La Heliosfera y el entorno espacial terrestre

Size: px
Start display at page:

Download "La Heliosfera y el entorno espacial terrestre"

Transcription

1 La Heliosfera y el entorno espacial terrestre Sergio Dasso 1, 1 Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UA, Argentina Departamento de Física, Facultad de Ciencias Exactas y Naturales, UA, Argentina Departamento de Física Juan José Giambiagi Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

2 Clase 1: El Sol El ciclo solar Radiación solar Marco teórico gral para Física Espacial MHD Ondas de choque en el espacio Reconección de líneas magnéticas Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

3 Interior del Sol ZONA CONVECTIVA: la materia realiza movimientos convectivos (como la ebullición). Se extiende hasta 1R 0 y la energía se transporta por convección Zona Convectiva 1.5x10 6 K Zona radiativa Núcleo ZONA RADIATIVA: Se extiende hasta 0.86R 0. La energía se transporta por radiación. Un fotón generado en el interior está sometido a constantes interacciones con el medio (tarda 10 7 años en llegar a la superficie). NÚCLEO: Se extiende hasta 0.5R 0. La energía se produce por fusión de H que se transforma en He. Las reacciones nucleares transforman kg de H por segundo Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

4 Atmósfera solar Fotosfera: emisión térmica, 6000 K Cromosfera: dominado por líneas de emisión Corona: estructuras magnéticas Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

5 Ciclo de manchas solares 1609: Galileo observa las manchas solares. Schwabe (1843) descubre el ciclo de 11 años. Mínimos de actividad (Maunder, ) Hoy sabemos que las manchas trazan regiones de intensos campos magnéticos. El campo solar es bastante mas complicado que un dipolo, pero tambien es producido por corrientes eléctricas. Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

6 Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

7 Variabilidad de la radiación electromagnética solar Gran variabilidad de radiación solar en EUV, X, radio Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

8 Variabilidad de la radiación electromagnética solar Gran variabilidad de radiación solar en EUV, X, radio (pero mayor energía en visible e IR, poca variabilidad con actibidad solar)

9 Variabilidad de la radiación electromagnética solar Gran variabilidad de radiación solar en EUV, X, radio (pero mayor energía en visible e IR, poca variabilidad con actibidad solar)

10 Dynamics of charged particles in space The fundamental problem Too many particles to follow detailed trajectory in the phase space! Statistic (how many in the vicinity of a state): Kinetic Theory [ ] )) ( ( )) ( ( ) ( 1 1 t t e t i i c i i m i dt d i i dt d i r v E r v v r + q t t c c πρ π E E J E )) ( ( ) ( ), ( )) ( ( ), ( 1 1 t t e t t e t i i N i i i N i i q r r v r J r r r δ δ ρ More complex than gravity: One source of fields is not conserved, and it evolves self-consistently with the fields! Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

11 Typical plasma distribution function of H+ in the interplanetary space Adapted, from McComas et al., 007, Rev of Geophys.

12 Typical plasma distribution function of H+ in the interplanetary space

13 Typical plasma distribution function of H+ in the interplanetary space Full Kinetic Theory (KT): Evolution of f(v) (weak or strong coupling)

14 Typical plasma distribution function of H+ in the interplanetary space ulk (large and slow) scales can be modeled using MHD (moments of f(v) and truncate KT) ut in some point, the truncation needs to be repaired (a patch) [e.g., ook Plasma Astrophysics by Somov, 006] Simplified KT + to know the bulk behavior (scenario)

15 Conservación de la masa Conservación de la cantidad de movimiento

16 MagnetoHydrodynamics (the groundwork) - From merging fluids and electromagnetism - In general, valid for slow motions and smooth and large spatial scales t ρ + ( ρu) 0 Mass conservation d ρ dt U 1 p + ( ) + ρg + ρν 4π U Linear momentum conservation β 8πnkT d dt γ ( pρ ) 0 Energy (simplified): ideal gas, thermodynamics polytropic (γc p /C v for adiabatic, γ1 for isothermic) Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

