Solving Fuzzy Linear Volterra Intergro- Differential Equation Using Fuzzy Sumudu Transform

Size: px
Start display at page:

Download "Solving Fuzzy Linear Volterra Intergro- Differential Equation Using Fuzzy Sumudu Transform"

Transcription

1 Vlme 9 N. 5 8, ISSN: (n-line versin) rl: p:// Slving Fzzy Liner Vlerr Inergr- Differenil Eqin Using Fzzy Smd Trnsfrm p:// Rjkmr.A Assisn Prfessr (SG), Dep. f Memics Hindsn Insie f Tecnlgy nd Science Cenni, Indi Jesrj.C, Mmmed Spiqe.A 3,3 Asscie Prfessr, Dep. f Memics I.F.E.T Cllege f Engineering, Gngrmplym, Tmilnd, Indi Absrc Tis pper prpses med fr slving vris ypes f fzzy liner Vlerr Inegr- Differenil eqin cnsidering e iniil cndiin s generlized ringlr fzzy nmber. Te prpsed med is bsed n e Fzzy Smd rnsfrm (FST).Sme resls bsed n e prperies f FST re ls prpsed. Nmericl exmples nd grps re presened fr ec ype illsre e vlidiy f e prpsed med. Keywrds Fzzy liner Inegr differenil eqin; Generlized ringlr fzzy nmber;fzzy differenil eqin,;nd fzzy Smd rnsfrm.. INTRODUCTION Te Fzzy Differenil eqins nd e fzzy inegrl eqins ply vil rle in mdeling e engineering nd bilgicl prblems. Wile slving prblems reled differenil eqin mdels ne nrmlly cnsider e iniil cndiins given in e mdel re well-defined, b in prcice de eqivcl r pril infrmin b e vribles invlved in e prblems we need pply fzzy cnceps differenil nd inegrl eqins rrive e slins. Te cncep f fzzy in inegrin ws firs inrdced by Dbis nd Prde[-3]nd ey mesred cerin ype f fzzy-vled fncin nd defined e inegrl fncin sing e exensin principle.fzzy inegrl eqins f e secnd kind sdied by Jn mrdesn nd Willim Newmn [4] nd is nmericl wy f bining e slin ws discssed by Bblin, Sdegi, Abbsbndy[5].Te exisence erems fr cerin Vlerr inegrl eqins nd Fredlm inegrl eqin fr e fzzy se vled mppings discssed by Jng Yel Prk nd Je Jeng [6]. Exisence f slins f fzzy inegrl eqins in Bnc spces sdied by Jng Yel Prk, Yng Cel Kwn nd Je Ug Jeng[7].Te exisence nd niqeness f slins f fzzy inegrl eqin ws discssed by vris rs [8-]. Inegrl Trnsfrm meds sc s Frier rnsfrm nd Lplce rnsfrm plys n essenil l in perinl clcls slve vris prblems in e disciplines f engineering nd pysics [-3]. As we knw e Frier Trnsfrm cnges se f ime dmin d vecrs in se f freqency dmin vecrs nd e Lplce rnsfrm wic rnsfrms e differenil eqin in n lgebric expressin. Tese re f clssicl ype f inegrl rnsfrm. In recen imes, e ide f rnsfrm n differenil eqin ws expnded sc s Mellin rnsfrm, Hnkel rnsfrm, Differenil rnsfrm meds, Smd rnsfrm nd N- rnsfrm [4-6]. Wgl [7-8] s fmilirized e cncepin f Smd rnsfrm wic is lrgely pplied in differenil eqins nd in prblems priclrly reled Cnrl Engineering.Te cncep f Smd rnsfrm ws frer exended pril differenil eqin by Weerkn. Belgcem e l. Weerkn [9-] presened pplicins cnvlin ype inegrl eqins. Cnvlin erem in Smd rnsfrm discssed by Asir[],Belgcem nd Krblli,Kll pplied Smd rnsfrm inegrl prdcin eqins [- 4].Applicin f fzzy Smd rnsfrm n fzzy frcinl differenil eqin sdied by Abdl Rmn nd Zini Amd [5].In generl Smd rnsfrm is cnsidered s pwerfl rnsfrm fr slving differenil eqins becse f e niqe prpery nd erefre is ese e prcess f finding e slin. Te rrngemen f is pper is s fllws, e firs secin dels wi e inrdcin cnceps reled fzzy liner Inegr- Differenil eqin nd fzzy Smd rnsfrm. In e secnd nd ird secin dels wi e bsic definiins reled fzzy nmbers, fzzy differenils, nd fzzy Smd rnsfrm, e fr nd fif secin deils e slin prcedre nd slved fzzy liner inegr differenil eqin bsed n fzzy Smd rnsfrm. PRELIMINARIES Fzzy ses definiins In is secin e bsic definiins f fzzy ses nd fzzy nmbers re reviewed frm [6]. Definiin Fzzy se. A fzzy se is crcerized by membersip fncin mpping f dmin spce (i.e) mpping beween niverse f discrse U e ni inervl [,]given by 373

