Alfred University Dept. of Physics and Astronomy

Size: px
Start display at page:

Download "Alfred University Dept. of Physics and Astronomy"

Transcription

1 Lecture 16:he ool- Narayanaswamy- Moynihan Equa;on Part II and DSC March 11, 21 Dr. Roger Loucks Alfred University Dept. of Physics and Astronomy

2 First, let s review! Narayanaswamy assumed that M p (t) obeys RS. ξ = t τ t r dt' dt'= τ τ P ( t' ) r τ P [ ] [ ( t' )] M p 2 ( t) = t f 1 2 M p 2 ( ξ) = ξ f 1 2 p( 2,ξ) = p( 2, ) α s ΔM p ( ξ) ( ξ) 2 = M p ( ξ)δ

3 N = + Δ 1 + Δ Δ N = + Δ i i=1 Δ 1 Δ 2 Δ 3 t 1 t 2 t 3 p( 2,ξ) = p( 2, ) α s ΔM p ( ξ) ( ξ) 2 = M p ( ξ)δ N p(,ξ) = p(, ) α s M p ( ξ ξ i ) i=1 Δ( ξ) Δξ i Δξ i N = M p ξ ξ i i=1 Δ( ξ) Δξ i Δξ i p (,ξ ξ ) = p(, ) α s M p ( ξ ξ' ) dξ' dξ' ξ = M p ξ ξ' dξ' dξ'

4 τ p = τ exp xδh R + ( 1 x )ΔH R where < x < 1 Arrhenius term A dependence just like ool! he ool- Narayanaswamy- Moynihan equa;ons are ξ p(,ξ) = p(, ) α s M p ( ξ ξ' ) dξ' dξ' ξ and = M p ξ ξ' dξ' dξ' and some form for τ p such as τ p = τ exp xδh R + ( 1 x )ΔH R

5 DSC: Differen;al Scanning Calorimetry as a Black Box. By a black box, I mean 1) what are the inputs and 2) what is the output. Ignore the details of how the apparatus works. Q(t ) DSC Unknown sample (t ) i.e. dt A given vs. t is specified i.e. dq dt he output is the Q vs. t required to produce the specified vs. t he ra;o of the output to input is dq dt = dq = C dt p

6 B) Linear hea;ng a glass that was linearly cooled i.e. an up scan i H t C P L C P g As the glass is relaxing toward the super cooled equilibrium line, heat is given off i.e. H is decreasing so this region is exothermic.

7 D) A linear up scan on an annealed glass i t C P L H C P g g

8 A = B Y.Z. Yue Chemical Physics Leders 357 (22) ( C P C P ) c e = C C P,L P,g g Well worth reading!! G A is the area of the bird C p,l C p C p 2 C p,g B is the area of this trapezoid C p 1 c

9 Pulling all of the pieces together! ξ Is there any deeper meaning to = M p ( ξ ξ' ) dξ' dξ'? What can we use for the response M p. From experiments, M p can be fit with a stretched exponent M p ( ξ ) = exp ξ τ r b Let s subs;tute M p into the expression ξ = M p ξ ξ' dξ' dξ'= ξ b ξ ξ' exp τ p dξ' dξ'

10 Using the Prony series approxima;on to the stretched exponen;al, we obtain = exp ξ ξ' b ξ τ p dξ' dξ'= ξ N a n n =1 ξ ξ' exp τ n dξ' dξ' = a n exp ξ ξ' N ξ n =1 τ n dξ' dξ'= N a ξ e n n =1 ξ ξ ' τ n dξ' dξ' Recall that the a n s sum to 1. We can then rewrite the above equa;on as N ξ = a n e n =1 N ξ = a n e n =1 ξ ξ ' τ n ξ ξ ' τ n dξ' dξ'= dξ' dξ' N a N ξ a n n e n =1 = 1 n =1 ξ ξ ' τ n dξ' dξ'

11 = a n e N ξ n =1 ξ ξ ' τ n dξ' dξ' Does this look familiar????? Look back at the last lecture It is just Narayanaswamy s equa;on for a single τ n which reduced to ool s eq!!!!! We now have N ool equa;ons. We have come back full circle. Let s call the fic;ve temperature associated with each term in the { },n, so we now have N = a n,n n =1 What is the meaning of this equa;on? Each relaxa;on ;me τ n has its own fic;ve temperature. can be viewed as a weighted sum of the individual fic;ve temperatures for various relaxa;on process.

12 Is there anything else that we can obtain from DSC and compare with theore;cal calcula;on? Yes! We can use DSC to measure d /. We can then use NM to vs. t. If we know the cooling rate q = /dt then d = d dt dt = 1 q t d dt measure calculate How can we measure d /drom DSC? Moynihan was an expert at this!

