The Fermionic Quantum Theory

Size: px
Start display at page:

Download "The Fermionic Quantum Theory"

Transcription

1 The Fermionic Quantum Theory CEQIP, Znojmo, May 2014 Authors: Alessandro Tosini Giacomo Mauro D Ariano Paolo Perinotti Franco Manessi Fermionic systems in computation and physics Fermionic Quantum theory Parity SSR in the Wick sense Consequences of parity SSR Violation of local tomography Work supported by: Violation of entanglement monogamy

2 Physics Computation Simulating Physics with Computers Richard P. Feynman Department of Physics, California Institute of Technology, Pasadena, California Received May 7, 1981 The question is, if we wrote a Hamiltonian which involved only these operators, locally coupled to corresponding operators on the other space-time points, could we imitate every quantum mechanical system which is discrete and has a finite number of degrees of freedom? I know, almost certainly, that we could do that for any quantum mechanical system which involves Bose particles. I'm not sure whether Fermi particles could be described by such a system. So I leave that open. Well, that's an example of what I meant by a general quantum mechanical simulator. I'm not sure that it's sufficient, because I'm not sure that it takes care of Fermi particles.

3 Physics Computation Relativity (spin-statistics) Fermionic anticommuting fields Parity superselection rule Haag, R., Local quantum physics, volume 2, Springer Berlin, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

4 Physics Computation Relativity (spin-statistics) Fermionic anticommuting fields Parity superselection rule Computation: local fermionic modes (LFM) Haag, R., Local quantum physics, volume 2, Springer Berlin, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1, Bravyi-Kitaev: Universal fermionic computation Fermionic computation is equivalent to Quantum computation S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298, 210 (2002)

5 Physics Computation Relativity (spin-statistics) Fermionic anticommuting fields Parity superselection rule Computation: local fermionic modes (LFM) Haag, R., Local quantum physics, volume 2, Springer Berlin, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1, Bravyi-Kitaev:? Universal fermionic computation Fermionic computation is equivalent to Quantum computation S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298, 210 (2002)

6 Jordan-Wigner isomorphism:

7 Jordan-Wigner isomorphism: N-LFMs = N-qubits

8 Jordan-Wigner isomorphism: N-LFMs = N-qubits Fermionic algebra {ϕ i, ϕ j } =0 {ϕ i, ϕ i } = δ iji Represent on Fock space F N C 2N s 1,...,s N := (ϕ 1 )s1 (ϕ N )s N 000 0

9 Jordan-Wigner isomorphism: N-LFMs = N-qubits Fermionic algebra {ϕ i, ϕ j } =0 {ϕ i, ϕ i } = δ iji Represent on Fock space F N C 2N s 1,...,s N := (ϕ 1 )s1 (ϕ N )s N J(ϕ i ):=σ z 1 σ z i 1 σ i I i+1 I N Local fermionic operations into nonlocal quantum operations

10 Jordan-Wigner isomorphism: N-LFMs = N-qubits Fermionic algebra {ϕ i, ϕ j } =0 {ϕ i, ϕ i } = δ iji Represent on Fock space F N C 2N s 1,...,s N := (ϕ 1 )s1 (ϕ N )s N J(ϕ i ):=σ z 1 σ z i 1 σ i I i+1 I N Local fermionic operations into nonlocal quantum operations On the top impose the Parity SSR

11 Jordan-Wigner isomorphism: N-LFMs = N-qubits Fermionic algebra {ϕ i, ϕ j } =0 {ϕ i, ϕ i } = δ iji Represent on Fock space F N C 2N s 1,...,s N := (ϕ 1 )s1 (ϕ N )s N J(ϕ i ):=σ z 1 σ z i 1 σ i I i+1 I N Local fermionic operations into nonlocal quantum operations On the top impose the Parity SSR What do we map? Where does SSR come from?