2 , ( ) / A Here A : U, A x x x U is clled e degree f membersip fncin f e fzzy se A.. Definiin Nrml fzzy se A fzzy se A f e niverse f discrse U is clled nrml fzzy se if ere exis - les ne xu sc ( x ) = A.3 Definiin Heig f fzzy se Te lrges membersip grde bined by ny elemen in e fzzy se nd i is given by ( A) spp ( x).4 Definiin Cnvex fzzy se A fzzy se A is sid be cnvex if nd nly if fr ny x, x U, e membersip fncin f A sisfies e cndiin x x x x ( ) min ( ), ( ), [,] A A A.5 Definiin Exensin principle. Le X Xx X x... x X n be Cresin prdc f e niverse X nd A, A... An be e n fzzy nmbers. Le f : X Y be mpping en e exensin principle is defined by e fzzy se B iny by A B y, ( y) / y f(x, x... xn), (x, x... xn) X B x x, erwise i is wek slin. On sc cses sp min ( x), ( x)... ( xn ), f ( y) A A A n ( y) x, x... xn f ( y) B x( ) min x, x,mx x, x erwise. Definiin : Fzzy derivive [3] Fr n=, e bve exensin principle redced B y, ( y) / y f(x),x) X ( y) B B sp ( ), x f ( y ) A x f ( y), erwise.6 Definiin Tringlr Fzzy Nmber [7] Le AF(R), A (,, 3 ) is clled ringlr fzzy nmber if is membersip fncin is given by x, x ( ) 3 x ( x), A x 3 ( 3 ), x, 3 x.7 Definiin Generlized ringlr fzzy nmber [8] Le AF(R), A (,, 3; ) is clled Generlized ringlr fzzy nmber if is membersip fncin is given by x, x ( ) 3 x ( x), A x 3 ( 3 ), x, 3 x.8 Definiin Fzzy rdinry differenil eqin [9] Cnsider n rdinry differenil eqin wse iniil cndiin is described in fzzy nmbers dy f (, y), T d y( ) y(), y() (,b,c; ),, Ten we sy e given differenil eqin is fzzy differenil eqin..9 Definiin Srng nd wek slin f fzzy differenil eqin [3] Cnsider firs rder nn mgenes liner fzzy rdinry differenil eqin x ()=f(,x()), x( )=x wi x s GTFN. Le () x( ) x, x be e slin nd α- cs x nd f e bve differenil eqin respecively. We sy e slin x () is srng slin if i sisfies e cndiin Le f : (, b) E nd x (, b). we sy f is srngly generlized differenil x (Bede-Gl differenil) if ere exiss n elemen f ( x ) E, sc (i) Sfficienly smll, f ( x ) f ( x ), f ( x ) f ( x ) nd e limis is given by f ( x ) f ( x ) f ( x ) f ( x ) lim lim f( x ) (r) (ii) Sfficienly smll, f ( x ) f ( x ), f ( x ) f ( x ) nd e limis is given by f ( x ) ( ) ( ) ( ) lim f x f x f x lim f( x ) (r) (iii) Sfficienly smll, f ( x ) f ( x ), f ( x ) f ( x ) nd e limis is given by f ( x ) ( ) ( ) ( ) lim f x f x f x lim f( x ) (r) 374

3 (iv) Sfficienly smll, f ( x ) f ( x ), f ( x ) f ( x ) nd e limis is given by f ( x ) ( ) ( ) ( ) lim f x f x f x lim f( x ). Definiin [3] Le f : (, b) E fr, en be fncin nd le f f, f ()If f is (i) differenible, en f& f re differenible fncin nd f f, f ()If f is (ii) differenible, en f & f re differenible fncin nd f f, f.3 Terem: [33] Le f:r F(R)nd f f, f.fr ny fixed,, ssme fnd f re Riemnn- Inergrble n [,b] bnd le s ssme b b f d C nd f d C were C nd C re ny w psiive qniy.en,f() is imprper fzzy Riemnn- Inergrble n [, ) nd e imprper fzzy Riemnn inergrble is fzzy nmber.ts f () d f() d, f() d Prpsiin f ( x) nd f ( x ) is fzzy-vled fncin nd fzzy If Riemnn-inergrble n [, ),en f( x) f( x) is ls fzzy Riemnn-inergrble n [, ). f f d f d f d I I I 3. FUZZY SUMUDU TRANSFORM. 3. Definiin: f: R F(R) be cnins fzzy vled fncin. Sppse f ( ) e is n imprper fzzy Riemnn-inegrble n [, ), en f ( ) e d e fzzy Smd rnsfrm nd i is dened by F( ) S f f ( ) e d,, Ts f ( ). e d, f( ). e d is clled S f s f, s f IV.FUNDAMENTAL THEOREMS AND PROPERTIES OF FST 3. Terem. [34] If f: R F(R) be cnins fzzy vled fncin nd if F( ) S f en F( ) f () if f is(i) differenible,> S f () f () F( ) if f is(ii) differenible,> Prf: cse (i) le s ssme f is (i) Differenible, en F( ) () s f f () s f f () f, s f, s f F( ) f () Hence S f () Cse (ii) Assme f is (ii) Differenible, en f () ( ) f () s f f () s f F, ( ), ( ) s f s f f () F( ) Hence S f () 3.3 Terem. [34] If f: R F(R) be cnins fzzy vled fncin nd if F( ) S f en x S e f F, nd Prf: by definiin. ( ) ( ) S e f f( )e e d, f( )e e d ( ) ( ) ( )e f d, f( )e d v v v v e, e f dv f dv bysbsiin were v = v f e v dv x Hence S e f () F x Similrly we cn prve S e f () F 375