13 We can define the fic;ve temperature in the following fashion H( ) = H eq C P,g ' Since <, H decreases by C P,g. In addi;on, we can write H( ) = H eq ( ) + C P ' where is the ini;al Further, we can write the equilibrium H eq as H eq ( ) = H eq + C P,L ' Now subs;tute H(t) and H eq () into our top expression yields H eq + C P ' = H eq + C P,L ' C P,g '

14 So we now have C P ' = C P,L ' C P,g ' If we now subtract C P,g ' from both sides we obtain C P ' C P,g ' = C P,L ' C P,g ' C P,g ' ( C P C P,g )' = C P,L ' C P,g ' C P,g ' split this integral into two pieces

15 Splikng the last integral on the right into two pieces gives ( C P C P,g )' = C P,L ' C P,g ' C P,g ' ( C P C P,g )' = C P,L ' C P,g ' C P,g ' C P,g ' switching the limits C P,g '= C P,g ' We now obtain ( C P C P,g )' = ( C P,L C P,g )' Very soon we will see how Moynihan used this expression to find.

16 But wait there s more!!!!!!! Recall the fundamental theorem of calculus x = f x F x a dx where a is a constant df dx = f x What happens if F(x) is a composite func;on, i.e. F(g(x))? g ( x ) F( g( x) ) = f x a dx Need to use the chain rule ( ) df g x dx ( ) = df g x dg x dg dx = f g x ( ) dg dx

17 Apply the fundamental theorem of calculus for a composite func;on to our expression ( C P C P,g )' = ( C P,L C P,g )' [ C p ( ) C P,g ( ) ] = C p,l [ C P,g ( )] d d = C p [ C P,g ( ) ] [ C p,l ( ) C P,g ( )] Using DSC you can measure every term on the right side Calculate this with NM eq.

18 How did Moynihan use this expression to find? ( C P C P,g )' = ( C P,L C P,g )' Consider the C p graph for a liquid that is cooled through the glass transi;on and then reheated through the glass transi;on. he H vs. graphs and C p vs graphs are 2 t C P L H C P g

19 Moynihan s Method orange ( C P C P,g )' Area bounded by C p and C P,g C P L ( C P,L C P,g )' purple Area of the trapezoid C P g In Moynihan s method, approaches a lower limit of g

20 In prac;ce how do you solve the NM equa;ons ξ p(,ξ) = p(, ) α s M p ( ξ ξ' ) dξ' dξ' ξ and = M p ξ ξ' dξ' dξ' Assume some form for τ P. ypically τ P = τ exp xδh R + ( 1 x )ΔH R Recall that the reduced ;me is given by ξ = t τ t r dt' dt'= τ τ P ( t' ) r τ P [ ] [ ( t' )] Assume that M p can be approximated by a stretched exponen;al M p ξ = exp ξ τ r b

21 Rewrite the reduced ;me ξ in terms of and the hea;ng/cooling q = /dt t ξ = τ r dt' τ P ξ = τ r t τ P dt' ' ' ' = τ r ' qτ P ' If we have a func;on of ξ ξ as we do in M p then ' ' '' ξ ξ'= τ r τ qτ P ( ' ) r qτ P '' ' ' ' ' '' ξ ξ'= τ r + τ qτ P ( ' ) r τ ' qτ P ( ' ) r qτ P '' ξ ξ'= τ r ' '' qτ P '' split the integral

22 We now break up the (t) into N sec;on as = + Δ i he NM eq. for can now be wriden as N i=1 ξ = M p ξ ξ' dξ' dξ' = M p ( ξ ξ' ) = exp ξ ξ' b τ r = Δ i exp ξ ξ' b N N i=1 τ f = Δ i exp i=1 ' r '' qτ P '' b ξ ξ'= τ r ' '' qτ P ''

23 Finally N = Δ i exp i=1 ' '' qτ P '' b N N Δ = Δ i exp j i=1 j =i q j τ P, j b he τ p is tricky since it depends on τ P = τ exp xδh R + ( 1 x )ΔH R

24 Use the following cute trick with τ p If we break into temperature steps that are small, it would not be unreasonable to assume that τ p at temperature step i is very close in value to τ p at temperature step i- 1 So instead of wri;ng t p at temperature step i as τ P,i = τ exp xδh R i ( + 1 x )ΔH R,i We can write τ p,i as τ P,i = τ exp xδh R i ( + 1 x )ΔH R,i 1 his is fine since we need to know the ini;al condi;on of i.e. (), = a given. We need to take smaller and smaller Δ un;l this approxima;on as no effect.

25 So what do we need to actually do a NM calcula;on? We need 4 parameters: b for the stretched exponen;al M p ( ξ ) = exp ξ τ r b t dt' where ξ = τ r t' τ P [ ] and τ o, x, and ΔH for τ P,i = τ exp xδh R i ( + 1 x )ΔH R,i 1 We also need the thermal path, (t), and the ini;al value (). N N Δ hen use Excel or some other program to iterate = Δ i exp j i=1 j =i q j τ P, j b

26 Repeat this procedure for ξ p(,ξ) = p(, ) α s M p ( ξ ξ' ) dξ' dξ' Finally an applica;on!!

27 It is well known that the index of refraction of glasses, n, varies with the cooling rate. Recall the Ritland and Napolitano and Spinner experiments. Further, it has been empirically determined that n depends on the prior cooling rate in the following fashion. n d ( h X ) = n d ( h ) + m nd ln h x h where h X and h are two different cooling rates and m nd is typically a negative constant. Can NM shed any insight into this expression?