17 MagnetoHydrodynamics (the groundwork) - From merging fluids and electromagnetism - In general, valid for slow motions and smooth and large spatial scales t ρ + ( ρu) 0 Mass conservation d ρ dt U 1 p + ( ) + ρg + ρν 4π U Linear momentum conservation β 8πnkT d dt γ ( pρ ) 0 Energy (simplified): ideal gas, thermodynamics polytropic (γc p /C v for adiabatic, γ1 for isothermic) t ( U ) + η c +..., η 4πσ Magnetic induction equation (from simplified Ohm s law and Faraday) Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

18 MagnetoHydrodynamics (the groundwork) - From merging fluids and electromagnetism - In general, valid for slow motions and smooth and large spatial scales t ρ + ( ρu) 0 Mass conservation d ρ dt U 1 p + ( ) + ρg + ρν 4π U Linear momentum conservation β 8πnkT d dt γ ( pρ ) 0 Energy (simplified): ideal gas, thermodynamics polytropic (γc p /C v for adiabatic, γ1 for isothermic) More general cases can be used in MHD 0 No magnetic monopoles t ( U ) + η? c +..., η 4πσ Magnetic induction equation (from simplified Ohm s law and Faraday) c J 4π Ampere: J is decoupled, can be computed a posteriori, from And electric field hided, can be computed from the Ohm law

19 Magnetic forces: Pressure and tension Magnetic pressure 1 ( ) 4π 1 [( ) ( 4π / )] d ds ( sˆ) d ds ( / )ˆ s + Magnetic tension (restitutive force) nˆ R c Cancellation of pressure force along (thus, forces are perpendicular to ) Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

20 Modos normales en MHD linealizada

21 Modos normales en MHD linealizada

22 Ondas de Alfvén

23 Frozen-in condition when η0: is transported by the fluid Exercise: We switch on the following (given) velocity profile (i.e., a kinematic problem) on an initial magnetic field (vertical and uniform) in an ideal medium. To find the evolution for the magnetic field. Hint: to solve the ideal induction equation. ( r, t U( r, t 0) yˆ 0 > 0) U 0 exp[ y / D ]ˆ x t0 t>0 t x y ( u ), 0, 0 x y U 0 y t y y, t) exp[ ],, y z D D ( 0 x 0 t y t z 0 y 0 x Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

24 MagnetoHydrostatic (MHD equilibria) Hierachy ( complexities ) for configuration C o m p l e x n e s s Current free (J0) or Potential field ( x0) Linear force free field, J(αc/4π): xα (curvature force balanced by magnetic pressure) General fff, J//±: xα(r) Equilibrium with one ignored coordinate (z): Grad-Shafranov formalism β <<1 dp A π da 1 4 dz da General equilibrium: Elliptical equation: it requires information on A(x,y) for the closed boundary of the domain to be properly solved 1 0 p + ( ) 4π Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

25 MHD supports shock waves In MHD, as in classical fluids, when an object travels faster than the velocity of the waves in the medium, it will drive a shock wave A substantial jump in, U, and n occurs at a shock wave Quantitative relationships can be derived for the jumps of MHD quantities at the shock wave, e.g., the most simple { n }0 In the shock wave, due to that small scales are activated, dissipation will be efficient, even for very small values of η Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

26 Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

27 MHD supports magnetic reconnection Changes in the magnetic topology of magnetic configuration of field lines Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014

28 Opening ICMEs by Interchange Reconnection Gosling, irn, and Hesse [1995] At CME liftoff a. Partial disconnection (closed-closed) creates flux rope coil b. Interchange reconnection (closed-open) opens coil As ICME moves out into heliosphere Interchange reconnection at Sun may continue to open field lines Crooker, Gosling, and Kahler [00]