4 3.4 Terem If f: R F(R) be cnins fzzy vled fncin nd if F( ) S f en S f d F( ) Prf: Assme e fncin g is (i) Differenible, en Le g f d, g ( ), g ( ), g f G( ) g() Sg s( g) g () s( g) g (), s( g ) s( g ), s f d, s f d S f d F( ) Hence we rrive 3.5 Terem If f: R F(R) be cnins fzzy vled fncin nd if F( ) S f en v S f ( ) d F( ) d v Prf: By definiin f FST, F( ) S f f ( ) e d en by cse (i) definiin. 4. SOLUTION PROCEDURE Cnsider e fllwing fzzy liner Vlerr inegrdifferenil eqin ( ) ( ) F f e d, f( ) e d v v v F( ) d f( ) e d d, f( ) e d d y x v v v k(, ). y( ) d,, b v v y( ) ( y (), y ()), e f( ) dv d, e f( ) dv d ; w v v Were k (, ) is n rbirry rel vled kernel fncin ver (, ) / [,b],, f (w) dw e d, f(w) dw e d v v v v v v S f () d f (w) dwe d v Hence S f ( ) d F( ) d v 3.6 Terem If f: R F(R) be cnins fzzy vled fncin nd if F( ) S f en / S f ( ) H( ) e F( ), H( )is evisidefncin Prf: By definiin. f ( ) H() e d, S f ( ) H( ) ( ) H() f e d T / T / f(t )H(T ) e dt, f(t )H(T ) e dt T/ T/ f(t ) H(T ) e dt f(t ) H(T ) e dt T / T /, f(t ) H(T ) e dt f(t ) H(T ) e dt By Heviside fncin [ (T ) T /, (T ) T / f e dt f e dt ] T T [ f(t ) e dt, f(t) e dt ] / T e f (T) e dt / S f ( )H( ) e F( ) Sppse e bve iniil cndiin nd x () re mdeled wi generlized ringlr fzzy nmber nd generlized ringlr fzzy fncin respecively en e fzzy vlerr inegrl differenil eqin cn be expressed in fr differen ypes. Type : Cnsidering e iniil cndiin s generlized ringlr fzzy nmber 376

5 y k y( ) d, T y( ) ( y(), y()), Type : Cnsidering cnsn k s generlized ringlr fzzy nmber y k y( ) d, T k k, k, Type 3: Cnsidering b cnsn nd iniil cndiin s generlized ringlr fzzy nmber y k y( ) d, T k k, k nd y( ) y (), y (), Type 4: Cnsidering x () s fzzy fncin nd iniil cndiin s generlized ringlr fzzy nmber y x y( ) d y( ) ( y(), y()), Applying FST n b sides f e bve eqins, we bin S y S x k(, ). y( ) d Tw cses re discssed, cse () if e derivive is (i) differenible en by definiin. dy y, y d Were ( ) ( ) ( ) s y y s y y ( ), ( ) ( ) s y s y Te Smd rnsfrm f vlerr -Inegr-differenil eqin x k(, ). y( ) d cn be bined by sing e FST sing erem 7. Le s ssme e slin fer king FST be L R s y G ( ) nd s y G ( ) By sing inverse FST we cn bin y, y nd i is given by L R y s G ( ) nd y s G ( ) Cse () if e derivive is (ii) differenible en by definiin. dy y, y d y ( ) ( ) s y () s y Were y( ) ( ) () s y s y Assme e slin fer king FST be L R s y H ( ) nd s y H ( ) By sing inverse FST we cn bin y, y nd i is given by L R y s H ( ) nd y s H ( ) 5. NUMERICAL EXAMPLE. Type-I. Cnsider e fllwing fzzy liner Vlerr inegrdifferenil eqin y k y( ) d, T y( ) ( y(), y()), Here we cnsider fzzy iniil cndiins s generlized y( ) (,b,c, )were b c ringlr fzzy nmber y( ),c, were b ; c b Le e slin f e bve differenil eqin be y () nd is α-c is given by yˆ y, y Cse () le s cnsider y() is (i) differenible en y k y( ) d () y k y( ) d () Tking FST n b sides f e eqin () s y y() k s y () k s y () Tking inverse FST n b sides y () s k s y cs k sin Similrly by pplying FST nd inverse FST n () we bin y c cs k sin (4) (3) 377

6 We ne y cs nd y cs Hence e slin bined is srng slin, e α cs f e slin is given by yˆ ke ke, (5) c c k e k e Cse () le s cnsider y() is (ii) differenible en y k y( ) d (6) y k y( ) d (7) Tking FST n b sides f e eqin (6) y () s y k s y () ( ) ( ) s y s y k (8) Tking FST n b sides f e eqin (7) y() s y k s y () s y s y k c (9) Slving (8) nd (9) we ge 3 k k s y c k k s y c Tking inverse FST n b sides y k sin cs c () cs c Similrly we cn bin y k sin cs c () cs c Hence e slin fr cse (ii) is given by yˆ y, y k sin cs c cs c, yˆ () k sin cs c cs c Fig (5.) Fig (5.) () Figre 5. nd 5.: Grpicl represenin f e slin f eqin (5) nd () cnsidering y ( ) (,,3;), We ne e slin y () increses fr [,] nd y () decreses. Terefre y nd y Hence e slin bined is srng slin Type II. Cnsider e fllwing fzzy liner Vlerr-inegrdifferenil eqin f e ype y k y( ) d, T k k, k, Here we cnsider k s generlized ringlr fzzy nmber, k (,b,c, ) were b c nd we cnsider e iniil cndiin y y () y () ( cnsn) k,c, were b ; c b 378