12 Fermionic Quantum Theory

13 Fermionic Quantum Theory States, effects and maps in terms of ϕ i and ϕ i

14 Fermionic Quantum Theory States, effects and maps in terms of ϕ i and ϕ i States of N-LFMs: density matrixes on the Fock space F N C 2N ρ = st ρ st N ϕ i s i ϕ i ϕ i ϕ i t i ρ st C i=1

15 Fermionic Quantum Theory States, effects and maps in terms of ϕ i and ϕ i States of N-LFMs: density matrixes on the Fock space F N C 2N ρ = st ρ st N ϕ i s i ϕ i ϕ i ϕ i t i ρ st C i=1 Prob(ρ,a):=Tr[aρ]

16 Fermionic Quantum Theory States, effects and maps in terms of ϕ i and ϕ i States of N-LFMs: density matrixes on the Fock space F N C 2N ρ = st ρ st N ϕ i s i ϕ i ϕ i ϕ i t i ρ st C i=1 Prob(ρ,a):=Tr[aρ] Transformations linear Hermitian preserving maps: KRAUS FORM T (ρ) = i s i K i ρk i s i = ±1

17 Assumptions on maps

18 Assumptions on maps Maps with single Kraus ϕ i, ϕ i or ϕ i + ϕ i are maps of the theory

19 Assumptions on maps ϕ i ϕ i ϕ i + ϕ i Maps with single Kraus, or are maps of the theory Maps with Kraus operators involving only, with are LOCAL on the LFMs in χ ϕ i ϕ i i χ. 1 LOCAL in the operational sense T.. N } χ =

20 Derivation of parity SSR Proposition. No map can have Kraus that are combination of even and odd products of fields.

21 Derivation of parity SSR Proposition. No map can have Kraus that are combination of even and odd products of fields. Proof. T (ρ) = i s i K i ρk i if K i = E i + O i for some i E i O i even number of field operators odd number of field operators

22 Derivation of parity SSR Proposition. No map can have Kraus that are combination of even and odd products of fields. Proof. T (ρ) = i s i K i ρk i if K i = E i + O i for some i E i O i even number of field operators odd number of field operators then ρ N T M N a =0 ρ St(NM), a Eff(NM)

23 Derivation of parity SSR Corollary. States must be combination of even products of field operators. F = F e F o pρe 0 ρ = 0 (1 p)ρ o ρ = p e ρ e + p o ρ o p o + p e =1

24 Derivation of parity SSR Corollary. States must be combination of even products of field operators. F = F e F o pρe 0 ρ = 0 (1 p)ρ o ρ = p e ρ e + p o ρ o p o + p e =1 Set of States of N-LFMs St R (N F )=Herm(C 2N 1 ) Herm(C 2N 1 ) = N-1 qubit state spaces

25 Parity SSRs is not conservation of Parity Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

26 Parity SSRs is not conservation of Parity SSR is an inhibition to the superposition principle parity is conserved F = F e F o never superimposed Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

27 Parity SSRs is not conservation of Parity SSR is an inhibition to the superposition principle parity is conserved F = F e F o never superimposed E.g: 2-LFMs ψ = α 10 + β 01, α 00 + β 11 Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

28 Parity SSRs is not conservation of Parity SSR is an inhibition to the superposition principle parity is conserved F = F e F o never superimposed E.g: 2-LFMs ψ = α 10 + β 01, α 00 + β 11 α 00 + β 10 Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

29 Parity SSRs is not conservation of Parity SSR is an inhibition to the superposition principle parity is conserved F = F e F o never superimposed E.g: 2-LFMs ψ = α 10 + β 01, α 00 + β 11 α 00 + β 10 Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

30 Parity SSRs is not conservation of Parity SSR is an inhibition to the superposition principle parity is conserved F = F e F o never superimposed E.g: 2-LFMs ψ = α 10 + β 01, α 00 + β 11 α 00 + β 10 E.g: 1-LFM ψ = 0, 1 α 0 + β 1 Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

31 Parity SSRs is not conservation of Parity SSR is an inhibition to the superposition principle parity is conserved F = F e F o never superimposed E.g: 2-LFMs ψ = α 10 + β 01, α 00 + β 11 α 00 + β 10 E.g: 1-LFM ψ = 0, 1 α 0 + β 1 Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

32 Parity SSRs is not conservation of Parity SSR is an inhibition to the superposition principle parity is conserved F = F e F o never superimposed E.g: 2-LFMs ψ = α 10 + β 01, α 00 + β 11 α 00 + β 10 E.g: 1-LFM ψ = 0, 1 α 0 + β 1 1-LFM = calssical bit Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, Wick, G. C., Wightman, A. S., and Wigner, E. P., 1970, Phys. Rev. D1,