28 What assumptions did they make? Over the visible range, the index of refraction will have a strong density dependence. Assume that the density is a linear function of the fictive temperature. Further, assume that there is only one univerisal for the enthalpy, density and n. n( λ) = n( λ) ref + n ( λ ),ref How can we calculate? Ref: U. Fotheringham et al. Refractive Index Drop Observed After Molding of Optical Elements: A Quantitative Understanding Based on the ool- Narayanswamy-Moynihan Model, J. Am. Ceram. Soc., [3] (28) Ref: U. Fotheringham et al. Evaluation of the Calorimetric Glass ransition of Glasses and Glass Ceramics with Respect to Structural Relaxation and Dimensional Stability, hermochimica Acta, 461 [1-2] (27)

29 Use NM ( t) = ( t) ς dς' exp[ ( ς ς' ) b ]dς' where ς = t dt' τ t' and [ ] = τ exp H R τ ( t), t x t + 1 x ( t) x =.789 he parameters used for one glass are t = 1.68 x 1-46 s H/k = b =.656 he boundary condition they use it = above the glass transition.

30 Some results! wo different glasses. Each glass was taken through two different cooling rates. glass 1 glass 2 F A comparison of DSC with NM. Excellent agreement!!!!

31 more results n d n d n d n d

32 hank You! Any questions?

Lecture 15:The Tool-Narayanaswamy-Moynihan Equation Part II and DSC

Lecture 15:The Tool-Narayanaswamy-Moynihan Equation Part II and DSC Lecture 15:The Tool-Narayanaswamy-Moynihan Equation Part II and DSC March 9, 2010 Dr. Roger Loucks Alfred University Dept. of Physics and Astronomy loucks@alfred.edu Thank you for taking me home! My eyes

More information

SAMPLE ANSWERS TO HW SET 3B

SAMPLE ANSWERS TO HW SET 3B SAMPLE ANSWERS TO HW SET 3B First- Please accept my most sincere apologies for taking so long to get these homework sets back to you. I have no excuses that are acceptable. Like last time, I have copied

More information

DSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility

DSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility DSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility R. B. Cassel, Ph.D. TA Instruments, 109 Lukens Drive, New Castle, DE 19720, USA ABSTRACT The specific

More information

Lecture 7 - Separable Equations

Lecture 7 - Separable Equations Lecture 7 - Separable Equations Separable equations is a very special type of differential equations where you can separate the terms involving only y on one side of the equation and terms involving only

More information

5.2 Infinite Series Brian E. Veitch

5.2 Infinite Series Brian E. Veitch 5. Infinite Series Since many quantities show up that cannot be computed exactly, we need some way of representing it (or approximating it). One way is to sum an infinite series. Recall that a n is the

More information

Exponen'al func'ons and exponen'al growth. UBC Math 102

Exponen'al func'ons and exponen'al growth. UBC Math 102 Exponen'al func'ons and exponen'al growth Course Calendar: OSH 4 due by 12:30pm in MX 1111 You are here Coming up (next week) Group version of Quiz 3 distributed by email Group version of Quiz 3 due in

More information

Parametric Equations, Function Composition and the Chain Rule: A Worksheet

Parametric Equations, Function Composition and the Chain Rule: A Worksheet Parametric Equations, Function Composition and the Chain Rule: A Worksheet Prof.Rebecca Goldin Oct. 8, 003 1 Parametric Equations We have seen that the graph of a function f(x) of one variable consists

More information

Web Course Physical Properties of Glass. Range Behavior

Web Course Physical Properties of Glass. Range Behavior Web Course Physical Properties of Glass Glass Transformation- Range Behavior Richard K. Brow Missouri University of Science & Technology Department of Materials Science & Engineering Glass Transformation-1

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

ECE 8440 Unit 17. Parks- McClellan Algorithm

ECE 8440 Unit 17. Parks- McClellan Algorithm Parks- McClellan Algorithm ECE 8440 Unit 17 The Parks- McClellan Algorithm is a computer method to find the unit sample response h(n for an op=mum FIR filter that sa=sfies the condi=ons of the Alterna=on

More information

Sub -T g Relaxation in Thin Glass

Sub -T g Relaxation in Thin Glass Sub -T g Relaxation in Thin Glass Prabhat Gupta The Ohio State University ( Go Bucks! ) Kyoto (January 7, 2008) 2008/01/07 PK Gupta(Kyoto) 1 Outline 1. Phenomenology (Review). A. Liquid to Glass Transition