7 Le e slin f e bve inegrl eqin y () nd is α- c is given by yˆ y, y Cse () cnsider y() is (i) differenible en y k y ( ) d (5) y k y ( ) d (6) Tking FST n b sides f e eqin (5) s y y() k s y() s y () Tking inverse FST we ge y cs sin (7) Similrly we cn bin y cs c sin (8) We ne y nd y, Hence e slin is given by yˆ cs sin, cs c sin (9) is srng slin. Cse () Cnsider y() is (ii) differenible en y k y ( ) d () y k y ( ) d () Tking FST n b sides f e eqin () y() s y k s y() ( ) ( ) s y s y k () Tking FST n eqin f e eqin () ( ) ( ) s y s y k (3) Slving we ge (5.) nd (5.3) 3 k k s y () 3 k k s y () Tking inverse FST n (4) nd (5) we ge (4) (5) y cs sin c (6) sin c y cs sin c (7) sin c Hence e slin is given by cs sin c sin c, yˆ () (8) cs sin c sin c Fig 5.3 Fig 5.4 Figre 5.3 nd 5.4: Grpicl represenin f e slin f eqin (9) nd (8) cnsidering y ( ) (,,3;),, Frm e figre 5.3 nd 5.4 we ne e slin y () increses fr [,] nd y () decreses. Terefre y nd y Hence e slin bined is srng slin. 379

8 Type III Cnsider e fllwing fzzy liner Vlerr inegr-differenil eqin f e ype y k y( ) d, T k k, k nd y( ) y (), y (), Here we cnsider k s generlized ringlr fzzy nmber, k (, b, c, ) were b c, nd cnsider e iniil cndiin y ( ) (,b,c, ); Were y( ),c, were b ; c b k k, k,c, were b ; c b Le e slin f e bve eqin be y () nd is α-c is given by yˆ y, y Cse (). Cnsider y() is (i) differenible en y k y ( ) d (9) y k y ( ) d (3) Tking FST n b sides f e eqin (9) s y y() k s y() s y () Tking inverse FST we ge ( ) y cs sin Similrly we cn bin y c cs c sin We ne y nd y Hence e slin is given by cs sin, ˆ y () c cs c sin Cse () Cnsider y() is (ii) differenible en (3) (3) (33) y k y ( ) d (34) y k y ( ) d (35) Tking FST n b sides f e eqin (34) y() s y k s y() ( ) ( ) s y s y k (36) Tking FST n eqin f e eqin (35) s y s y k c (37) Slving we ge (36) nd (37) 3 k k s y c (38) 3 k k s y c (39) Tking inverse FST n (4) nd (5) we ge sin c sin c () y cs c cs c (4) sin c sin c () y (4) cs c cs c Hence e slin is given by yˆ y, y (4) 38

9 Fig 5.5 Fig 5.6 Figre 5.5 nd 5.6 represens f e slin f eqin (33) nd (4) cnsidering y ( ) (,,3;), Frm e figre 5.5 nd 5.6 we ne e slin y () increses fr [,] nd y () decreses. Terefre y nd y.hence e slin bined is srng slin. Type IV: Cnsider e fllwing fzzy liner vlerr inegr differenil eqin y x y( ) d y( ) ( y(), y()), Here we cnsider x () s fzzy fncin x() sin, c sin, were b ; c b And iniil cndiin s generlized ringlr fzzy nmber y( ),c, were b ; c b Le e slin f e bve differenil eqin be y ˆ( ) nd is α-c is given by yˆ y, y Cse () le s cnsider y() is (i) differenible en y x y ( ) d (43) y x y ( ) d (44) Tking FST n b sides f e eqin (43) s y y() s y () 4 s y () Tking inverse FST n b sides f e bve eqin y (sin sin ) cs Similrly we cn bin fr e pper bnd y c (sin sin ) c cs Hence e slin is given by y (sin sin ) cs, c (sin sin ) c cs (45) Cse () le s cnsider y() is (i) differenible en y x y ( ) d. (46) y x y ( ) d (47) Tking FST n eqin (5.46) nd (5.47) we ge s y sy c 4 s y s y c 4 Slving e bve w eqin we rrive s y ( ) c 4 ( )( ) ( )( ) 4 4 c (48) 4 4 ( ) ( ) s y () 4 ( )( ) c ( )( ) 4 4 c 4 4 ( ) ( ) Tking inverse FST n eqin (5.48) nd (5.49) we ge 49 38