33 Fermions violate local tomography L. Hardy and W. K. Wootters, Foundations of Physics 42, 454 (2012)

34 Fermions violate local tomography Local tomography: ρ A B A A a = σ ρ B B = b σ A B a b D AB = D A D B L. Hardy and W. K. Wootters, Foundations of Physics 42, 454 (2012)

35 Fermions violate local tomography Local tomography: ρ A B A A a = σ ρ B B = b σ A B a b D AB = D A D B Bilocal tomography: I need local and bilocal effects for state tomography D AB >D A D B D ABC f(d A,D B,D C,D AB,D AC,D BC ) L. Hardy and W. K. Wootters, Foundations of Physics 42, 454 (2012)

36 Fermions violate local tomography

37 Fermions violate local tomography Quantum theory N-qubits St R (N Q ) = Herm(C 2N ) D NQ =2 2N local tomographic

38 Fermions violate local tomography Quantum theory N-qubits Fermionic Quantum theory N-LFMs St R (N Q ) = Herm(C 2N ) St R (N F )=Herm(C 2N 1 ) Herm(C 2N 1 ) D NQ =2 2N D NF =2 2N 1 = 1 2 D N Q local tomographic bilocal tomographic

39 Fermionic entanglement

40 Fermionic entanglement Oper. prob. theory: 1) provide a notion of entanglement 2) amount of entanglement quantified in operational terms

41 Fermionic entanglement Oper. prob. theory: 1) provide a notion of entanglement 2) amount of entanglement quantified in operational terms 1)Proposition. Non-separability as the unique notion of fermionic entanglement

42 Fermionic entanglement Oper. prob. theory: 1) provide a notion of entanglement 2) amount of entanglement quantified in operational terms 1)Proposition. Non-separability as the unique notion of fermionic entanglement 2)Entanglement cost: resource under LOCC operations Ψ res N N of resource states (ebits) LOCC ρ M M copies of ρ

43 Quantum entanglement of formation W. K. Wootters, Quantum Information & Computation 1, 27 (2001) S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997)

44 Quantum entanglement of formation Asymptotical operational meaning: Ψ res N LOCC D ρ ρ M E(ρ) = lim M N(M) M W. K. Wootters, Quantum Information & Computation 1, 27 (2001) S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997)

45 Quantum entanglement of formation Asymptotical operational meaning: Ψ res N LOCC D ρ ρ M E(ρ) = lim M N(M) M E( Ψ) =S(Tr A ΨΨ )) E(ρ) :=min p i E( Ψ i ) D ρ i pure states mixed states W. K. Wootters, Quantum Information & Computation 1, 27 (2001) S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997)

46 Quantum entanglement of formation Asymptotical operational meaning: Ψ res N LOCC D ρ ρ M E(ρ) = lim M N(M) M E( Ψ) =S(Tr A ΨΨ )) E(ρ) :=min p i E( Ψ i ) D ρ i pure states mixed states E(ρ) =0 E(ρ) =1 ρ ρ separable maximally entangled W. K. Wootters, Quantum Information & Computation 1, 27 (2001) S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997)

47 Fermionic resource states Ψ res N LOCC ρ M *J. I. de Vicente, C. Spee, and B. Kraus, Phys. Rev. Lett. 111, (2013)

48 Fermionic resource states Ψ res N LOCC ρ M Quantum: 2-qubits Maximally entangled state unique bipartite state LOCC convertible to any other 1 2 ( ) *J. I. de Vicente, C. Spee, and B. Kraus, Phys. Rev. Lett. 111, (2013)

49 Fermionic resource states Ψ res N LOCC ρ M Quantum: 2-qubits Maximally entangled state unique bipartite state LOCC convertible to any other 1 2 ( ) Fermionic: 2-LFMs Maximally entangled sets* not unique bipartite state LOCC convertible to any other {α 00 + β 11, α, β > 0} *J. I. de Vicente, C. Spee, and B. Kraus, Phys. Rev. Lett. 111, (2013)

50 Fermionic entanglement of formation M.-C. Banũls, J. I. Cirac and M. M. Wolf, Phys. Rev. A 76, (Aug 2007)

51 Fermionic entanglement of formation Ψ res N D F ρ locc F E F (ρ) = lim ρ M M N(M) M M.-C. Banũls, J. I. Cirac and M. M. Wolf, Phys. Rev. A 76, (Aug 2007)

