agreement with previous calculations Kievsky et al. 08, Gazit et al. 06 & Stetcu et al. 09 Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 29 / 47

65 Nuclear physics uncertainty 4 He obesrvable AV18+UIX χeft-em Difference binding energy B 0 [MeV] % point-proton nuclear radius R pp [fm] % electric-dipole polarizability α E [fm 3 ] % µ 4 He + nuclear polarization δ pol [mev] % B 0, R pp & α E in good agreement with previous calculations Kievsky et al. 08, Gazit et al. 06 & Stetcu et al. 09 systematic uncertainty in δ pol from nuclear physics: 5.5% 2 = ±4% (1σ) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 29 / 47

66 Numerical accuracy Convergence with model space size Compare δ (Kmax) pol AV18+UIX 0.4% χeft-em 0.2% with δ (Kmax 4) pol -2.4 δ pol AV18 + UIX 2N(N 3 LO) + 3N(N 2 LO) K max Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 30 / 47

67 Error budget µ 4 He + Nuclear physics 4% from two potentials Numerical accuracy 0.4% from convergence Additional corrections (Zα) 6 terms (beyond 2nd-order perturbation theory) Rel. & Coulomb corrections (other than dipole) higher-order nucleon-size corrections 4% estimated from additional corrections Final result (quadratic sum) our prediction: δ pol = 2.47 mev ±6% previous estimates: δ pol = 3.1 mev ±20% experimental needs: δ pol uncertainty 5% Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 31 / 47

68 Reflections on µ 4 He + The accuracy of δ pol in µ 4 He + is limited by the nuclear physics (AV18+UIX vs. χeft-em) To study this we can further vary the nuclear potentials Use χeft at different orders to track the convergence At each order vary the cutoff to estimate the theoretical error (χeft-egm: Epelbaum, Glöckle, & Meißner, Nucl. Phys. A 05) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 32 / 47

69 Reflections on µd Pachucki only used AV18 No nuclear physics uncertainty We can add χeft-em & χeft-egm 2-body problem only N N interaction simple numerics Other issues Pachucki did not include nucleon-size corrections Pachucki did not treat nucleon-polarization correctly We already reproduced Pachucki s leading term as a check for µ 4 He + There is also a Magnetic contribution Pachucki only calculated δ TPE δ Zem + δ pol Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 33 / 47

70 Nuclear polarization in µd Pachucki 11 (AV18) our work (AV18) δ (0) D δ (0) L δ (0) T δ (0) C δ (2) R δ (2) Q δ (2) D1D δ (1) NS δ (2) NS δ M δ TPE δ pol + δ Zem compare: δ (0) L & δ(0) T ; δ (2) ; δ M ; δ NS Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 34 / 47

71 Nuclear polarization in µd Pachucki 11 our work (AV18) (AV18) N 3 LO-EM N 3 LO-EGM δ (0) D (-1.911,-1.926) δ (0) L ( 0.029, 0.030) δ (0) T δ (0) C ( 0.262, 0.264) δ (2) R δ (2) Q δ (2) D1D (-0.139,-0.140) δ (1) NS δ (2) NS δ M δ TPE δ pol + δ Zem (1.660,1.674) compare: δ (0) L & δ(0) T ; δ (2) ; δ M ; δ NS Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 34 / 47

72 Improved nuclear uncertainty in µd Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 35 / 47

73 Error budget µd Nuclear physics 1.1% from a range of potentials Numerical accuracy (negligible) Additional corrections 0.95% (as estimated by Pachucki) Final result (quadratic sum) our prediction: δ TPE δ pol + δ Zem = 1.66 mev ±1.5% includes nuclear error & nucleon-size corrections improved result and error estimate Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 36 / 47

74 µd theory: Krauth et al., Ann. Phys. (Mar. 2016) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 37 / 47

75 Hot from the press: A = 3 AV18/UIX EFT 3 He 3 H Drop Times (Seconds) OBJECT A OBJECT B Table OBJECT C OBJECT D (0) D1 (0) L (0) T (0) C (0) M (1) R3 (1) Z3 (2) R 2 (2) Q (2) D1D3 (1) R1 (1) Z1 (2) NS A pol A Zem A TPE NND et al., Phys. Lett. B (Apr. 2016) mev mev Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 38 / 47

76 Hot from the press: δ pol in µ 3 He + [mev] AV18+UIX χeft Convergence from δ (0) to δ (2)? δ (0) δ (1) δ (2) δ NS δ Mag δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 39 / 47

77 Hot from the press: δ pol in µ 3 He + [mev] AV18+UIX χeft δ (0) δ (1) Convergence from δ (0) to δ (2)? AV18+UIX vs. χeft: 1% (±0.04 mev) c.f. µ 4 He + : 2.47 ± 0.15 mev δ (2) δ NS δ Mag δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 39 / 47