More information

Lecture 2: Transfer theory. Credit: Kees Dullemond

Lecture 2: Transfer theory. Credit: Kees Dullemond Lecture 2: Transfer theory Credit: Kees Dullemond What is radia:ve transfer? Radia:ve transfer is the physical phenomenon of energy transfer in the form of electromagne:c radia:on The propaga:on of radia:on

More information

Unit 7 Exponential Functions. Mrs. Valen+ne Math III

Unit 7 Exponential Functions. Mrs. Valen+ne Math III Unit 7 Exponential Functions Mrs. Valen+ne Math III 7.1 Exponential Functions Graphing an Exponen.al Func.on Exponen+al Func+on: a func+on in the form y = ab x, where a 0, b > 0 and b 1 Domain is all real

More information

Energy. On the ground, the ball has no useful poten:al or kine:c energy. It cannot do anything.

Energy. On the ground, the ball has no useful poten:al or kine:c energy. It cannot do anything. Energy What is energy? It can take many forms but a good general defini:on is that energy is the capacity to perform work or transfer heat. In other words, the more energy something has, the more things

More information

Lecture 22: Integration by parts and u-substitution

Lecture 22: Integration by parts and u-substitution Lecture 22: Integration by parts and u-substitution Victoria LEBED, lebed@maths.tcd.ie MA1S11A: Calculus with Applications for Scientists December 1, 2017 1 Integration vs differentiation From our first

More information

Least Squares Regression

Least Squares Regression Least Squares Regression Chemical Engineering 2450 - Numerical Methods Given N data points x i, y i, i 1 N, and a function that we wish to fit to these data points, fx, we define S as the sum of the squared

More information

The Basics of Physics with Calculus Part II. AP Physics C

The Basics of Physics with Calculus Part II. AP Physics C The Basics of Physics with Calculus Part II AP Physics C The AREA We have learned that the rate of change of displacement is defined as the VELOCITY of an object. Consider the graph below v v t lim 0 dx

More information

7. Quantum Monte Carlo (QMC)

7. Quantum Monte Carlo (QMC) Molecular Simulations with Chemical and Biological Applications (Part I) 7. Quantum Monte Carlo (QMC) Dr. Mar(n Steinhauser 1 HS 2014 Molecular Simula(ons with Chemical and Biological Applica(ons 1 Introduc5on

More information

Example 3.3 Moving-average filter

Example 3.3 Moving-average filter 3.3 Difference Equa/ons for Discrete-Time Systems A Discrete-/me system can be modeled with difference equa3ons involving current, past, or future samples of input and output signals Example 3.3 Moving-average

More information

What is the ph of a 1.0 L 1M HCl solu7on that has reacted with 1.0L of a 1M NaOH solu7on?

What is the ph of a 1.0 L 1M HCl solu7on that has reacted with 1.0L of a 1M NaOH solu7on? 5.1.12 What is the ph of a 1.0 L 1M HCl solu7on that has reacted with 1.0L of a 1M NaOH solu7on? Today fundamentals of 7tra7on Calculate expected ph resul7ng from 7tra7on of a strong acid with a strong

More information

Determination of the fictive temperature for a hyperquenched glass

Determination of the fictive temperature for a hyperquenched glass 3 May 2002 Chemical Physics Letters 357 (2002) 20 24 www.elsevier.com/locate/cplett Determination of the fictive temperature for a hyperquenched glass Y.Z. Yue *, J.deC. Christiansen, S.L. Jensen Danish

More information

Thermal and Structual Properties of Candidate Moldable Glass Types

Thermal and Structual Properties of Candidate Moldable Glass Types Clemson University TigerPrints All Theses Theses 8-2008 Thermal and Structual Properties of Candidate Moldable Glass Types Scott Gaylord Clemson University, sgaylor@clemson.edu Follow this and additional

More information

Numerical Methods in Physics

Numerical Methods in Physics Numerical Methods in Physics Numerische Methoden in der Physik, 515.421. Instructor: Ass. Prof. Dr. Lilia Boeri Room: PH 03 090 Tel: +43-316- 873 8191 Email Address: l.boeri@tugraz.at Room: TDK Seminarraum

More information

Math 10A MIDTERM #1 is in Peter 108 at 8-9pm this Wed, Oct 24

Math 10A MIDTERM #1 is in Peter 108 at 8-9pm this Wed, Oct 24 Math 10A MIDTERM #1 is in Peter 108 at 8-9pm this Wed, Oct 24 Log in TritonEd to view your assigned seat. Midterm covers Sec?ons 1.1-1.3, 1.5, 1.6, 2.1-2.4 which are homeworks 1, 2, and 3. You don t need

More information

3 Applications of partial differentiation

3 Applications of partial differentiation Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives

More information

Lecture 4 Quantum Electrodynamics (QED)