52 Fermionic entanglement of formation Ψ res N D F ρ locc F E F (ρ) = lim ρ M M N(M) M Proposition. Ẽ F (ρ) E F (ρ) Ẽ F (ρ) =p e E(ρ e )+p o E(ρ o ) p e ρ e + p o ρ o M.-C. Banũls, J. I. Cirac and M. M. Wolf, Phys. Rev. A 76, (Aug 2007)

53 Maximally entangled mixed state G. M. D Ariano, F. Manessi, P. Perinotti and A. Tosini, arxiv preprint arxiv: (2013)

54 Maximally entangled mixed state ρ = 1 2 ρ e ρ o Ψ e = 1 2 ( ) Ψ o 1 2 ( ) G. M. D Ariano, F. Manessi, P. Perinotti and A. Tosini, arxiv preprint arxiv: (2013)

55 Maximally entangled mixed state ρ = 1 2 ρ e ρ o Ψ e = 1 2 ( ) Ψ o 1 2 ( ) In Fermionic QT has entanglement of formation 1 E F (ρ )= 1 2 E(ρ e)+ 1 2 E(ρ o)=1 G. M. D Ariano, F. Manessi, P. Perinotti and A. Tosini, arxiv preprint arxiv: (2013)

56 Maximally entangled mixed state ρ = 1 2 ρ e ρ o Ψ e = 1 2 ( ) Ψ o 1 2 ( ) In Fermionic QT has entanglement of formation 1 E F (ρ )= 1 2 E(ρ e)+ 1 2 E(ρ o)=1 In QT has entanglement of formation 0 ρ = ± = 1 2 ( 0 ± 1) E(ρ )=0 G. M. D Ariano, F. Manessi, P. Perinotti and A. Tosini, arxiv preprint arxiv: (2013)

57 Maximally entangled mixed state ρ = 1 2 ρ e ρ o Ψ e = 1 2 ( ) Ψ o 1 2 ( ) In Fermionic QT has entanglement of formation 1 E F (ρ )= 1 2 E(ρ e)+ 1 2 E(ρ o)=1 In QT has entanglement of formation 0 ρ = ± = 1 2 ( 0 ± 1) E(ρ )=0 G. M. D Ariano, F. Manessi, P. Perinotti and A. Tosini, arxiv preprint arxiv: (2013)

58 Fermionic entanglement is not monogamous V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, (2000)

59 Fermionic entanglement is not monogamous Quantum entanglement is monogamous Alice Bob 3-qubits: Ψ ABC V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, (2000) Charlie

60 Fermionic entanglement is not monogamous Quantum entanglement is monogamous Alice Bob Max. Ent 3-qubits: Ψ ABC = Ψ AB Ψ C V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, (2000) Charlie

61 Fermionic entanglement is not monogamous Quantum entanglement is monogamous Alice Bob Max. Ent 3-qubits: Ψ ABC = Ψ AB Ψ C E(ρ AB )+E(ρ AC ) 1 V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, (2000) Charlie

62 Fermionic entanglement is not monogamous Quantum entanglement is monogamous Alice Bob Max. Ent 3-qubits: Ψ ABC = Ψ AB Ψ C E(ρ AB )+E(ρ AC ) 1 1 V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, (2000) Charlie

63 Fermionic entanglement is not monogamous Quantum entanglement is monogamous Alice Bob Max. Ent 3-qubits: Ψ ABC = Ψ AB Ψ C E(ρ AB )+E(ρ AC ) V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, (2000) Charlie

64 Fermionic entanglement is not monogamous Quantum entanglement is monogamous Alice Bob Max. Ent 3-qubits: Ψ ABC = Ψ AB Ψ C E(ρ AB )+E(ρ AC ) V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, (2000) The fermionic entanglement is not monogamous 3-LFMs: Ψ ABC = 1 2 ( ) Alice Charlie Charlie Bob

65 Fermionic entanglement is not monogamous Quantum entanglement is monogamous Alice Bob Max. Ent 3-qubits: Ψ ABC = Ψ AB Ψ C E(ρ AB )+E(ρ AC ) V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, (2000) Charlie The fermionic entanglement is not monogamous 3-LFMs: Alice ρ Bob Ψ ABC = 1 2 ( ) ρ AB = ρ AC = ρ BC = ρ E F (ρ )=1 ρ Charlie ρ