78 Hot from the press: δ pol in µ 3 He + [mev] AV18+UIX χeft δ (0) δ (1) Convergence from δ (0) to δ (2)? AV18+UIX vs. χeft: 1% (±0.04 mev) c.f. µ 4 He + : 2.47 ± 0.15 mev δ Zem =? δ (2) δ NS δ Mag δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 39 / 47

79 Hot from the press: δ pol in µ 3 He + [mev] AV18+UIX χeft δ (0) δ (1) δ (2) Convergence from δ (0) to δ (2)? AV18+UIX vs. χeft: 1% (±0.04 mev) c.f. µ 4 He + : 2.47 ± 0.15 mev δ Zem = 10.5(2) mev w/r p (µ ) δ NS δ Mag δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 39 / 47

80 Hot from the press: δ pol in µ 3 He + [mev] AV18+UIX χeft δ (0) δ (1) δ (2) Convergence from δ (0) to δ (2)? AV18+UIX vs. χeft: 1% (±0.04 mev) c.f. µ 4 He + : 2.47 ± 0.15 mev δ Zem = 10.5(2) mev w/r p (µ ) 10.7(2) mev w/r p (e ) δ NS δ Mag δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 39 / 47

81 Hot from the press: δ pol in µ 3 He + [mev] AV18+UIX χeft δ (0) δ (1) δ (2) δ NS Convergence from δ (0) to δ (2)? AV18+UIX vs. χeft: 1% (±0.04 mev) c.f. µ 4 He + : 2.47 ± 0.15 mev δ Zem = 10.5(2) mev w/r p (µ ) 10.7(2) mev w/r p (e ) both agree with 10.87(27) mev from scattering data (Sick, PRC 14) δ Mag δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 39 / 47

82 Hot from the press: δ pol in µ 3 He + [mev] AV18+UIX χeft δ (0) δ (1) δ (2) δ NS Convergence from δ (0) to δ (2)? AV18+UIX vs. χeft: 1% (±0.04 mev) c.f. µ 4 He + : 2.47 ± 0.15 mev δ Zem = 10.5(2) mev w/r p (µ ) 10.7(2) mev w/r p (e ) 10.9 both agree with 10.87(27) mev from scattering data (Sick, PRC 14) δ Mag δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 39 / 47

83 Hot from the press: δ pol in µ 3 H [mev] AV18+UIX χeft Convergence from δ (0) to δ (2)? δ (0) δ (1) AV18+UIX vs. χeft: 1.5% (±7.5 µev) Probe δpol N of the nucleons? δ (2) δ N pol 34(16) µev δ NS Precise triton radius δ Mag δ pol NN: N 3 LO-EM 3N: N 2 LO (c D=1, c E=-0.029) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 40 / 47

84 Uncertainty estimates Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 41 / 47

85 Summary of results: 2 A 4 System Ref. δ pol err. exptl. status µ 2 H Phys. Lett. B % measured, unpublished µ 4 He + Phys. Rev. Lett % 6% measured, unpublished µ 3 He + Phys. Lett. B 16 20% 4% measured, unpublished µ 3 H Phys. Lett. B 16 4% measurable? δ Zem agree with other values calculated or extracted from data δ pol more accurate than previous estimates δ pol err. comparable to the 5% experimental needs will significantly improve the precision of R c extracted from the measured Lamb shifts may help shed light on the proton radius puzzle Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 42 / 47

86 Work in progress The work is not completed yet... Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 43 / 47

87 Outlook Study higher-order terms (in progress) Quantify & reduce nuclear physics uncertainty (in progress) understand why various nuclear Hamiltonians differ further explore the phase-space of nuclear Hamiltonians include higher-order or otherwise improved nuclear forces include many-body currents Improve treatment of nucleon finite sizes (in progress) Investigate nuclear corrections in µ 6 Li +2, µ 6 He +, Investigate nuclear corrections in HFS of µ 3 He + Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 44 / 47

88 Quantitative nuclear physics uncertainty B. D. Carlsson et al., Phys. Rev. X (2016) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 45 / 47

89 Update from CREMA: µd status 2015 Courtesy of Randolf CREMA Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 46 / 47

90 Update from CREMA: µd status 2015 Courtesy of Randolf CREMA Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 46 / 47

91 Update from CREMA: µd status 2015 Courtesy of Randolf CREMA Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 46 / 47

92 The muonic Lamb shift is still puzzling!!! Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 47 / 47

93 The muonic Lamb shift is still puzzling!!! Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 47 / 47

94 BACK UP Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 48 / 47

95 Energy (MeV) H 1/2+ 3 H He 1 + AV /2 Li 3/2 IL2 7 Li 5/2 7/2 Exp 8 Li Phenomenological potentials 8 Be Li Argonne v 18 With Illinois-2 GFMC Calculations 7/2 5/2 1/2 3/2 9 Be 9/2 7/2 + 1/2 + 7/2 5/2 + 3/2 + 1/2 5/2 3/2 10 Be , B C Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 49 / 47