Lecture 4 Quantum Electrodynamics (QED) Lecture 4 Quantum Electrodynamics (QED) An introduc9on to the quantum field theory of the electromagne9c interac9on 22/1/10 Par9cle Physics Lecture 4 Steve Playfer 1 The Feynman Rules for QED Incoming

More information

1 Lecture 18: The chain rule

1 Lecture 18: The chain rule 1 Lecture 18: The chain rule 1.1 Outline Comparing the graphs of sin(x) an sin(2x). The chain rule. The erivative of a x. Some examples. 1.2 Comparing the graphs of sin(x) an sin(2x) We graph f(x) = sin(x)

More information

MA/CS 109 Lecture 7. Back To Exponen:al Growth Popula:on Models

MA/CS 109 Lecture 7. Back To Exponen:al Growth Popula:on Models MA/CS 109 Lecture 7 Back To Exponen:al Growth Popula:on Models Homework this week 1. Due next Thursday (not Tuesday) 2. Do most of computa:ons in discussion next week 3. If possible, bring your laptop

More information

S A 0.6. Units of J/mol K S U /N

S A 0.6. Units of J/mol K S U /N Solutions to Problem Set 5 Exercise 2. Consider heating a body A, of constant heat capacity J/ C and initially at temperature K, to a nal temperature of 2K. The heating takes place by sequentially placing

More information

PHYSICAL AGEING EFFECT IN Se 75 Te 20 In 5 CHALCOGENIDE GLASS

PHYSICAL AGEING EFFECT IN Se 75 Te 20 In 5 CHALCOGENIDE GLASS Chalcogenide Letters Vol. 14, No. 5, May 2017, p. 203-209 PHYSICAL AGEING EFFECT IN Se 75 Te 20 In 5 CHALCOGENIDE GLASS M. M. A. IMRAN a, O. A. LAFI a*, N. MEHTA b, A. F. ALSHWABKEH c, A. A. SHAHEEN d,

More information

Theory and Applica>on of Gas Turbine Systems

Theory and Applica>on of Gas Turbine Systems Theory and Applica>on of Gas Turbine Systems Part II: Actual Sha. Power Cycles Munich Summer School at University of Applied Sciences Prof. Kim A. Shollenberger Actual Sha@ Power Cycles: Compressor and

More information

Thermal analysis of Li 2 O TeO 2 glass

Thermal analysis of Li 2 O TeO 2 glass Journal of Non-Crystalline Solids 271 (2000) 12±17 www.elsevier.com/locate/jnoncrysol Thermal analysis of Li 2 O TeO 2 glass I. Avramov a, *, G. Guinev a, A.C.M. Rodrigues b a Institute of Physical Chemistry,

More information

q x = k T 1 T 2 Q = k T 1 T / 12

q x = k T 1 T 2 Q = k T 1 T / 12 Conductive oss through a Window Pane q T T 1 Examine the simple one-dimensional conduction problem as heat flow through a windowpane. The window glass thickness,, is 1/8 in. If this is the only window

More information

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards 4.1 The Derivative Recall: For the slope of a line we need two points (x 1,y 1 ) and (x 2,y 2 ). Then the slope is given by the formula: m = y x = y 2 y 1 x 2 x 1 On a curve we can find the slope of a

More information

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write, Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective

ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective Introduction In this experiment, you will use thin-film evaporator (TFE) to separate a mixture of water and ethylene glycol (EG). In a TFE a mixture of two fluids runs down a heated inner wall of a cylindrical

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

Complex Differentials and the Stokes, Goursat and Cauchy Theorems

Complex Differentials and the Stokes, Goursat and Cauchy Theorems Complex Differentials and the Stokes, Goursat and Cauchy Theorems Benjamin McKay June 21, 2001 1 Stokes theorem Theorem 1 (Stokes) f(x, y) dx + g(x, y) dy = U ( g y f ) dx dy x where U is a region of the

More information

Bellman s Curse of Dimensionality

Bellman s Curse of Dimensionality Bellman s Curse of Dimensionality n- dimensional state space Number of states grows exponen

More information

1. The accumulated net change function or area-so-far function

1. The accumulated net change function or area-so-far function Name: Section: Names of collaborators: Main Points: 1. The accumulated net change function ( area-so-far function) 2. Connection to antiderivative functions: the Fundamental Theorem of Calculus 3. Evaluating

More information

CHAPTER 9 LECTURE NOTES

CHAPTER 9 LECTURE NOTES CHAPTER 9 LECTURE NOTES 9.1, 9.2: Rate of a reaction For a general reaction of the type A + 3B 2Y, the rates of consumption of A and B, and the rate of formation of Y are defined as follows: Rate of consumption

More information

Solve by equating exponents

Solve by equating exponents EXAMPLE 1 x Solve 4 = 1 Solve by equating exponents x 3 SOLUTION x 1 4 = x x 3 1 ( ) = ( ) x x + 3 = x = x + 3 x = 1 x 3 Write original equation. Rewrite 4 and base. 1 as powers with Power of a power property