29 Main ideal MHD Invariants Φ ds S d dt c Φ J dl σ l moving slice of a magnetic flux tube E de dt 1 dv ρu + + ρφg π, g V 8 φ ( ) 1 J + ρνω, ω U, ω dv ω V σ g Main mechanisms for energy transference: E u E (dynamo) E E U +diss(reconnection) spatial scales (turbulence) H c V dv U dh dt c ( η + ρν ) dv i j iu j ( η + ρν ) for U 0 V V Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014 dv J ω

30 Main ideal MHD Invariants Φ ds S ut turbulent dissipation 1 E dv ρu + + ρφg φg π, g V 8 de dv σ J + ρνω, ω U, ω dt V d dt c Φ J dl σ l ( ) 1 ω moving slice of a magnetic flux tube Main mechanisms for energy transference: E u E (dynamo) E E U +diss(reconnection) spatial scales (turbulence) ut turbulent dissipation H c V dv U dh dt c ( η + ρν ) dv i j iu j ( η + ρν ) for U 0 V V Astropartículas y Física Solar LAGO. Univ. San Francisco de Quito, 0-4 enero, 014 dv J ω

31 Fin clase 1

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

More information

Fundamentals of Magnetohydrodynamics (MHD)

Fundamentals of Magnetohydrodynamics (MHD) Fundamentals of Magnetohydrodynamics (MHD) Thomas Neukirch School of Mathematics and Statistics University of St. Andrews STFC Advanced School U Dundee 2014 p.1/46 Motivation Solar Corona in EUV Want to

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

Radiative & Magnetohydrodynamic Shocks

Radiative & Magnetohydrodynamic Shocks Chapter 4 Radiative & Magnetohydrodynamic Shocks I have been dealing, so far, with non-radiative shocks. Since, as we have seen, a shock raises the density and temperature of the gas, it is quite likely,

More information

Conservation Laws in Ideal MHD

Conservation Laws in Ideal MHD Conservation Laws in Ideal MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 3, 2016 These lecture notes are largely based on Plasma Physics for Astrophysics

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Motivations The role of MHD turbulence in several phenomena in space and solar

More information

13. ASTROPHYSICAL GAS DYNAMICS AND MHD Hydrodynamics

13. ASTROPHYSICAL GAS DYNAMICS AND MHD Hydrodynamics 1 13. ASTROPHYSICAL GAS DYNAMICS AND MHD 13.1. Hydrodynamics Astrophysical fluids are complex, with a number of different components: neutral atoms and molecules, ions, dust grains (often charged), and

More information

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016 Beyond Ideal MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 8, 2016 These lecture notes are largely based on Plasma Physics for Astrophysics by

More information

Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) Magnetohydrodynamics (MHD) Robertus v F-S Robertus@sheffield.ac.uk SP RC, School of Mathematics & Statistics, The (UK) The Outline Introduction Magnetic Sun MHD equations Potential and force-free fields

More information

Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester

Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester MagnetoHydroDynamics (MHD) 1. The MHD equations. Magnetic Reynolds number and ideal MHD 3. Some

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

PHYS 643 Week 4: Compressible fluids Sound waves and shocks PHYS 643 Week 4: Compressible fluids Sound waves and shocks Sound waves Compressions in a gas propagate as sound waves. The simplest case to consider is a gas at uniform density and at rest. Small perturbations

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester

Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester MagnetoHydroDynamics (MHD) 1. The MHD equations. Magnetic Reynolds number and ideal MHD 3. Some

More information

Topological Methods in Fluid Dynamics

Topological Methods in Fluid Dynamics Topological Methods in Fluid Dynamics Gunnar Hornig Topologische Fluiddynamik Ruhr-Universität-Bochum IBZ, Februar 2002 Page 1 of 36 Collaborators: H. v. Bodecker, J. Kleimann, C. Mayer, E. Tassi, S.V.