96 4 He photoabsorption cross sections electric-dipole photoabsorption cross section σ γ (ω) = 4π 2 αωs D1 (ω) 3 Shima et al. (2005) Nilsson et al. (2005) Nakayama et al. (2007) Tornow et al. (2012) Arkatov (1979) σ γ [mb] ω [MeV] Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 50 / 47

97 4 He photoabsorption cross sections electric-dipole photoabsorption cross section σ γ (ω) = 4π 2 αωs D1 (ω) σ γ [mb] 3 2 Shima et al. (2005) Nilsson et al. (2005) Nakayama et al. (2007) Tornow et al. (2012) Arkatov (1979) AV18/UIX 2N(N 3 LO) + 3N(N 2 LO) ω [MeV] Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 50 / 47

98 Non-Relativistic Approximation Coulomb interactions in the (virtual) intermediate state are neglected Results are expressed in an expansion of 2m r ω R R E NR = E (2) NR + E(3) NR + E(4) NR Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 51 / 47

99 Non-Relativistic Approximation Coulomb interactions in the (virtual) intermediate state are neglected Results are expressed in an expansion of 2m r ω R R E NR = E (2) NR + E(3) NR + E(4) NR 1. R 2 term: E (2) NR is the dominant polarizability contribution E (2) NR = 2πm3 r (Zα) 5 9 ω th dω 2mr ω SD 1 (ω) S D 1 (ω) = 1 2J 0 +1 ˆD 1 = 1 Z N N 0,J Z R iy 1( ˆR i) i N 0J 0 ˆD 1 NJ 2 δ(ω E N + E N0 ) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 51 / 47

100 Non-Relativistic Approximation Coulomb interactions in the (virtual) intermediate state are neglected Results are expressed in an expansion of 2m r ω R R E NR = E (2) NR + E(3) NR + E(4) NR 2. R 3 term: E (3) NR = m4 r 24 (Zα)5 [ d 3 Rd 3 R R R 3 N 0 ˆρ (R)ˆρ(R ) N 0 r 3 (2) ] Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 52 / 47

101 Non-Relativistic Approximation Coulomb interactions in the (virtual) intermediate state are neglected Results are expressed in an expansion of 2m r ω R R E NR = E (2) NR + E(3) NR + E(4) NR 2. R 3 term: E (3) NR = m4 r 24 (Zα)5 [ 1st term: charge correlation function vanishes in point-nucleon limit d 3 Rd 3 R R R 3 N 0 ˆρ (R)ˆρ(R ) N 0 r 3 (2) ] Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 52 / 47

102 Non-Relativistic Approximation Coulomb interactions in the (virtual) intermediate state are neglected Results are expressed in an expansion of 2m r ω R R E NR = E (2) NR + E(3) NR + E(4) NR 2. R 3 term: E (3) NR = m4 r 24 (Zα)5 [ 1st term: charge correlation function vanishes in point-nucleon limit d 3 Rd 3 R R R 3 N 0 ˆρ (R)ˆρ(R ) N 0 r 3 (2) ] 2nd term: Zemach moment r 3 (2) = d 3 Rd 3 R R R 3 ρ 0 (R) ρ 0 (R ) ρ 0 (R) = N 0 ˆρ(R) N 0 cancels exactly the Zemach term in (elastic) finite-size corrections c.f. Pachucki PRL 2011 (µd) Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 52 / 47

103 3. R 4 term: E (4) NR corresponds to higher-multipole corrections Non-Relativistic Approximation [ E (4) NR = m5 r ω 18 (Zα)5 dω S Q 0 (ω) + 16π ω th 2m r 25 SQ 2 (ω) + 16π ] 5 SD 13 (ω) S R2 (ω) = 1 2J 0 +1 S Q 2 (ω) = 1 2J 0 +1 S D 13 (ω) = 1 2J 0 +1 N N 0,J N 0J 0 ˆR 2 NJ 2 δ(ω E N + E N0 ) N 0J 0 ˆQ 2 NJ 2 δ(ω E N + E N0 ) N N 0,J ( 1) J 0 J N N 0,J ( Re N 0J 0 ˆD 3 NJ NJ ˆD ) 1 N 0J 0 δ(ω E N + E N0 ) ˆR 2 = 1 Z ˆQ 2 = 1 Z Z i R 2 i Z Ri 2 Y 2( ˆR i) i ˆD 1 = 1 Z ˆD3 = 1 Z Z R iy 1( ˆR i) i Z R 3 Y 1( ˆR i) i Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 53 / 47

104 Convergence of Ab-initio calculations Convergence of ω -3.6 δ (0) [mev] AV18 / UIX Γ = 10 MeV AV18 / UIX Γ = 20 MeV EFT 2N / 3N Γ = 10 MeV EFT 2N / 3N Γ = 20 MeV ω [MeV] Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 54 / 47

105 Convergence of Ab-initio calculations δ (0) δ (0) convergence with the largest model space K max AV18 + UIX 2N(N 3 LO) + 3N(N 2 LO) K max Nir Nevo Dinur (TRIUMF) Nuclear structure and the proton radius puzzle 55 / 47