10 s y ( ) c sin cs cs sin cs cs cs cs c cs cs 5 s y sin cs cs c sin cs cs Hence e slin is given by yˆ y, y 5 c cs cs cs cs Fig 5.9 Fig 5. (5) Figre 5.9 nd 5. represenin f e slin f eqin (45) nd (5) cnsidering y ( ) (,,3;), / Hence we cnclde e slin bined is srng slin. 6. CONCLUSION. Tis pper cegrized e fzzy liner Vlerr Inegr Differenil eqin in fr ypes bsed n e iniil cndiin nd prpsed med rrive slin fr e sme nd relevn exmples were discssed. Sme imprn prperies reled Fzzy Smd rnsfrm were ls discssed. REFERENCES []D. Dbis nd H. Prde, Twrds fzzy differenil clcls. I. Inegrin f fzzy mppings, Fzzy Ses nd Sysems, 8() (98), 7. []D. Dbis nd H. Prde, Twrds fzzy differenil clcls. II. Inegrin n fzzy inervls, Fzzy Ses nd Sysems, 8() (98), 5 6. [3]D. Dbis nd H. Prde, Twrds fzzy differenil clcls: III, differeniin, Fzzy Ses nd Sysems, 8 (98), [4] Jn mrdesn, Willim Newmn, Fzzy Inegrl Eqins, infrmin sciences 87, 5 9 (995) [5]E.Bblin, H.Sdegi, Abbsbndy,Nmericl slin f liner Fredlm fzzy inegrl eqins f e secnd kind, Applied Memics nd Cmpin 6 (5) [6]Jng Yel Prk, Je Ug Jeng, A ne n fzzy inegrl eqins, Fzzy Ses nd Sysems 8 (999) 93 [7]Jng Yel Prk, Yng Cel Kwn, Je Ug Jeng, Exisence f slins f fzzy inegrl eqins in Bnc spces, Elsevier Science B.V. 65-4/95/, 995 [8] S. Slsr nd T. Allvirnl, Applicin f fzzy differenil rnsfrm med fr slving fzzy Vlerr inegrl eqins, Applied Memicl Mdeling, 37(3) (3), 6 7. [9] K. Blcndrn nd P. Prks, On fzzy vlerr inegrl eqins wi deving rgmens, Jrnl f Applied Memics nd Scsic Anlysis, (4), [] S. J. Sng, Q.Y. Li nd Q. C X, Exisence nd cmprisn erems Vlerr fzzy inegrl eqin in (En, D), Fzzy Ses nd Sysems, 4 (999), []Nmis, V. Te frcinl rder Frier rnsfrm nd is pplicin qnm mecnics. IMA J.Appl. M. 98, 5, []Si, S. Te Weiersrss rnsfrm nd n ismery in e e eqin. Appl. Anl. 983, 6, 6. [3]Gemi, F.; Yns, R.; Amdin, A.; Slsr, S.; Sleimn, M.; Sle, S.F. Applicin f Fzzy Frcinl Kineic Eqins Mdeling f e Acid Hydrlysis Recin. Absr. Appl.Anl. 3, 3, 634. [4]Spinelli, R. Nmericl inversin f Lplce rnsfrm. SIAM J. Nmer. Anl. 966, 3, [5]Lymn, J.W. Te Hnkel rnsfrm nd sme f is prperies. J. Ineger Seq., 4,. [6] Rner, C. Te se f e Mellin rnsfrm in finding e sress disribin in n infinie wedge.q. J. Mec. Appl. M. 948,, 5 3. [7]Wgl, G.K. Smd rnsfrms A new inegrl rnsfrm slve differenil eqins nd cnrl engineering prblems. In. J. M. Edc. Sci. Tecnl. 993, 4, [8]Wgl, G.K. Smd rnsfrms- new inegrl rnsfrm slve differenil eqins nd cnrl engineering prblems. M. Eng. Ind. 998, 6, [9]Weerkn, S. Applicin f Smd rnsfrm pril differenil eqins. In. J. M.Edc. Sci. Tecnl. 994, 5, []Weerkn, S. Cmplex inversin frml fr Smd rnsfrm. In. J. M. Edc. Sci. Tecnl.998, 9, []Asir, M.A. Smd rnsfrm nd e slin f inegrl eqins f cnvlin ype. In. J.M. Edc. Sci. Tecnl., 3, []Belgcem, F.B.M.; Krblli, A.A.; Kll, S.L. Anlyicl invesigins f e Smd rnsfrm nd pplicins inegrl prdcin eqins. M. Prbl. Eng. 3, 3, 3 8. [3]Belgcem, F.B.M., Krblli, A.A. Smd rnsfrm fndmenl prperies invesigins nd Applicins. In. J. Sc. Anl. 6, 6, di:.55/jamsa/6/983. [4]Belgcem, F.B.M. Smd rnsfrm pplicins Bessel fncins nd eqins. Appl. M.Sci., 4, [5]Nrzrizl Abdl Rmn nd Mmmd Zini Amd, slving fzzy frcinl differenil eqins sing fzzy Smd rnsfrm, J.Nnliner Sci.Appl.Vl.(X),-. [6]Dbis D,Prde H(978) Operins n fzzy nmbers,inerninl jrnl f sysems science,9:63-66 [7]A kfmnn nd M M Gp, Inrdcin fzzy rimeic :Tery nd pplicin,vn Nsrnd Reinld,New yrk, [8]C.C.Lee,Fzzy lgic in cnrl sysems:fzzy lgic cnrller,vlme (),44-48,99 [9]Pri, M.L.; Rlesc, D.A. Differenils f fzzy fncins. J. M. Anl. Appl. 983, 9, [3]Z Ding,Ming M,Abrm Kndel Exisence f e slins f fzzy differenil eqins wi prmeers, infrmin sciences,997,vl99(3):5-7 [3] Bede B., Gl S.G.: Generlizins f e differenibiliy f fzzynmber-vled fncins 38

11 wi pplicins fzzy differenil eqins. Fzzy Ses Sys. 5, 5, [3]Y.Clc-cn nd H.Rmn-Flres,On new slins f fzzy differenil eqins,cs,slins nd Frcls,38(8),-9 [33] H C W,Te imprper fzzy Riemnn inegrl nd is nmericl inegrin,infrmin Sciences (998),n., [34] NA Abdl Rmn,MZ Amd, Applicins f e fzzy Smd rsfrm fr e slin f e firs rder fzzy differenil eqins, Enrpy 5,7, [35]Bede, B.; Rds, I.J. Bencsik, A.L. Firs rder liner fzzy differenil eqins nder generlized differenibiliy. Inf. Sci. 7, 77, [36]Clc-Cn, Y.; Rmán-Flres, H. On new slins f fzzy differenil eqins. Cs Slins Frcls 8, 38, 9. [37]Ds, M.; Tlkdr, D. Med fr Slving Fzzy Inegr-Differenil Eqin By Using Fzzy Lplce Trnsfrmin. In. J. Sci. Tecnl. Res. 4, 3, [38]Clc-Cn, Y.; Rmán-Flres, H. Cmprin beween sme pprces slve fzzy differenil eqins. Fzzy Ses Sys. 9, 6, [39] Klev, O. A ne n fzzy differenil eqins. Nnliner Anl. Tery Meds Appl. 6, 64, [4]Dbis, D.J. Fzzy Ses nd Sysems: Tery nd Applicins; Acdemic Press: Wlm, MA, USA, 98. [4]W, H.C. Te imprper fzzy Riemnn inegrl nd is nmericl inegrin. Inf. Sci. 998,, [4]W, H.C. Te fzzy Riemnn inegrl nd is nmericl inegrin. Fzzy Ses Sys.,, 5. [43]Bede, B.; Gl, S.G. Generlizins f e differenibiliy f fzzynmber-vled fncins wi pplicins fzzy differenil eqins. Fzzy Ses Sys. 5, 5,