66 Conclusions Wick parity SSR for fermionic systems derived in an operational context Fermionic Quantum theory differs from Quantum theory: it does not satisfy local tomography fermionic entanglement is not monogamous Possible applications of these two features? Computation: model alternative to the one based on qubits, e.g. cryptography in a Fermionic scenario. Physics: black hole information P. Hayden and J. Preskill, J. High Energy Phys. 09 (2007) 120 E. Verlinde and H. Verlinde, arxiv preprint arxiv: (2013) R. Bousso, Phys. Rev. D (2013)

67 Conclusions Wick parity SSR for fermionic systems derived in an operational context Fermionic Quantum theory differs from Quantum theory: it does not satisfy local tomography fermionic entanglement is not monogamous Possible applications of these two features? Computation: model alternative to the one based on qubits, e.g. cryptography in a Fermionic scenario. Physics: black hole information P. Hayden and J. Preskill, J. High Energy Phys. 09 (2007) 120 E. Verlinde and H. Verlinde, arxiv preprint arxiv: (2013) R. Bousso, Phys. Rev. D (2013) Thanks!

Fermionic quantum theory and superselection rules for operational probabilistic theories

Fermionic quantum theory and superselection rules for operational probabilistic theories Fermionic quantum theory and superselection rules for operational probabilistic theories Alessandro Tosini, QUIT group, Pavia University Joint work with G.M. D Ariano, F. Manessi, P. Perinotti Supported

More information

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS P. Caban, K. Podlaski, J. Rembieliński, K. A. Smoliński and Z. Walczak Department of Theoretical Physics, University of Lodz Pomorska 149/153,

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

Coherence, Discord, and Entanglement: Activating one resource into another and beyond

Coherence, Discord, and Entanglement: Activating one resource into another and beyond 586. WE-Heraeus-Seminar Quantum Correlations beyond Entanglement Coherence, Discord, and Entanglement: Activating one resource into another and beyond Gerardo School of Mathematical Sciences The University

More information

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London Gerardo Adesso University of Nottingham Davide Girolami University of Nottingham Alessio Serafini University College London arxiv:1203.5116; Phys. Rev. Lett. (in press) A family of useful additive entropies

More information

Exclusivity Principle Determines the Correlations Monogamy

Exclusivity Principle Determines the Correlations Monogamy Exclusivity Principle Determines the Correlations Monogamy Zhih-Ahn Jia( 贾治安 ) Key Laboratory of Quantum Information, University of Science and Technology of China QCQMB, Prague, June 5, 2017 1 Outline

More information

Quantum theory without predefined causal structure

Quantum theory without predefined causal structure Quantum theory without predefined causal structure Ognyan Oreshkov Centre for Quantum Information and Communication, niversité Libre de Bruxelles Based on work with Caslav Brukner, Nicolas Cerf, Fabio

More information

The entanglement of indistinguishable particles shared between two parties

The entanglement of indistinguishable particles shared between two parties The entanglement of indistinguishable particles shared between two parties H.M. Wiseman 1, and John. Vaccaro 1,2 1 Centre for Quantum Computer Technology, Centre for Quantum Dynamics, School of Science,

More information

Asymptotic Pure State Transformations

Asymptotic Pure State Transformations Asymptotic Pure State Transformations PHYS 500 - Southern Illinois University April 18, 2017 PHYS 500 - Southern Illinois University Asymptotic Pure State Transformations April 18, 2017 1 / 15 Entanglement

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

arxiv: v1 [quant-ph] 3 Jan 2008

arxiv: v1 [quant-ph] 3 Jan 2008 A paradigm for entanglement theory based on quantum communication Jonathan Oppenheim 1 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge U.K. arxiv:0801.0458v1 [quant-ph]

More information

Shared Purity of Multipartite Quantum States

Shared Purity of Multipartite Quantum States Shared Purity of Multipartite Quantum States Anindya Biswas Harish-Chandra Research Institute December 3, 2013 Anindya Biswas (HRI) Shared Purity December 3, 2013 1 / 38 Outline of the talk 1 Motivation

More information

On balance of information in bipartite quantum communication systems: entanglement-energy analogy

On balance of information in bipartite quantum communication systems: entanglement-energy analogy On balance of information in bipartite quantum communication systems: entanglement-energy analogy Ryszard Horodecki 1,, Micha l Horodecki 1, and Pawe l Horodecki 2, 1 Institute of Theoretical Physics and