Understanding the proton radius puzzle: Nuclear structure corrections in light muonic atoms

Understanding the proton radius puzzle: Nuclear structure corrections in light muonic atoms Canada s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules Understanding the proton radius puzzle:

More information

Proton charge radius puzzle

Proton charge radius puzzle Proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw KMMF, January 24, 2013 Proton charge radius puzzle global fit to H and D spectrum: r p = 0.8758(77)

More information

Lamb shift in muonic hydrogen and the proton charge radius puzzle

Lamb shift in muonic hydrogen and the proton charge radius puzzle Lamb shift in muonic hydrogen and the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw Mainz, April 17, 2013 Proton charge radius puzzle global fit

More information

Proton radius puzzle

Proton radius puzzle Proton radius puzzle Krzysztof Pachucki Universiy of Warsaw Frascati, December 21, 2016 Measurements of atomic spectra Measurement of transition frequencies can be very accurate [Garching, 2013] ν(1s 2S)

More information

Directions toward the resolution of the proton charge radius puzzle

Directions toward the resolution of the proton charge radius puzzle Directions toward the resolution of the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw ECT workshop on the proton radius puzzle, November 1, 2012

More information

arxiv: v1 [nucl-th] 17 Dec 2015

arxiv: v1 [nucl-th] 17 Dec 2015 Nuclear structure corrections to the Lamb shift in µ 3 He + and µ 3 H arxiv:1512.05773v1 [nucl-th] 17 Dec 2015 N. Nevo Dinur, 1, C. Ji, 2, 3, 4, S. Bacca, 2, 5, and N. Barnea 1, 1 Racah Institute of Physics,

More information

Recent developments in the Lorentz. Transform (LIT)) method

Recent developments in the Lorentz. Transform (LIT)) method Recent developments in the Lorentz Integral Transform (LIT)) method 10 th anniversary Response Functions from Integral Transforms with a Lorentz Kernel V. D. Efros, W. Leidemann and G. Orlandini, Phys.

More information

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Towards first-principle description of electromagnetic reactions in medium-mass nuclei Canada s National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules Towards first-principle description of

More information

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini Electromagnetic reactions from few to many-body systems Giuseppina Orlandini ECT* Workshop on Recent advances and challenges in the description of nuclear reactions at the limit of stability, March 5-9,

More information

QED, Lamb shift, `proton charge radius puzzle' etc.

QED, Lamb shift, `proton charge radius puzzle' etc. QED, Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik (Garching) Outline Different methods to determine

More information

Photo Reactions in Few-Body Systems - From Nuclei to Cold-Atoms

Photo Reactions in Few-Body Systems - From Nuclei to Cold-Atoms Photo Reactions in Few-Body Systems - From Nuclei to Cold-Atoms Nir Barnea The Racah institute for Physics The Hebrew University, Jerusalem, Israel TRIUMF 14 September 2012 Collaboration Jerusalem, Israel

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

The PRad Experiment Physics Overview

The PRad Experiment Physics Overview The PRad Experiment Physics Overview The PRad Experiment Readiness Review November 12, 2015 Haiyan Gao Duke University and Duke Kunshan University 1 Proton Charge Radius An important property of the nucleon

More information

Electromagentic Reactions and Structure of Light Nuclei

Electromagentic Reactions and Structure of Light Nuclei Electromagentic Reactions and Structure of Light Nuclei Sonia Bacca CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2 The proton radius puzzle Proton Hadron Charge: +1 Composition: 2 up quarks 1 down quark Spin: 1/2 1 How to measure the (rms) radius of the proton https://muhy.web.psi.ch/wiki/index.php/main/news Method

More information

A path to lepton-nucleus reactions from first principles

A path to lepton-nucleus reactions from first principles Canada s National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules A path to lepton-nucleus reactions from

More information

News from the Proton Radius Puzzle muonic deuterium

News from the Proton Radius Puzzle muonic deuterium News from the Proton Radius Puzzle muonic deuterium Muonic news Muonic hydrogen and deuterium Randolf Pohl Randolf Pohl Max-Planck-Institut für Quantenoptik Garching, Germany 1 Outline The problem: Proton

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

A natural solution of the proton charge radius puzzle.