More information

How to Use Calculus Like a Physicist

How to Use Calculus Like a Physicist How to Use Calculus Like a Physicist Physics A300 Fall 2004 The purpose of these notes is to make contact between the abstract descriptions you may have seen in your calculus classes and the applications

More information

Phase Transitions. µ a (P c (T ), T ) µ b (P c (T ), T ), (3) µ a (P, T c (P )) µ b (P, T c (P )). (4)

Phase Transitions. µ a (P c (T ), T ) µ b (P c (T ), T ), (3) µ a (P, T c (P )) µ b (P, T c (P )). (4) Phase Transitions A homogeneous equilibrium state of matter is the most natural one, given the fact that the interparticle interactions are translationally invariant. Nevertheless there is no contradiction

More information

We first review various rules for easy differentiation of common functions: The same procedure works for a larger number of terms.

We first review various rules for easy differentiation of common functions: The same procedure works for a larger number of terms. 1 Math 182 Lecture Notes 1. Review of Differentiation To differentiate a function y = f(x) is to find its derivative f '(x). Another standard notation for the derivative is Dx(f(x)). Recall the meanings

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

Overview - Previous lecture 1/2

Overview - Previous lecture 1/2 Overview - Previous lecture 1/2 Derived the wave equation with solutions of the form We found that the polarization of the material affects wave propagation, and found the dispersion relation ω(k) with

More information

Chem Page IX - 1 LAB MANUAL Differential Scanning Calorimetry 09_dsc131.docx EXPERIMENT IX

Chem Page IX - 1 LAB MANUAL Differential Scanning Calorimetry 09_dsc131.docx EXPERIMENT IX Chem 366-3 Page IX - 1 LAB MANUAL Differential Scanning Calorimetry 09_dsc131.docx EXPERIMENT IX KINETICS OF DECOMPOSITION OF SODIUM BICARBONATE; A DIFFERENTIAL SCANNING CALORIMETRY EXPERIMENT 1. Purpose

More information

Introduction Growthequations Decay equations Forming differential equations Case studies Shifted equations Test INU0115/515 (MATHS 2)

Introduction Growthequations Decay equations Forming differential equations Case studies Shifted equations Test INU0115/515 (MATHS 2) GROWTH AND DECAY CALCULUS 12 INU0115/515 (MATHS 2) Dr Adrian Jannetta MIMA CMath FRAS Growth and Decay 1/ 24 Adrian Jannetta Introduction Some of the simplest systems that can be modelled by differential

More information

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim Limits at Infinity and Horizontal Asymptotes As we prepare to practice graphing functions, we should consider one last piece of information about a function that will be helpful in drawing its graph the

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

Reaction rate. reaction rate describes change in concentration of reactants and products with time -> r = dc j

Reaction rate. reaction rate describes change in concentration of reactants and products with time -> r = dc j Reaction rate ChE 400 - Reactive Process Engineering reaction rate describes change in concentration of reactants and products with time -> r = dc j /dt r is proportional to the reactant concentrations

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

25. Chain Rule. Now, f is a function of t only. Expand by multiplication: 25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a two-variable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).

More information

ON FRACTIONAL RELAXATION

ON FRACTIONAL RELAXATION Fractals, Vol. 11, Supplementary Issue (February 2003) 251 257 c World Scientific Publishing Company ON FRACTIONAL RELAXATION R. HILFER ICA-1, Universität Stuttgart Pfaffenwaldring 27, 70569 Stuttgart,

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

Exam Two. Phu Vu. test Two. Take home group test April 13 ~ April 18. Your group alias: Your group members: Student name

Exam Two. Phu Vu. test Two. Take home group test April 13 ~ April 18. Your group alias: Your group members: Student name Exam Two Take home group test April 3 ~ April 8 Your group alias: Your group members: (leave it blank if you work alone on this test) Your test score Problem Score Total page /7 Problem : (chapter 9, applications

More information

1. Use the Data for RNAse to estimate:

1. Use the Data for RNAse to estimate: Chem 78 - - Spr 1 03/14/01 Assignment 4 - Answers Thermodynamic Analysis of RNAseA Denaturation by UV- Vis Difference Absorption Spectroscopy (and Differential Scanning Calorimetry). The accompanying excel

More information

CHAPTER 15 ADIABATIC DEMAGNETIZATION

CHAPTER 15 ADIABATIC DEMAGNETIZATION 1 HAER 15 ADIAAI DEAGNEIZAION 151 Introduction One way to cool a gas is as follows First compress it isothermally his means compress it in a vessel that isn t insulated, and wait for the gas to lose any

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply

More information

The effect of processing parameters on glass fiber birefringence development and relaxation

The effect of processing parameters on glass fiber birefringence development and relaxation J. Non-Newtonian Fluid Mech. 86 (1999) 89±104 The effect of processing parameters on glass fiber birefringence development and relaxation X. Lu, E.M. Arruda, W.W. Schultz * Mechanical Engineering and Applied