More information

Squashed entanglement

Squashed entanglement Squashed Entanglement based on Squashed Entanglement - An Additive Entanglement Measure (M. Christandl, A. Winter, quant-ph/0308088), and A paradigm for entanglement theory based on quantum communication

More information

Dipartimento di Fisica - Università di Pavia via A. Bassi Pavia - Italy

Dipartimento di Fisica - Università di Pavia via A. Bassi Pavia - Italy Paolo Perinotti paolo.perinotti@unipv.it Dipartimento di Fisica - Università di Pavia via A. Bassi 6 27100 Pavia - Italy LIST OF PUBLICATIONS 1. G. M. D'Ariano, M. Erba, P. Perinotti, and A. Tosini, Virtually

More information

From Quantum Cellular Automata to Quantum Field Theory

From Quantum Cellular Automata to Quantum Field Theory From Quantum Cellular Automata to Quantum Field Theory Alessandro Bisio Frontiers of Fundamental Physics Marseille, July 15-18th 2014 in collaboration with Giacomo Mauro D Ariano Paolo Perinotti Alessandro

More information

Local cloning of entangled states

Local cloning of entangled states Local cloning of entangled states Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. March 16, 2010 Vlad Gheorghiu (CMU) Local cloning of entangled states March

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

Quantum Entanglement, Quantum Cryptography, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G.

Quantum Entanglement, Quantum Cryptography, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G. Quantum Entanglement, Quantum Cryptography, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G. Kwiat Physics 403 talk: December 2, 2014 Entanglement is a feature of compound

More information

Detecting genuine multipartite entanglement in higher dimensional systems

Detecting genuine multipartite entanglement in higher dimensional systems University of Vienna March 16, 2011 (University of Vienna) March 16, 2011 1 / 19 1 2 3 4 5 6 7 8 (University of Vienna) March 16, 2011 2 / 19 To start with some easy basics (University of Vienna) March

More information

Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics

Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G. Kwiat Physics 403 talk: July 28, 2014 Entanglement is a feature of compound quantum systems States

More information

Principles of Quantum Mechanics Pt. 2

Principles of Quantum Mechanics Pt. 2 Principles of Quantum Mechanics Pt. 2 PHYS 500 - Southern Illinois University February 9, 2017 PHYS 500 - Southern Illinois University Principles of Quantum Mechanics Pt. 2 February 9, 2017 1 / 13 The

More information

Frustration and Area law

Frustration and Area law Frustration and Area law When the frustration goes odd S. M. Giampaolo Institut Ruder Bošković, Zagreb, Croatia Workshop: Exactly Solvable Quantum Chains Natal 18-29 June 2018 Coauthors F. Franchini Institut

More information

Optimal measurements for relative quantum information

Optimal measurements for relative quantum information PHYSICAL REVIEW A 70, 032321 (2004) Optimal measurements for relative quantum information Stephen D. Bartlett, 1, * Terry Rudolph, 2, and Robert W. Spekkens 3, 1 School of Physical Sciences, The University

More information

Multipartite Monogamy of the Entanglement of Formation. Abstract

Multipartite Monogamy of the Entanglement of Formation. Abstract Multipartite Monogamy of the Entanglement of Formation Xian Shi Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China University of Chinese

More information

b) (5 points) Give a simple quantum circuit that transforms the state

b) (5 points) Give a simple quantum circuit that transforms the state C/CS/Phy191 Midterm Quiz Solutions October 0, 009 1 (5 points) Short answer questions: a) (5 points) Let f be a function from n bits to 1 bit You have a quantum circuit U f for computing f If you wish

More information

Report on Conceptual Foundations and Foils for QIP at the Perimeter Institute, May 9 May

Report on Conceptual Foundations and Foils for QIP at the Perimeter Institute, May 9 May Report on Conceptual Foundations and Foils for QIP at the Perimeter Institute, May 9 May 13 2011 Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. May 19, 2011

More information

Channel Steering. Marco Piani 1, 2. University of Waterloo, N2L 3G1 Waterloo ON, Canada. compiled: December 23, 2014

Channel Steering. Marco Piani 1, 2. University of Waterloo, N2L 3G1 Waterloo ON, Canada. compiled: December 23, 2014 Channel Steering Marco Piani 1, 2 1 SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK 2 Institute for Quantum Computing and Department of Physics and Astronomy, University of

More information

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU)