A natural solution of the proton charge radius puzzle. A natural solution of the proton charge radius puzzle. Thomas Walcher Institute for Nuclear Physics Johannes-Gutenberg University Mainz INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 37th Course Probing Hadron

More information

Muonic news. Laser spectroscopy of light muonic atoms. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration. The proton radius puzzle

Muonic news. Laser spectroscopy of light muonic atoms. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration. The proton radius puzzle Laser spectroscopy of light muonic atoms Muonic news Muonic hydrogen and deuterium Randolf Pohl The proton radius puzzle Randolf Pohl MPQ, Garching for the CREMA collaboration 1 Not-so-high precision spectroscopy

More information

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО( РАН) ) (St. Petersburg) & Max-Planck Planck-Institut für Quantenoptik (Garching)

More information

New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II)

New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II) New Physics Hypotheses on Muonic Hydrogen and the Proton Radius Puzzle (Part II) Ulrich D. Jentschura Missouri University of Science and Technology Rolla, Missouri, USA Bled Workshop on What Comes Beyond

More information

Inclusive Electron Scattering off 4 He

Inclusive Electron Scattering off 4 He Gesellschaft für Schwerionenforschung, Darmstadt Theory Division Inclusive Electron Scattering off He S. Bacca in coloration with: H. Arenhövel Johannes-Gutenberg Universität, Mainz N. Barnea The Racah

More information

The Proton Radius Puzzle. Carl Carlson William and Mary QCD for New Physics at the Precision Frontier 30 September 2015

The Proton Radius Puzzle. Carl Carlson William and Mary QCD for New Physics at the Precision Frontier 30 September 2015 The Proton Radius Puzzle Carl Carlson William and Mary QCD for New Physics at the Precision Frontier 30 September 2015 The puzzle Measure charge radius of the proton different ways, get different answers

More information

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

The Proton Polarizability Contribution: Lamb Shift and Elastic Scattering

The Proton Polarizability Contribution: Lamb Shift and Elastic Scattering The Proton Polarizability Contribution: Lamb Shift and Elastic Scattering Gerald A. Miller, University of Washington It is Thursday 11 am, so and you all know what the proton radius puzzle is The Lamb

More information

The Lorentz Integral Transform (LIT) method and its connections with other approaches

The Lorentz Integral Transform (LIT) method and its connections with other approaches The Lorentz Integral Transform (LIT) method and its connections with other approaches First proposed in V. D. Efros, W. Leidemann and G. Orlandini, Phys. Lett. B338, 130 (1994) Recent Topical Review: V.

More information

Two topics: Proton Radius Puzzle, and Twisted Photons

Two topics: Proton Radius Puzzle, and Twisted Photons Two topics: Proton Radius Puzzle, and Twisted Photons Carl E. Carlson William and Mary JGU, Mainz (Visitor) SFB 1044 School Boppard, 28 August 01 September 2017 CEC (W&M/JGU) Proton Radius Puzzle SFB-Boppard

More information

Research Activity at the Physics Department of the University of Trento

Research Activity at the Physics Department of the University of Trento Research Activity at the Physics Department of the University of Trento G. Orlandini ECT, March 16, 2007 The Research activity at the Physics Department is organized into 9 Experimental Laboratories (33)

More information

arxiv: v1 [nucl-th] 25 Sep 2009

arxiv: v1 [nucl-th] 25 Sep 2009 Search for three-nucleon force effects on the longitudinal response function of He Sonia Bacca a, Nir Barnea b, Winfried Leidemann c and Giuseppina Orlandini c a TRIUMF, Wesbrook Mall, Vancouver, B.C.

More information

Hyperfine splitting in µp and µ 3 He +

Hyperfine splitting in µp and µ 3 He + ==================================== Hyperfine splitting in µp and µ 3 He + µ CREMA collaboration A. Antognini PSAS 2016, Jerusalem 25.05.2016 p. 1 Hyperfine splitting in µp and µ 3 He + CREMA collaboration

More information

arxiv: v2 [physics.atom-ph] 24 Mar 2012

arxiv: v2 [physics.atom-ph] 24 Mar 2012 UK/1-01 Weak Interaction Contributions in Light Muonic Atoms Michael I. Eides Department of Physics and Astronomy, arxiv:101.979v [physics.atom-ph] 4 Mar 01 University of Kentucky, Lexington, KY 40506,

More information

Electron-proton scattering puzzle

Electron-proton scattering puzzle See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3165496 Electron-proton scattering puzzle Presentation December 017 CITATIONS 0 READS 4 1 author:

More information

Current status and challenges of ab-initio computations of nuclei

Current status and challenges of ab-initio computations of nuclei Current status and challenges of ab-initio computations of nuclei Gaute Hagen Oak Ridge National Laboratory INT workshop on Nuclear Physics from Lattice QCD INT, May 5th, 2016 Computing real nuclei from

More information

Chiral effective field theory for hadron and nuclear physics

Chiral effective field theory for hadron and nuclear physics Chiral effective field theory for hadron and nuclear physics Jose Manuel Alarcón Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn Biographical presentation Biographical presentation Born

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

Muonic news. Shrinking the Proton. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration

Muonic news. Shrinking the Proton. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration Shrinking the Proton Randolf Pohl JGU, Mainz MPQ, Garching Exotic and not-so-exotic atoms for nuclear physics and fundamental constants Muonic news Muonic hydrogen and deuterium Randolf Pohl for the CREMA

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Scattering from nuclei For low energies and under conditions where the electron does not penetrate the nucleus, the electron scattering