More information

Fragility of Ge 40 S 60 Glass Forming Liquid

Fragility of Ge 40 S 60 Glass Forming Liquid Research & Reviews: Journal of Physics ISSN: 2278-2265 (online), ISSN: 2347-9973 (print) Volume 3, Issue 2 www.stmjournals.com Fragility of Ge 40 S 60 Glass Forming Liquid G. Saffarini 1 *, A. Saiter 2,

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.3 (the definite integral +area), 7.4 (FTC), 7.5 (additional techniques of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Lecture Notes 2: Physical Equilibria Phase Diagrams

Lecture Notes 2: Physical Equilibria Phase Diagrams Lecture Notes 2: Physical Equilibria Phase Diagrams There are number of graphical means to help to understand the relationships between the different phases of a particular substance. The first thing we

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

GG611 Structural Geology Sec1on Steve Martel POST 805

GG611 Structural Geology Sec1on Steve Martel POST 805 GG611 Structural Geology Sec1on Steve Martel POST 805 smartel@hawaii.edu Lecture 5 Mechanics Stress, Strain, and Rheology 11/6/16 GG611 1 Stresses Control How Rock Fractures hkp://hvo.wr.usgs.gov/kilauea/update/images.html

More information

21-256: Partial differentiation

21-256: Partial differentiation 21-256: Partial differentiation Clive Newstead, Thursday 5th June 2014 This is a summary of the important results about partial derivatives and the chain rule that you should know. Partial derivatives

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

Energy Diagrams 2/20/16. Energy Diagrams are a plot of the reac=on steps, or Reac=on Coordinate (X- axis) versus the Energy (Kcal or KJ) A Review

Energy Diagrams 2/20/16. Energy Diagrams are a plot of the reac=on steps, or Reac=on Coordinate (X- axis) versus the Energy (Kcal or KJ) A Review Energy Diagrams Energy Diagrams are a plot of the reac=on steps, or eac=on Coordinate (X- axis) versus the Energy (Kcal or KJ) A eview In a spontaneous reac=on, the product(s) are more stable than the

More information

Temperature-Modulated Differential Scanning Calorimetry Analysis of High- Temperature Silicate Glasses

Temperature-Modulated Differential Scanning Calorimetry Analysis of High- Temperature Silicate Glasses Temperature-Modulated Differential Scanning Calorimetry Analysis of High- Temperature Silicate Glasses Tobias K. Bechgaard 1,*, Ozgur Gulbiten 2, John C.Mauro 3, Yushu Hu 4, Mathieu Bauchy 4, Morten M.

More information

Calorimetry POGIL.notebook. December 06, 2012 POGIL ACTIVITY. Calorimetry Measurement of Heat Energy. Why?

Calorimetry POGIL.notebook. December 06, 2012 POGIL ACTIVITY. Calorimetry Measurement of Heat Energy. Why? POGIL ACTIVITY Calorimetry Measurement of Heat Energy Why? The amount of heat energy released or absorbed by a chemical or physical change can be measured using an instrument called a calorimeter. This

More information

Modeling radiocarbon in the Earth System. Radiocarbon summer school 2012

Modeling radiocarbon in the Earth System. Radiocarbon summer school 2012 Modeling radiocarbon in the Earth System Radiocarbon summer school 2012 Outline Brief introduc9on to mathema9cal modeling Single pool models Mul9ple pool models Model implementa9on Parameter es9ma9on What

More information

POD. A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x. e 7x 2

POD. A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x. e 7x 2 POD A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x e 7x 2 4.4 Evaluate Logarithms & Graph Logarithmic Functions What is a logarithm? How do you read it? What relationship exists between logs and

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

Thermal Analysis. Short Courses POLYCHAR 25 Kuala Lumpur. Copyright 2017 by Jean-Marc Saiter

Thermal Analysis. Short Courses POLYCHAR 25 Kuala Lumpur. Copyright 2017 by Jean-Marc Saiter Thermal Analysis Pr. Dr. Jean Marc Saiter Onyx développement, Hameau du Bois Ricard, 76770 Malaunay - France SMS sciences et méthodes séparatives, Université de Normandie, 76821 Mont Saint Aignan Cedex,

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 In the previous lecture, e ere introduced to the SVM algorithm and its basic motivation

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

Physical aging of thermosetting powder coatings

Physical aging of thermosetting powder coatings Progress in Organic Coatings 55 (2006) 35 42 Physical aging of thermosetting powder coatings S. Montserrat, Y. Calventus, J.M. Hutchinson Departament de Màquines i Motors Térmics, ETSEIT, Universitat Politècnica

More information

A quadratic expression is a mathematical expression that can be written in the form 2

A quadratic expression is a mathematical expression that can be written in the form 2 118 CHAPTER Algebra.6 FACTORING AND THE QUADRATIC EQUATION Textbook Reference Section 5. CLAST OBJECTIVES Factor a quadratic expression Find the roots of a quadratic equation A quadratic expression is