More information

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

More information

Problem set: solar irradiance and solar wind

Problem set: solar irradiance and solar wind Problem set: solar irradiance and solar wind Karel Schrijver July 3, 203 Stratification of a static atmosphere within a force-free magnetic field Problem: Write down the general MHD force-balance equation

More information

Equilibrium and transport in Tokamaks

Equilibrium and transport in Tokamaks Equilibrium and transport in Tokamaks Jacques Blum Laboratoire J.-A. Dieudonné, Université de Nice Sophia-Antipolis Parc Valrose 06108 Nice Cedex 02, France jblum@unice.fr 08 septembre 2008 Jacques Blum

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest. St Andrews

MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest. St Andrews MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest St Andrews CONTENTS - Lecture 2 1. Introduction 2. Flux Tubes *Examples 3. Fundamental Equations 4. Induction Equation *Examples 5. Equation

More information

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma: Phys780: Plasma Physics Lecture 20. Alfven Waves. 1 20. Alfven waves ([3], p.233-239; [1], p.202-237; Chen, Sec.4.18, p.136-144) We have considered two types of waves in plasma: 1. electrostatic Langmuir

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

More information

FUNDAMENTALS OF MAGNETOHYDRODYNAMICS (MHD)

FUNDAMENTALS OF MAGNETOHYDRODYNAMICS (MHD) FUNDAMENTALS OF MAGNETOHYDRODYNAMICS (MHD) Dana-Camelia Talpeanu KU Leuven, Royal Observatory of Belgium Basic SIDC seminar ROB, 7 March 2018 CONTENTS 1. Ideal MHD 2. Ideal MHD equations (nooooooo.) 2.1

More information

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 5.2.2 Dynamo and Reconnection Research: Overview: Spheromaks undergo a relaxation

More information

Kinetic, Fluid & MHD Theories

Kinetic, Fluid & MHD Theories Lecture 2 Kinetic, Fluid & MHD Theories The Vlasov equations are introduced as a starting point for both kinetic theory and fluid theory in a plasma. The equations of fluid theory are derived by taking

More information

arxiv:astro-ph/ v1 27 May 2005

arxiv:astro-ph/ v1 27 May 2005 2D stationary resistive MHD flows: borderline to magnetic reconnection solutions D.H. Nickeler a,, H.-J. Fahr b arxiv:astro-ph/0505554v1 27 May 2005 a Astronomical Institute, Utrecht University, Princetonplein

More information

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment KB Chai Korea Atomic Energy Research Institute/Caltech Paul M.

More information

Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) KHU Valery Nakariakov Introduction to MHD 1 Magnetohydrodynamics (MHD) Lecturer: Professor Valery Nakariakov, V.Nakariakov@warwick.ac.uk Online lecture notes: http://goo.gl/opgmzk MHD describes large scale,

More information

Magnetohydrodynamic waves in a plasma

Magnetohydrodynamic waves in a plasma Department of Physics Seminar 1b Magnetohydrodynamic waves in a plasma Author: Janez Kokalj Advisor: prof. dr. Tomaž Gyergyek Petelinje, April 2016 Abstract Plasma can sustain different wave phenomena.

More information

Magnetic Reconnection in ICME Sheath

Magnetic Reconnection in ICME Sheath WDS'11 Proceedings of Contributed Papers, Part II, 14 18, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty

More information

November 2, Monday. 17. Magnetic Energy Release

November 2, Monday. 17. Magnetic Energy Release November, Monday 17. Magnetic Energy Release Magnetic Energy Release 1. Solar Energetic Phenomena. Energy Equation 3. Two Types of Magnetic Energy Release 4. Rapid Dissipation: Sweet s Mechanism 5. Petschek

More information

Recapitulation: Questions on Chaps. 1 and 2 #A

Recapitulation: Questions on Chaps. 1 and 2 #A Recapitulation: Questions on Chaps. 1 and 2 #A Chapter 1. Introduction What is the importance of plasma physics? How are plasmas confined in the laboratory and in nature? Why are plasmas important in astrophysics?