More information

Higher-order recoil corrections in Helium and Helium-like ions

Higher-order recoil corrections in Helium and Helium-like ions Higher-order recoil corrections in Helium and Helium-like ions Vojtěch Patkóš Department of Chemical Physics and Optics Charles University in Prague 19th May 2017 Motivation Motivation Hydrogenic systems

More information

The Proton. Gerald A. Miller University of Washington

The Proton. Gerald A. Miller University of Washington The Proton Gerald A. Miller University of Washington The Proton Gerald A. Miller University of Washington Everything that rises, Martin Puryear The Proton Gerald A. Miller University of Washington Everything

More information

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Outline Introduction Compton scattering (A=2) Δ degrees of freedom in 3He(e,e') (A=3) Role of 0+ resonance in 4He(e,e')

More information

Electron Sca ering off 4 He

Electron Sca ering off 4 He Electron Sca ering o He Sonia Bacca CAADA'S ATIOAL LABORATORY FOR PARTICLE AD UCLEAR PHYSICS Owned and operated as a joint venture by a consortium o Canadian universities via a contribution through the

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

The New Proton Charge Radius Experiment at JLab

The New Proton Charge Radius Experiment at JLab The New Proton Charge Radius Experiment at JLab Dipangkar Dutta Mississippi State University (for the PRad Collaboration) INPC 2016 Sept 12, 2016 Adelaide, Australia Outline 1. The Proton Charge Radius

More information

Update on CREMA s work towards the Proton Radius Puzzle

Update on CREMA s work towards the Proton Radius Puzzle Update on CREMA s work towards the Proton Radius Puzzle Beatrice Franke, TRIUMF Research Scientist (former MPQ postdoc) INT Seattle 2018, Fundamental Physics with Electroweak Probes of Light Nuclei Thanks

More information

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei Daniel Gazda Nuclear Physics Institute Prague, Czech Republic Together with: A. Gal (HU Jerusalem) Outline Introduction Charge symmetry

More information

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky Few-Body Systems 0, 11 16 (2003) Few- Body Systems c by Springer-Verlag 2003 Printed in Austria Selected Topics in Correlated Hyperspherical Harmonics A. Kievsky INFN and Physics Department, Universita

More information

Coupled-cluster computations of weak decays in nuclei

Coupled-cluster computations of weak decays in nuclei Coupled-cluster computations of weak decays in nuclei Gaute Hagen Oak Ridge National Laboratory Nuclear ab initio Theories and Neutrino Physics INT, March 6th, 2018 Trend in realistic ab-initio calculations

More information

Coupled-cluster computations of neutron-rich nuclei

Coupled-cluster computations of neutron-rich nuclei Coupled-cluster computations of neutron-rich nuclei Gaute Hagen Oak Ridge National Laboratory ECT*, Trento, April 10th, 2017 @ ORNL / UTK: G. R. Jansen, T. Morris, T. Papenbrock, M. Schuster, Z. H. Sun

More information

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010 Electroweak properties of Weakly- Bound Light Nuclei Weakly-Bound Systems in Atomic and Nuclear Physics March 2010 INSTITUTE FOR NUCLEAR THEORY Collaborators Sonia Bacca Winfried Leidemann, Giuseppina

More information

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier

More information

Muon capture on A = 2 and 3 nuclei

Muon capture on A = 2 and 3 nuclei Available online at www.sciencedirect.com Physics Procedia 17 (2011) 145 152 Physics of Fundamental Symmetries and Interactions - PSI2010 Muon capture on A = 2 and 3 nuclei L.E. Marcucci Department of

More information

The Proton Radius: Are We Still Puzzled? E. J. Downie

The Proton Radius: Are We Still Puzzled? E. J. Downie The Proton Radius: Are We Still Puzzled? E. J. Downie on behalf of the MUSE Collaboration Award DE-SC0012485 Awards PHY-1309130,1314148,1614850 Outline Why are we puzzled: What is a radius? How do we measure

More information

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna) MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS Carlotta Giusti Università and INFN, Pavia Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna) Nuclear ab initio Theories and Neutrino Physics: INT Seattle

More information

Proton charge radius. Michael O. Distler for the A1 MAMI

Proton charge radius. Michael O. Distler for the A1 MAMI "2011 JLab Users Group Meeting" - June 6-8, 2011 - Jefferson Lab, Newport News, VA Proton charge radius Michael O. Distler for the A1 collaboration @ MAMI Institut für Kernphysik Johannes Gutenberg-Universität

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

arxiv: v2 [nucl-th] 1 Jul 2008

arxiv: v2 [nucl-th] 1 Jul 2008 Muon Capture on 3 He and the Weak Structure of the Nucleon arxiv:0803.0036v2 [nucl-th] 1 Jul 2008 Doron Gazit Institute for Nuclear Theory, University of Washington, Box 351550, 98195 Seattle, Washington,

More information

Muonic news. Shrinking the Proton. Randolf Pohl JGU, Mainz MPQ, Garching. Muonic hydrogen and deuterium. CREMA collaboration