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU) Application of Structural Physical Approximation to Partial Transpose in Teleportation Satyabrata Adhikari Delhi Technological University (DTU) Singlet fraction and its usefulness in Teleportation Singlet

More information

Generalized Bell Inequality and Entanglement Witness

Generalized Bell Inequality and Entanglement Witness Nonlocal Seminar 2005 Bratislava, April 29th 2005 Reinhold A. Bertlmann Generalized Bell Inequality and Entanglement Witness Institute for Theoretical Physics University of Vienna Motivation Composite

More information

Alessandro Tosini Curriculum Vitae

Alessandro Tosini Curriculum Vitae Alessandro Tosini Curriculum Vitae via Bassi 8 Pavia (PV) 27100 - Italy (+39) 329 4096151 (+39) 0382 987695 alessandro.tosini@unipv.it wordpress.qubit.it/people/tosini/ http://fisica.unipv/tosini http://google.scholar

More information

Compression and entanglement, entanglement transformations

Compression and entanglement, entanglement transformations PHYSICS 491: Symmetry and Quantum Information April 27, 2017 Compression and entanglement, entanglement transformations Lecture 8 Michael Walter, Stanford University These lecture notes are not proof-read

More information

CAT L4: Quantum Non-Locality and Contextuality

CAT L4: Quantum Non-Locality and Contextuality CAT L4: Quantum Non-Locality and Contextuality Samson Abramsky Department of Computer Science, University of Oxford Samson Abramsky (Department of Computer Science, University CAT L4: of Quantum Oxford)

More information

Information-theoretic treatment of tripartite systems and quantum channels. Patrick Coles Carnegie Mellon University Pittsburgh, PA USA

Information-theoretic treatment of tripartite systems and quantum channels. Patrick Coles Carnegie Mellon University Pittsburgh, PA USA Information-theoretic treatment of tripartite systems and quantum channels Patrick Coles Carnegie Mellon University Pittsburgh, PA USA ArXiv: 1006.4859 a c b Co-authors Li Yu Vlad Gheorghiu Robert Griffiths

More information

Entanglement Measures and Monotones Pt. 2

Entanglement Measures and Monotones Pt. 2 Entanglement Measures and Monotones Pt. 2 PHYS 500 - Southern Illinois University April 8, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones Pt. 2 April 8, 2017 1 / 13 Entanglement

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

Quantum Information Theory

Quantum Information Theory Quantum Information Theory C. H. Bennett IBM Research Yorktown QIS Workshop Vienna, VA 23 Apr 2009 Nature and importance of Information Distinctive features of Quantum Information Superposition principle,

More information

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Ph 219/CS 219. Exercises Due: Friday 3 November 2006 Ph 9/CS 9 Exercises Due: Friday 3 November 006. Fidelity We saw in Exercise. that the trace norm ρ ρ tr provides a useful measure of the distinguishability of the states ρ and ρ. Another useful measure

More information

arxiv:quant-ph/ v2 23 Apr 2002

arxiv:quant-ph/ v2 23 Apr 2002 Describing mixed spin-space entanglement of pure states of indistinguishable particles using an occupation number basis J. R. Gittings and A. J. Fisher Department of Physics and Astronomy, University College

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Quantum Entanglement- Fundamental Aspects

Quantum Entanglement- Fundamental Aspects Quantum Entanglement- Fundamental Aspects Debasis Sarkar Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata- 700009, India Abstract Entanglement is one of the most useful

More information

Superqubits. Leron Borsten Imperial College, London

Superqubits. Leron Borsten Imperial College, London Superqubits Leron Borsten Imperial College, London in collaboration with: K. Brádler, D. Dahanayake, M. J. Duff, H. Ebrahim, and W. Rubens Phys. Rev. A 80, 032326 (2009) arxiv:1206.6934 24 June - 3 July

More information

Entanglement: Definition, Purification and measures

Entanglement: Definition, Purification and measures Entanglement: Definition, Purification and measures Seminar in Quantum Information processing 3683 Gili Bisker Physics Department Technion Spring 006 Gili Bisker Physics Department, Technion Introduction

More information

Under what conditions do quantum systems thermalize?