More information

Francesco Califano. Physics Department, University of Pisa. The role of the magnetic field in the interaction of the solar wind with a magnetosphere

Francesco Califano. Physics Department, University of Pisa. The role of the magnetic field in the interaction of the solar wind with a magnetosphere Francesco Califano Physics Department, University of Pisa The role of the magnetic field in the interaction of the solar wind with a magnetosphere Collaboration with M. Faganello & F. Pegoraro Vien na,

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Summary of the Equations of Fluid Dynamics

Summary of the Equations of Fluid Dynamics Reference: Summary of the Equations of Fluid Dynamics Fluid Mechanics, L.D. Landau & E.M. Lifshitz 1 Introduction Emission processes give us diagnostics with which to estimate important parameters, such

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

Dynamical evolution of magnetic flux ropes in the solar wind

Dynamical evolution of magnetic flux ropes in the solar wind Geofísica Internacional 47 (3), 295-299 (2008) Dynamical evolution of magnetic flux ropes in the solar wind M. S. Nakwacki 1*, S. Dasso 1,2, P. Démoulin 3 and C. H. Mandrini 1 1 Instituto de Astronomía

More information

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 7

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 7 Date of delivery: 29 June 2011 Journal and vol/article ref: IAU 1101498 Number of pages (not including this page): 7 Author queries: Typesetter queries: Non-printed material: The Physics of Sun and Star

More information

Heliophysics Shocks. Merav Opher, George Mason University,

Heliophysics Shocks. Merav Opher, George Mason University, Heliophysics Shocks QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Merav Opher, George Mason University, mopher@gmu.edu Heliophysics Summer School, July 25, 2008 Outline

More information

Single Particle Motion in a Magnetized Plasma

Single Particle Motion in a Magnetized Plasma Single Particle Motion in a Magnetized Plasma Aurora observed from the Space Shuttle Bounce Motion At Earth, pitch angles are defined by the velocity direction of particles at the magnetic equator, therefore:

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

arxiv: v1 [astro-ph.sr] 28 Jul 2010

arxiv: v1 [astro-ph.sr] 28 Jul 2010 A Theory about Electric Current and Heating in Plasma arxiv:1007.4959v1 [astro-ph.sr] 28 Jul 2010 Zhiliang Yang Department of Astronomy, Beijing Normal University, Beijing zlyang@bnu.edu.cn ABSTRACT The

More information

The ideal Maxwellian plasma

The ideal Maxwellian plasma The ideal Maxwellian plasma Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Plasmas are,... The plasma state of matter may be defined as a

More information

School and Conference on Analytical and Computational Astrophysics

School and Conference on Analytical and Computational Astrophysics 2292-3 School and Conference on Analytical and Computational Astrophysics 14-25 November - 2011 Magnetohydrodynamics in solar and space physics Daniel Osvaldo Gomez Instituto de Astronomia y Fisica del

More information

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Tom Elsden 1 Andrew Wright 1 1 Dept Maths & Stats, University of St Andrews DAMTP Seminar - 8th May 2017 Outline Introduction Coordinates

More information

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Pete Riley, Roberto Lionello, Jon Linker, and Zoran Mikic Predictive Science, Inc. (PSI),

More information

Stellar Magnetospheres part deux: Magnetic Hot Stars. Stan Owocki

Stellar Magnetospheres part deux: Magnetic Hot Stars. Stan Owocki Stellar Magnetospheres part deux: Magnetic Hot Stars Stan Owocki Key concepts from lec. 1 MagRe# --> inf => ideal => frozen flux breaks down at small scales: reconnection Lorentz force ~ mag. pressure

More information

Magnetohydrodynamic Waves

Magnetohydrodynamic Waves Magnetohydrodynamic Waves Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 17, 2016 These slides are largely based off of 4.5 and 4.8 of The Physics of