Muonic news. Shrinking the Proton. Randolf Pohl JGU, Mainz MPQ, Garching. Muonic hydrogen and deuterium. CREMA collaboration Shrinking the Proton Laser spectroscopy for nuclear physics and fundamental constants Muonic news Muonic hydrogen and deuterium Randolf Pohl Randolf Pohl JGU, Mainz MPQ, Garching for the CREMA collaboration

More information

The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute

The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute 1. Motivation for a muon scattering experiment 2. Components of the MUSE experiment 3. Projected results Steffen Strauch for

More information

Electromagnetic Response of Light Nuclei with Integral Transforms

Electromagnetic Response of Light Nuclei with Integral Transforms Electromagnetic Response of Light Nuclei with Integral Transforms LIT method Low-energy continuum observables with LIT Resonances S-Factor in presence of Coulomb potential Electron scattering at q 500

More information

Light Nuclei from chiral EFT interactions

Light Nuclei from chiral EFT interactions Light Nuclei from chiral EFT interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: V. G. Gueorguiev (UCM), J. P. Vary (ISU), W. E. Ormand (LLNL), A. Nogga (Julich), S. Quaglioni

More information

THEORY OF THE LAMB SHIFT IN MUONIC HYDROGEN

THEORY OF THE LAMB SHIFT IN MUONIC HYDROGEN THEORY OF THE LAMB SHIFT IN MUONIC HYDROGEN Savely Karshenboim Max-Planck-Institut für Quantenoptik (Garching) & Pulkovo Observatory (ГГГ ГГГ) (St. Petersburg) OUTLINE Level structure QED Unperturbed Leading

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

E : Ratio of the electric form factor in the mirror nuclei 3 He and 3 H (The 3 He 3 H Charge Radius Difference)

E : Ratio of the electric form factor in the mirror nuclei 3 He and 3 H (The 3 He 3 H Charge Radius Difference) E12 14 009: Ratio of the electric form factor in the mirror nuclei 3 He and 3 H (The 3 He 3 H Charge Radius Difference) Luke Myers Hall A Winter Meeting December 9, 2014 Measuring r 2 Absolute methods

More information

Experiments towards resolving the proton charge radius puzzle

Experiments towards resolving the proton charge radius puzzle EPJ Web of Conferences 113, 01006 (016) DOI: 10.1051/ epjconf/ 016113 01006 C Owned by the authors, published by EDP Sciences, 016 Experiments towards resolving the proton charge radius puzzle A. Antognini

More information

Local chiral NN potentials and the structure of light nuclei

Local chiral NN potentials and the structure of light nuclei Local chiral NN potentials and the structure of light nuclei Maria Piarulli @ELBA XIV WORKSHOP June 7-July 1 16, Marciana Marina, Isola d Elba PHYSICAL REVIEW C 91, 43(15) Minimally nonlocal nucleon-nucleon

More information

Weak reactions with light nuclei

Weak reactions with light nuclei Weak reactions with light nuclei Nir Barnea, Sergey Vaintraub The Hebrew University Doron Gazit INT, University of Washington Eilat, November 9-14, 2008 Nir Barnea (HUJI) Weak reactions with light nuclei

More information

NEW VALUE OF PROTON CHARGE rms RADIUS

NEW VALUE OF PROTON CHARGE rms RADIUS NEW VALUE OF PROTON CHARGE rms RADIUS Institute of Physics SAS, Bratislava and Dept. of Theoretical Physics, Comenius University, Bratislava, Slovakia September 22, 2011 Erice School 2001: From Quarks

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich/Bonn)

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

MUSEing on the Proton Radius Puzzle. W.J. Briscoe and E.J. Downie

MUSEing on the Proton Radius Puzzle. W.J. Briscoe and E.J. Downie Award DE-SC0012485 MUSEing on the Proton Radius Puzzle W.J. Briscoe and E.J. Downie on behalf of the MUSE Collaboration Awards PHY-1309130,1314148,1614850,1714833 2 Outline u Why are we puzzled: è What

More information

arxiv: v2 [physics.atom-ph] 30 May 2013

arxiv: v2 [physics.atom-ph] 30 May 2013 Proton Radius Puzzle 1 Muonic hydrogen and the proton radius arxiv:1301.0905v2 [physics.atom-ph] 30 May 2013 puzzle Randolf Pohl Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany Ronald Gilman

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

Muonic news. Shrinking the Proton. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration

Muonic news. Shrinking the Proton. Randolf Pohl. Muonic hydrogen and deuterium. CREMA collaboration Shrinking the Proton Randolf Pohl JGU, Mainz MPQ, Garching Exotic and not-so-exotic atoms for nuclear physics and fundamental constants Muonic news Muonic hydrogen and deuterium Randolf Pohl for the CREMA