12 384

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems Lecre 4: Liner Time Invrin LTI sysems 2. Liner sysems, Convolion 3 lecres: Implse response, inp signls s coninm of implses. Convolion, discree-ime nd coninos-ime. LTI sysems nd convolion Specific objecives

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

Distribution of Mass and Energy in Five General Cosmic Models

Distribution of Mass and Energy in Five General Cosmic Models Inerninl Jurnl f Asrnmy nd Asrpysics 05 5 0-7 Publised Online Mrc 05 in SciRes p://wwwscirprg/jurnl/ij p://dxdirg/0436/ij055004 Disribuin f Mss nd Energy in Five Generl Csmic Mdels Fdel A Bukri Deprmen

More information

K The slowest step in a mechanism has this

K The slowest step in a mechanism has this CM 6 Generl Chemisry II Nme SLUTINS Exm, Spring 009 Dr. Seel. (0 pins) Selec he nswer frm he clumn n he righ h bes mches ech descripin frm he clumn n he lef. Ech nswer cn be used, ms, nly nce. E G This

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.7J Fall 13 Lecure 15 1/3/13 I inegral fr simple prcesses Cnen. 1. Simple prcesses. I ismery. Firs 3 seps in cnsrucing I inegral fr general prcesses 1 I inegral

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

MAT 1275: Introduction to Mathematical Analysis

MAT 1275: Introduction to Mathematical Analysis 1 MT 1275: Intrdutin t Mtemtil nlysis Dr Rzenlyum Slving Olique Tringles Lw f Sines Olique tringles tringles tt re nt neessry rigt tringles We re ging t slve tem It mens t find its si elements sides nd

More information

Available online at Pelagia Research Library. Advances in Applied Science Research, 2011, 2 (3):

Available online at   Pelagia Research Library. Advances in Applied Science Research, 2011, 2 (3): Avilble online www.pelgireserchlibrry.com Pelgi Reserch Librry Advnces in Applied Science Reserch 0 (): 5-65 ISSN: 0976-860 CODEN (USA): AASRFC A Mhemicl Model of For Species Syn-Ecosymbiosis Comprising

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

Fuzzy Spaces for Neutrosophic Information Representation

Fuzzy Spaces for Neutrosophic Information Representation Fzzy Spaces r Nersphic Inrmain Represenain Vasile Parasc Tarm Inrmain Technlgy Bchares Rmania e-mail: parasc.v@gmail.cm Absrac. The paper presens sme seps r mli-valed represenain nersphic inrmain. These

More information

CHAPTER 2 FUZZY NUMBER AND FUZZY ARITHMETIC

CHAPTER 2 FUZZY NUMBER AND FUZZY ARITHMETIC CHPTER FUZZY NUMBER ND FUZZY RITHMETIC 1 Introdction Fzzy rithmetic or rithmetic of fzzy nmbers is generlistion of intervl rithmetic, where rther thn considering intervls t one constnt level only, severl

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

A. P. Sakis Meliopoulos Power System Modeling, Analysis and Control. Chapter 4 2 Modeling - Power Transformers and the Per Unit System 2

A. P. Sakis Meliopoulos Power System Modeling, Analysis and Control. Chapter 4 2 Modeling - Power Transformers and the Per Unit System 2 DRAFT nd COMPETE Tle f Cnens frm A. P. Skis Melipls Pwer Sysem Mdeling, Anlysis nd Cnrl Chper 4 Mdeling - Pwer Trnsfrmers nd he Per Uni Sysem 4. nrdcin 4. Single Phse Trnsfrmers 4.. The del Single Phse

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Fuzzy Laplace Transforms for Derivatives of Higher Orders

Fuzzy Laplace Transforms for Derivatives of Higher Orders Maemaical Teory and Modeling ISSN -58 (Paper) ISSN 5-5 (Online) Vol, No, 1 wwwiiseorg Fuzzy Laplace Transforms for Derivaives of Higer Orders Absrac Amal K Haydar 1 *and Hawrra F Moammad Ali 1 College

More information

Brace-Gatarek-Musiela model

Brace-Gatarek-Musiela model Chaper 34 Brace-Gaarek-Musiela mdel 34. Review f HJM under risk-neural IP where f ( T Frward rae a ime fr brrwing a ime T df ( T ( T ( T d + ( T dw ( ( T The ineres rae is r( f (. The bnd prices saisfy

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur Mdle Analysis f Saically Indeerminae Srcres by he Direc Siffness Mehd Versin CE IIT, Kharagr Lessn The Direc Siffness Mehd: Temerare Changes and Fabricain Errrs in Trss Analysis Versin CE IIT, Kharagr

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Lecture 3. Electrostatics

Lecture 3. Electrostatics Lecue lecsics In his lecue yu will len: Thee wys slve pblems in elecsics: ) Applicin f he Supepsiin Pinciple (SP) b) Applicin f Guss Lw in Inegl Fm (GLIF) c) Applicin f Guss Lw in Diffeenil Fm (GLDF) C