More information

Lesson 3: MHD reconnec.on, MHD currents

Lesson 3: MHD reconnec.on, MHD currents Lesson3:MHDreconnec.on, MHDcurrents AGF 351 Op.calmethodsinauroralphysicsresearch UNIS,24. 25.11.2011 AnitaAikio UniversityofOulu Finland Photo:J.Jussila MHDbasics MHD cannot address discrete or single

More information

Solar eruptive phenomena

Solar eruptive phenomena Solar eruptive phenomena Andrei Zhukov Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium 26/01/2018 1 Eruptive solar activity Solar activity exerts continous influence on the solar

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Turbulence, magnetic reconnection, particle acceleration Understand the mechanisms

More information

Physical modeling of coronal magnetic fields and currents

Physical modeling of coronal magnetic fields and currents Physical modeling of coronal magnetic fields and currents Participants: E. Elkina,, B. Nikutowski,, A. Otto, J. Santos (Moscow,Lindau,, Fairbanks, São José dos Campos) Goal: Forward modeling to understand

More information

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density varies as ( ) where is a constant, is the unit vector in x direction. a) Sketch the magnetic flux density and the

More information

Solar-cycle variations of interaction regions: in-ecliptic observations from 1 to 5 AU

Solar-cycle variations of interaction regions: in-ecliptic observations from 1 to 5 AU Solar-cycle variations of interaction regions: in-ecliptic observations from 1 to 5 AU J. Américo González-Esparza Instituto de Geofísica, UNAM, México D.F., México Received: November 6, 1998; accepted:

More information

Expected in Situ Velocities from a Hierarchical Model for Expanding Interplanetary Coronal Mass Ejections

Expected in Situ Velocities from a Hierarchical Model for Expanding Interplanetary Coronal Mass Ejections Solar Physics DOI: 10.1007/ - - - - Expected in Situ Velocities from a Hierarchical Model for Expanding Interplanetary Coronal Mass Ejections P. Démoulin 1, M.S. Nakwacki 2, S. Dasso 2,3, C.H. Mandrini

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Basic plasma physics

Basic plasma physics Basic plasma physics SPAT PG Lectures Jonathan Eastwood 10-14 October 2016 Aims Provide new PhD students in SPAT and the SPC section with an overview of the most important principles in space plasma physics,

More information

13. REDUCED MHD. Since the magnetic field is almost uniform and uni-directional, the field has one almost uniform component ( B z

13. REDUCED MHD. Since the magnetic field is almost uniform and uni-directional, the field has one almost uniform component ( B z 13. REDUCED MHD One often encounters situations in which the magnetic field is strong and almost unidirectional. Since a constant field does not produce a current density, these fields are sometimes said

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

SOLAR MHD Lecture 2 Plan

SOLAR MHD Lecture 2 Plan SOLAR MHD Lecture Plan Magnetostatic Equilibrium ü Structure of Magnetic Flux Tubes ü Force-free fields Waves in a homogenous magnetized medium ü Linearized wave equation ü Alfvén wave ü Magnetoacoustic

More information

Open magnetic structures - Coronal holes and fast solar wind

Open magnetic structures - Coronal holes and fast solar wind Open magnetic structures - Coronal holes and fast solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal holes and fast solar wind Origin of solar wind in magnetic

More information

ICMs and the IPM: Birds of a Feather?