More information

Mathematics Edexcel Advanced Subsidiary GCE Core 3 (6665) January 2010

Mathematics Edexcel Advanced Subsidiary GCE Core 3 (6665) January 2010 Link to past paper on Edexcel website: www.edexcel.com The above link takes you to Edexcel s website. From there you click QUALIFICATIONS, GCE from 2008, under the subject list click MATHEMATICS, click

More information

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS RECALL: ANTIDERIVATIVES When we last spoke of integration, we examined a physics problem where we saw that the area under the

More information

Chapter 11 Liquids and Intermolecular Forces

Chapter 11 Liquids and Intermolecular Forces Sec$on 10.1 Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces Sec$on 10.1 Intermolecular Forces Intramolecular Bonding Within the molecule. Molecules are formed by sharing electrons between

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

DSC AS PROBLEM-SOLVING TOOL: BETTER INTERPRETATION OF Tg USING CYCLIC DSC

DSC AS PROBLEM-SOLVING TOOL: BETTER INTERPRETATION OF Tg USING CYCLIC DSC DSC AS PROBLEM-SOLVING TOOL: BETTER INTERPRETATION OF Tg USING CYCLIC DSC Problem A scientist is having difficulty in interpreting DSC results on a sample of polystyrene film. The sample exhibits a complex

More information

CH 302 Unit 3 Exam Review NUCLEAR, KINETICS, INORGANIC

CH 302 Unit 3 Exam Review NUCLEAR, KINETICS, INORGANIC CH 302 Unit 3 Exam Review NUCLEAR, KINETICS, INORGANIC Learning ObjecDves - Nuclear Explain the macroscopic observables associated with Understand and explain the concept of isotopic stability nuclear

More information

Make sure your clickers are out and ready before class starts

Make sure your clickers are out and ready before class starts No homework due this week and no quiz in Fri/Mon recita7ons. Homework #5 is due next Tuesday 16 Oct at 11:59PM We are gegng the exams graded and I will email you when you can look up the results in the

More information

Dissolving vs. phase change. What happens to the atoms and the substances?

Dissolving vs. phase change. What happens to the atoms and the substances? Dissolving vs. phase change What happens to the atoms and the substances? Atoms and molecules are the building blocks of matter! What did you learn about them from your readings? What happened in the Saltwater

More information

Polymer Chemistry Research Experience. Support: NSF Polymer Program NSF (PI: Chang Ryu)/RPI Polymer Center

Polymer Chemistry Research Experience. Support: NSF Polymer Program NSF (PI: Chang Ryu)/RPI Polymer Center Polymer Chemistry Research Experience. Support: NSF Polymer Program NSF-1308617 (PI: Chang Ryu)/RPI Polymer Center Student Name: Michael Hyams Student Affiliation (City, State): Mamaroneck, NY Picture

More information

REVERSE CHAIN RULE CALCULUS 7. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Reverse Chain Rule 1/12 Adrian Jannetta

REVERSE CHAIN RULE CALCULUS 7. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Reverse Chain Rule 1/12 Adrian Jannetta REVERSE CHAIN RULE CALCULUS 7 INU05/55 (MATHS 2) Dr Adrian Jannetta MIMA CMath FRAS Reverse Chain Rule /2 Adrian Jannetta Reversing the chain rule In differentiation the chain rule is used to get the derivative

More information

Liquid to Glass Transition

Liquid to Glass Transition Landscape Approach to Glass Transition and Relaxation (Lecture # 3, March 30) Liquid to Glass Transition Instructor: Prabhat Gupta The Ohio State University (gupta.3@osu.edu) PKGupta(OSU) Landscape #3

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

AP Physics C. Electricity and Magne4sm Review

AP Physics C. Electricity and Magne4sm Review AP Physics C Electricity and Magne4sm Review Electrosta4cs 30% Chap 22-25 Charge and Coulomb s Law Electric Field and Electric Poten4al (including point charges) Gauss Law Fields and poten4als of other

More information

Measuring the Reaction Kinetics of Polyester/PCA-501(HAA) Powder Coatings With Dielectric Analysis (DEA)

Measuring the Reaction Kinetics of Polyester/PCA-501(HAA) Powder Coatings With Dielectric Analysis (DEA) Measuring the Reaction Kinetics of Polyester/PCA-501(HAA) Powder Coatings With Dielectric Analysis (DEA) Dr. Georgi Beschiaschvili and Liselotte Tanner; and Manfred Wenzler, November 6, 2003 Figure 1a

More information

The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel

The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann Ins@tute of Science, Israel In collabora@on with: Andrew Baggaley (Glasgow, UK) 20 September 2013, Université

More information

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows:

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: H ˆ! = "!2 d 2! + 1 2µ dx 2 2 kx 2! = E! T ˆ = "! 2 2µ d 2 dx 2 V ˆ = 1 2 kx 2 H ˆ = ˆ T + ˆ V (1) where µ is

More information