More information

11.2. Infinite Series

11.2. Infinite Series .2 Infinite Series 76.2 Infinite Series An infinite series is the sum f n infinite seuence f numbers + 2 + 3 + Á + n + Á The gl f this sectin is t understnd the mening f such n infinite sum nd t develp

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

An Integral Two Space-Variables Condition for Parabolic Equations

An Integral Two Space-Variables Condition for Parabolic Equations Jornl of Mhemics nd Sisics 8 (): 85-9, ISSN 549-3644 Science Pblicions An Inegrl Two Spce-Vribles Condiion for Prbolic Eqions Mrhone, A.L. nd F. Lkhl Deprmen of Mhemics, Lborory Eqions Differenielles,

More information

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform Applied Mthemticl Sciences, Vol. 8, 214, no. 11, 525-53 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/1.12988/ms.214.312715 The Solution of Volterr Integrl Eqution of the Second Kind by Using the Elzki

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Cosmological Distances in Closed Model of the Universe

Cosmological Distances in Closed Model of the Universe Inerninl Jurnl f srnmy n srpysics 3 3 99-3 p://xirg/436/ij333 Publise Online June 3 (p://wwwscirprg/jurnl/ij) Csmlgicl Disnces in Clse el f e Universe Fel Bukri Deprmen f srnmy Fculy f Science King bulziz

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

SMARANDACHE GROUPOIDS

SMARANDACHE GROUPOIDS SMARANDACHE GROUPOIDS W. B. Vsnth Kndsmy Deprtment f Mthemtics Indin Institute f Technlgy Mdrs Chenni - 6 6 Indi. E-mil: vsntk@md.vsnl.net.in Astrct: In this pper we study the cncept f Smrndche Grupids

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall) Green s functions 3. G(t, τ) nd its derivtives G (k) t (t, τ), (k =,..., n 2) re continuous in the squre t, τ t with respect to both vribles, George Green (4 July 793 3 My 84) In 828 Green privtely published

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function Anlyic soluion of liner frcionl differenil equion wih Jumrie derivive in erm of Mig-Leffler funcion Um Ghosh (), Srijn Sengup (2), Susmi Srkr (2b), Shnnu Ds (3) (): Deprmen of Mhemics, Nbdwip Vidysgr College,

More information

New Inequalities in Fractional Integrals

New Inequalities in Fractional Integrals ISSN 1749-3889 (prin), 1749-3897 (online) Inernionl Journl of Nonliner Science Vol.9(21) No.4,pp.493-497 New Inequliies in Frcionl Inegrls Zoubir Dhmni Zoubir DAHMANI Lborory of Pure nd Applied Mhemics,

More information

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel Int. J. Contemp. Mth. Sciences, Vol. 6, 2011, no. 11, 535-543 Solution to Fredholm Fuzzy Integrl Equtions with Degenerte Kernel M. M. Shmivnd, A. Shhsvrn nd S. M. Tri Fculty of Science, Islmic Azd University

More information

IX.2 THE FOURIER TRANSFORM

IX.2 THE FOURIER TRANSFORM Chper IX The Inegrl Trnsform Mehods IX. The Fourier Trnsform November, 7 7 IX. THE FOURIER TRANSFORM IX.. The Fourier Trnsform Definiion 7 IX.. Properies 73 IX..3 Emples 74 IX..4 Soluion of ODE 76 IX..5

More information

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS Wu, G.-.: Lplce Trnsform Overcoming Principle Drwbcks in Applicion... THERMAL SIENE: Yer 22, Vol. 6, No. 4, pp. 257-26 257 Open forum LAPLAE TRANSFORM OVEROMING PRINIPLE DRAWBAKS IN APPLIATION OF THE VARIATIONAL

More information

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions Trkish Jornl o Anlysis nd Nmer Theory, 4, Vol, No, 4-46 Aville online h://ssciecom/jn/// Science nd Edcion Plishing DOI:69/jn--- Hermie-Hdmrd nd Simson Tye Ineliies or Dierenile Qsi-Geomericlly Convex

More information

How to prove the Riemann Hypothesis

How to prove the Riemann Hypothesis Scholrs Journl of Phsics, Mhemics nd Sisics Sch. J. Phs. Mh. S. 5; (B:5-6 Scholrs Acdemic nd Scienific Publishers (SAS Publishers (An Inernionl Publisher for Acdemic nd Scienific Resources *Corresonding

More information

5.1 Angles and Their Measure

5.1 Angles and Their Measure 5. Angles and Their Measure Secin 5. Nes Page This secin will cver hw angles are drawn and als arc lengh and rains. We will use (hea) represen an angle s measuremen. In he figure belw i describes hw yu

More information

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA ttp//sci.vut.edu.u/rgmi/reports.tml SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIABLE MAPPINGS AND APPLICATIONS P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS Astrct. Some generliztions of te Ostrowski

More information

12 Basic Integration in R

12 Basic Integration in R 14.102, Mt for Economists Fll 2004 Lecture Notes, 10/14/2004 Tese notes re primrily bsed on tose written by Andrei Bremzen for 14.102 in 2002/3, nd by Mrek Pyci for te MIT Mt Cmp in 2003/4. I ve mde only

More information

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components Upcming eens in PY05 Due ASAP: PY05 prees n WebCT. Submiing i ges yu pin ward yur 5-pin Lecure grade. Please ake i seriusly, bu wha cuns is wheher r n yu submi i, n wheher yu ge hings righ r wrng. Due