ICMs and the IPM: Birds of a Feather? ICMs and the IPM: Birds of a Feather? Tom Jones University of Minnesota 11 November, 2014 KAW8: Astrophysics of High-Beta Plasma in the Universe 1 Outline: ICM plasma is the dominant baryon component in

More information

MHD Flow Field and Momentum Transfer Process of Magneto-Plasma Sail

MHD Flow Field and Momentum Transfer Process of Magneto-Plasma Sail J. Plasma Fusion Res. SERIES, Vol. 8 (2009) MHD Flow Field and Momentum Transfer Process of Magneto-Plasma Sail Hiroyuki NISHIDA, Ikkoh FUNAKI, Yoshifumi INATANI 1) and Kanya KUSANO 2) University of Tokyo,

More information

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 B. Srinivasan 2, U. Shumlak Aerospace and Energetics Research Program University of Washington,

More information

E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS

E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Magnetohydrodynamics Magnetohydrodynamics (or MHD for short) is the study of the interaction between a magnetic field and a plasma treated as a continuous medium (e.g. Cowling 1957, Roberts 1967, Priest

More information

NUMERICAL STUDIES OF WEAKLY STOCHASTIC MAGNETIC RECONNECTION

NUMERICAL STUDIES OF WEAKLY STOCHASTIC MAGNETIC RECONNECTION RevMexAA (Serie de Conferencias), 36, 89 96 (2009) NUMERICAL STUDIES OF WEAKLY STOCHASTIC MAGNETIC RECONNECTION G. Kowal, 1,2 A. Lazarian, 1 E. T. Vishniac 3 and K. Otmianowska-Mazur 2 RESUMEN Estudiamos

More information

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch 1 Two Fluid Dynamo and Edge-Resonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of Wisconsin-Madison, Madison,

More information

MAGNETOHYDRODYNAMICS

MAGNETOHYDRODYNAMICS Chapter 6 MAGNETOHYDRODYNAMICS 6.1 Introduction Magnetohydrodynamics is a branch of plasma physics dealing with dc or low frequency effects in fully ionized magnetized plasma. In this chapter we will study

More information

Cecilia María Guerra Olvera

Cecilia María Guerra Olvera Universidad de Guanajuato Divisi on de Ciencias Naturales y Exactas Revisiting the Wilson-Bappu Effect Por Cecilia María Guerra Olvera Una tesis sometida al Departamento de Astronom ıa como requisito para

More information

ENGI 4430 Gauss & Stokes Theorems; Potentials Page 10.01

ENGI 4430 Gauss & Stokes Theorems; Potentials Page 10.01 ENGI 443 Gauss & tokes heorems; Potentials Page.. Gauss Divergence heorem Let be a piecewise-smooth closed surface enclosing a volume in vector field. hen the net flux of F out of is F d F d, N 3 and let

More information

ASTR-3760: Solar & Space Physics...Spring 2017

ASTR-3760: Solar & Space Physics...Spring 2017 ASTR-3760: Solar & Space Physics...Spring 2017 Review material for midterm exam (March 22, 2017) Although I m not recommending full-on memorization of everything in this document, I do think it s important

More information

MHD Modes of Solar Plasma Structures

MHD Modes of Solar Plasma Structures PX420 Solar MHD 2013-2014 MHD Modes of Solar Plasma Structures Centre for Fusion, Space & Astrophysics Wave and oscillatory processes in the solar corona: Possible relevance to coronal heating and solar

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 30 2007 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Nick Murphy Harvard-Smithsonian Center for Astrophysics namurphy@cfa.harvard.edu http://www.cfa.harvard.edu/ namurphy/ November 18,

More information

Coronal Heating Problem

Coronal Heating Problem PHY 690C Project Report Coronal Heating Problem by Mani Chandra, Arnab Dhabal and Raziman T V (Y6233) (Y7081) (Y7355) Mentor: Dr. M.K. Verma 1 Contents 1 Introduction 3 2 The Coronal Heating Problem 4

More information

MODELLING TWISTED FLUX TUBES PHILIP BRADSHAW (ASTROPHYSICS)

MODELLING TWISTED FLUX TUBES PHILIP BRADSHAW (ASTROPHYSICS) MODELLING TWISTED FLUX TUBES PHILIP BRADSHAW (ASTROPHYSICS) Abstract: Twisted flux tubes are important features in the Universe and are involved in the storage and release of magnetic energy. Therefore