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

Nuclear physics around the unitarity limit

Nuclear physics around the unitarity limit Nuclear physics around the unitarity limit Sebastian König Nuclear Theory Workshop TRIUMF, Vancouver, BC February 28, 2017 SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:1607.04623 [nucl-th] SK,

More information

arxiv: v1 [nucl-th] 1 Dec 2016

arxiv: v1 [nucl-th] 1 Dec 2016 Integral transform methods: a critical review of various kernels Giuseppina Orlandini 1,, Francesco Turro 1 1 Dipartimento di Fisica, Università di Trento, I-3813 Trento, Italy Istituto Nazionale di Fisica

More information

The latest on proton charge radius

The latest on proton charge radius The latest on proton charge radius Nuclear Physics Seminar University of Virginia, Nov 8, 2011 Haiyan Gao Duke University and TUNL Outline Introduction Proton EM form factors and charge radius Proton charge

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

arxiv: v1 [hep-ph] 14 Sep 2016

arxiv: v1 [hep-ph] 14 Sep 2016 Extraction of the proton charge radius from experiments N. G. Kelkar 1, T. Mart 2 and M. Nowakowski 1 1 Departamento de Física, Universidad de los Andes, Cra.1E No.18A-10, Santafe de Bogotá, Colombia 2

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Lepton universality test in the photoproduction of e - e + versus " - " + pairs on a proton target

Lepton universality test in the photoproduction of e - e + versus  -  + pairs on a proton target 2011-2014 PhD in theoretical physics under supervision of Prof. Dr. Marc Vanderhaeghen at Johannes Gutenberg University Mainz. Thesis title Light-by-light scattering and the muon s anomalous magnetic moment

More information

Proton charge radius extracted from unpolarized electron scattering

Proton charge radius extracted from unpolarized electron scattering Proton charge radius extracted from unpolarized electron scattering John Arrington Argonne National Laboratory Fundamental Constants 2015, Eltville, Germany, 2 Feb Graphic by Joshua Rubin, ANL Outline

More information

Proton Size Puzzle: Fat or Thin?

Proton Size Puzzle: Fat or Thin? Proton Size Puzzle: Fat or Thin? A.E. Dorokhov (JINR, Dubna) Fat and Thin famous Anton Chekhov novel R.N. Faustov (Institute of Informatics in Education, FRC CSC RAS, Moscow) N.I. Kochelev (JINR, Dubna;

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

The nucleon-nucleon system in chiral effective theory

The nucleon-nucleon system in chiral effective theory The nucleon-nucleon system in chiral effective theory Daniel Phillips Ohio University Research supported by the US Department of Energy Plan χet for nuclear forces: the proposal Leading order for S waves

More information

Theoretical studies of muon capture on light nuclei

Theoretical studies of muon capture on light nuclei Theoretical studies of muon capture on light nuclei Dipartimento di Fisica E. Fermi, Università di Pisa INFN, Sezione di Pisa I-56127 Pisa, Italy E-mail: laura.marcucci@df.unipi.it We review the present

More information

Application of few-nucleon physics in astrophysics

Application of few-nucleon physics in astrophysics Journal of Physics: Conference Series PAPER OPEN ACCESS Application of few-nucleon physics in astrophysics To cite this article: Michele Viviani and Laura Elisa Marcucci 2016 J. Phys.: Conf. Ser. 703 012013

More information

Fine and hyperfine structure of helium atom

Fine and hyperfine structure of helium atom Fine and hyperfine structure of helium atom Vladimir A. Yerokhin St. Petersburg State Polytechnical University in collaboration with Krzysztof Pachucki Warsaw University Fundamental Constants Meeting,

More information

New JLab (PRad) Experiment on Proton Charge Radius

New JLab (PRad) Experiment on Proton Charge Radius New JLab (PRad) Experiment on Proton Charge Radius 10 th International Workshop on e + e - Collisions from Phi to Psi USTC, September 23-26, 2015 Haiyan Gao Duke University and Duke Kunshan University

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Latest on the Proton Charge Radius from the PRad Experiment. Haiyan Gao Duke University and Duke Kunshan University

Latest on the Proton Charge Radius from the PRad Experiment. Haiyan Gao Duke University and Duke Kunshan University Latest on the Proton Charge Radius from the PRad Experiment Haiyan Gao Duke University and Duke Kunshan University 1 Lepton scattering: powerful microscope! Clean probe of hadron structure Electron (lepton)

More information

Many-Body Theory of the Electroweak Nuclear Response

Many-Body Theory of the Electroweak Nuclear Response Many-Body Theory of the Electroweak Nuclear Response Omar Benhar INFN and Department of Physics Università La Sapienza, I-00185 Roma Collaborators N. Farina, D. Meloni, H. Nakamura, M. Sakuda, R. Seki

More information

The size of the proton

The size of the proton The size of the proton from the Lamb shift in muonic hydrogen Randolf Pohl The size of the proton from the Lamb shift in muonic hydrogen for the CREMA collaboration Randolf Pohl Max-Planck-Institut für

More information