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations IOS Journl o Memics IOSJM ISSN: 78-78 Volume Issue July-Aug PP -9 www.iosrjournls.org Developmen o New Sceme or e Soluion o Iniil Vlue Problems in Ordinry Dierenil Equions Ogunrinde. B. dugb S. E. Deprmen

More information

International Journal of Mathematical Archive-3(1), 2012, Page: Available online through

International Journal of Mathematical Archive-3(1), 2012, Page: Available online through eril Jrl f Mhemicl rchive-3 Pge: 33-39 vilble lie hrgh wwwijmif NTE N UNFRM MTRX SUMMBLTY Shym Ll Mrdl Veer Sigh d Srbh Prwl 3* Deprme f Mhemics Fcly f Sciece Brs Hid Uiversiy Vrsi UP - ND E-mil: shym_ll@rediffmilcm

More information

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method IOSR Journl of Mhemics (IOSR-JM) e-issn: 78-578. Volume 5, Issue 3 (Jn. - Feb. 13), PP 6-11 Soluions for Nonliner Pril Differenil Equions By Tn-Co Mehod Mhmood Jwd Abdul Rsool Abu Al-Sheer Al -Rfidin Universiy

More information

Inventory Management Models with Variable Holding Cost and Salvage value

Inventory Management Models with Variable Holding Cost and Salvage value OSR Journl of Business nd Mngemen OSR-JBM e-ssn: -X p-ssn: 9-. Volume ssue Jul. - Aug. PP - www.iosrjournls.org nvenory Mngemen Models wi Vrile Holding os nd Slvge vlue R.Mon R.Venkeswrlu Memics Dep ollege

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Procedia Computer Science

Procedia Computer Science Procedi Compuer Science 00 (0) 000 000 Procedi Compuer Science www.elsevier.com/loce/procedi The Third Informion Sysems Inernionl Conference The Exisence of Polynomil Soluion of he Nonliner Dynmicl Sysems

More information

ECON 331 Lecture Notes: Ch 4 and Ch 5

ECON 331 Lecture Notes: Ch 4 and Ch 5 Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 4: Numericl differentition nd integrtion Xioqun Zng Sngi Jio Tong University Lst updted: November, 0 Numericl Anlysis. Numericl differentition.. Introduction Find n pproximtion of f (x 0 ),

More information

Chapter 3. Vector Spaces

Chapter 3. Vector Spaces 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

Single Degree of Freedom System Forced Vibration

Single Degree of Freedom System Forced Vibration Maa Kliah : Dinamia Srr & Penganar Reayasa Kegempaan Kde : TSP 3 SKS : 3 SKS Single Degree f Freedm Sysem Frced Vibrain Pereman - 3 TIU : Mahasiswa dapa menelasan enang eri dinamia srr. Mahasiswa dapa

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

Thabet Abdeljawad 1. Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Say : 9 / May s 2008

Thabet Abdeljawad 1. Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Say : 9 / May s 2008 Çaaya Üiversiesi Fe-Edebiya Faülesi, Jural Ars ad Scieces Say : 9 / May s 008 A Ne e Cai Rule ime Scales abe Abdeljawad Absrac I is w, i eeral, a e cai rule eeral ime scale derivaives des beave well as

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method Int. Journl of Mth. Anlysis, Vol. 5, 211, no. 19, 935-94 Fredholm Integrl Equtions of the First Kind Solved by Using the Homotopy Perturbtion Method Seyyed Mhmood Mirzei Deprtment of Mthemtics, Fculty

More information

The Algebra (al-jabr) of Matrices

The Algebra (al-jabr) of Matrices Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (l-jbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Estimating Surface/Internal Sources and Sinks

Estimating Surface/Internal Sources and Sinks R. G. Prinn, 2.86/.57: Amspheric Physics & Chemisry, April 27, 26 Esiming Surce/Inernl Surces nd Sins Figure by MI OCW. Mesuremen Equin In Lgrngin rmewr: (, Observing Sin s',', j s,, l, ime v(s',' Bc rjecry

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA-302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

ON THE C-INTEGRAL BENEDETTO BONGIORNO

ON THE C-INTEGRAL BENEDETTO BONGIORNO ON THE C-INTEGRAL BENEDETTO BONGIORNO Let F : [, b] R be differentible function nd let f be its derivtive. The problem of recovering F from f is clled problem of primitives. In 1912, the problem of primitives

More information

Harman Outline 1A1 Integral Calculus CENG 5131

Harman Outline 1A1 Integral Calculus CENG 5131 Hrmn Outline 1A1 Integrl Clculus CENG 5131 September 5, 213 III. Review of Integrtion A.Bsic Definitions Hrmn Ch14,P642 Fundmentl Theorem of Clculus The fundmentl theorem of clculus shows the intimte reltionship

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

Cambridge Assessment International Education Cambridge Ordinary Level. Published

Cambridge Assessment International Education Cambridge Ordinary Level. Published Cambridge Assessment Internatinal Educatin Cambridge Ordinary Level ADDITIONAL MATHEMATICS 4037/1 Paper 1 Octber/Nvember 017 MARK SCHEME Maximum Mark: 80 Published This mark scheme is published as an aid

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

a n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction.

a n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction. MAS221(216-17) Exm Solutions 1. (i) A is () bounded bove if there exists K R so tht K for ll A ; (b) it is bounded below if there exists L R so tht L for ll A. e.g. the set { n; n N} is bounded bove (by

More information

Math Advanced Calculus II

Math Advanced Calculus II Mth 452 - Advnced Clculus II Line Integrls nd Green s Theorem The min gol of this chpter is to prove Stoke s theorem, which is the multivrible version of the fundmentl theorem of clculus. We will be focused

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information