More information

Resistive MHD, reconnection and resistive tearing modes

Resistive MHD, reconnection and resistive tearing modes DRAFT 1 Resistive MHD, reconnection and resistive tearing modes Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK (This version is of 6 May 18 1. Introduction

More information

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models 0-0 Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program, University of Washington, Seattle,

More information

Particle acceleration in stressed coronal magnetic fields

Particle acceleration in stressed coronal magnetic fields To be submitted to ApJ Letters Particle acceleration in stressed coronal magnetic fields R. Turkmani 1,L.Vlahos 2, K. Galsgaard 3,P.J.Cargill 1 and H. Isliker 2 ABSTRACT This letter presents an analysis

More information

The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event

The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event Chin Chun Wu 1, Kan Liou 2, Bernard Jackson 3, Hsiu Shan Yu 3, Lynn Hutting 1, R. P. Lepping 4, Simon Plunkett

More information

- Marine Hydrodynamics. Lecture 14. F, M = [linear function of m ij ] [function of instantaneous U, U, Ω] not of motion history.

- Marine Hydrodynamics. Lecture 14. F, M = [linear function of m ij ] [function of instantaneous U, U, Ω] not of motion history. 2.20 - Marine Hydrodynamics, Spring 2005 ecture 14 2.20 - Marine Hydrodynamics ecture 14 3.20 Some Properties of Added-Mass Coefficients 1. m ij = ρ [function of geometry only] F, M = [linear function

More information

Shocks in the ICM and the IPM

Shocks in the ICM and the IPM Shocks in the ICM and the IPM Tom Jones (University of Minnesota) 1 Outline Setting the stage for following talks The Interplanetary and Intracluster Media as Collisionless Plasmas Basic Introduction to

More information

Basics of MHD. Kandaswamy Subramanian a. Pune , India. a Inter-University Centre for Astronomy and Astrophysics,

Basics of MHD. Kandaswamy Subramanian a. Pune , India. a Inter-University Centre for Astronomy and Astrophysics, Basics of MHD Kandaswamy Subramanian a a Inter-University Centre for Astronomy and Astrophysics, Pune 411 007, India. The magnetic Universe, Feb 16, 2015 p.0/27 Plan Magnetic fields in Astrophysics MHD

More information

Konvektion und solares Magnetfeld

Konvektion und solares Magnetfeld Vorlesung Physik des Sonnensystems Univ. Göttingen, 2. Juni 2008 Konvektion und solares Magnetfeld Manfred Schüssler Max-Planck Planck-Institut für Sonnensystemforschung Katlenburg-Lindau Convection &

More information

Introduction to the Sun and the Sun-Earth System

Introduction to the Sun and the Sun-Earth System Introduction to the Sun and the Sun-Earth System Robert Fear 1,2 R.C.Fear@soton.ac.uk 1 Space Environment Physics group University of Southampton 2 Radio & Space Plasma Physics group University of Leicester

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Superposed epoch study of ICME sub-structures near Earth and their effects on galactic cosmic rays

Superposed epoch study of ICME sub-structures near Earth and their effects on galactic cosmic rays Astronomy & Astrophysics manuscript no. paper c ESO 2016 August 10, 2016 Superposed epoch study of ICME sub-structures near Earth and their effects on galactic cosmic rays Masías-Meza, J.J. 1, Dasso, S.

More information

Constrained Transport Method for the Finite Volume Evolution Galerkin Schemes with Application in Astrophysics

Constrained Transport Method for the Finite Volume Evolution Galerkin Schemes with Application in Astrophysics Project work at the Department of Mathematics, TUHH Constrained Transport Method for the Finite Volume Evolution Galerkin Schemes with Application in Astrophysics Katja Baumbach April 4, 005 Supervisor:

More information

Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University

Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University Email: cerfon@cims.nyu.edu SULI Introductory Course in Plasma Physics, June 6, 2016 PART I: DESCRIBING

More information