Under what conditions do quantum systems thermalize? Under what conditions do quantum systems thermalize? 1 / 9 Under what conditions do quantum systems thermalize? New insights from quantum information theory Christian Gogolin, Arnau Riera, Markus Müller,

More information

Strong converse theorems using Rényi entropies

Strong converse theorems using Rényi entropies Strong converse theorems using Rényi entropies Felix Leditzky joint work with Mark M. Wilde and Nilanjana Datta arxiv:1506.02635 5 January 2016 Table of Contents 1 Weak vs. strong converse 2 Rényi entropies

More information

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute High Fidelity to Low Weight Daniel Gottesman Perimeter Institute A Word From Our Sponsor... Quant-ph/0212066, Security of quantum key distribution with imperfect devices, D.G., H.-K. Lo, N. Lutkenhaus,

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO IDENTIFYING AND EXPLORING THE QUANTUM-CLASSICAL BORDER Quantum Classical FOCUSING ON CORRELATIONS AMONG COMPOSITE SYSTEMS OUTLINE Quantum correlations

More information

Positive Tensor Network approach for simulating open quantum many-body systems

Positive Tensor Network approach for simulating open quantum many-body systems Positive Tensor Network approach for simulating open quantum many-body systems 19 / 9 / 2016 A. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert and S. Montangero PRL 116, 237201 (2016)

More information

PACS Nos a, Bz II. GENERALIZATION OF THE SCHMIDT DECOMPOSITION I. INTRODUCTION. i=1

PACS Nos a, Bz II. GENERALIZATION OF THE SCHMIDT DECOMPOSITION I. INTRODUCTION. i=1 Three-qubit pure-state canonical forms A. Acín, A. Andrianov,E.Jané and R. Tarrach Departament d Estructura i Constituents de la Matèria, Universitat de Barcelona, Diagonal 647, E-0808 Barcelona, Spain.

More information

Black Holes: Complementarity vs. Firewalls

Black Holes: Complementarity vs. Firewalls Black Holes: Complementarity vs. Firewalls Raphael Bousso Center for Theoretical Physics University of California, Berkeley Strings 2012, Munich July 27, 2012 The Question Complementarity The AMPS Gedankenexperiment

More information

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Rahul Jain U. Waterloo and Institute for Quantum Computing, rjain@cs.uwaterloo.ca entry editor: Andris Ambainis

More information

arxiv: v1 [quant-ph] 3 Nov 2014

arxiv: v1 [quant-ph] 3 Nov 2014 Channel Steering Marco Piani 1,2 1 SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK 2 Institute for Quantum Computing and Department of Physics and Astronomy, University of

More information

Spin Chains for Perfect State Transfer and Quantum Computing. January 17th 2013 Martin Bruderer

Spin Chains for Perfect State Transfer and Quantum Computing. January 17th 2013 Martin Bruderer Spin Chains for Perfect State Transfer and Quantum Computing January 17th 2013 Martin Bruderer Overview Basics of Spin Chains Engineering Spin Chains for Qubit Transfer Inverse Eigenvalue Problem spinguin

More information

arxiv: v5 [quant-ph] 29 Dec 2016

arxiv: v5 [quant-ph] 29 Dec 2016 General tradeoff relations of quantum nonlocality in the Clauser-Horne-Shimony-Holt scenario arxiv:1603.08196v5 quant-ph] 29 Dec 2016 Hong-Yi Su, 1, Jing-Ling Chen, 2, 3 and Won-Young Hwang 1, 1 Department

More information

Gisin s theorem for three qubits Author(s) Jing-Ling Chen, Chunfeng Wu, L. C. Kwek and C. H. Oh Source Physical Review Letters, 93,

Gisin s theorem for three qubits Author(s) Jing-Ling Chen, Chunfeng Wu, L. C. Kwek and C. H. Oh Source Physical Review Letters, 93, Title Gisin s theorem for three qubits Author(s) Jing-Ling Chen, Chunfeng Wu, L. C. Kwek and C. H. Oh Source Physical Review Letters, 93, 140407 This document may be used for private study or research

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

Analysing the role of entanglement in the three-qubit Vaidman s game

Analysing the role of entanglement in the three-qubit Vaidman s game Analysing the role of entanglement in the three-qubit Vaidman s game arxiv:807.056v [quant-ph] Jul 08 Hargeet Kaur Department of Chemistry Indian Institute of Technology Jodhpur, Rajasthan Email: kaur.@iitj.ac.in

More information

Private quantum subsystems and error correction

Private quantum subsystems and error correction Private quantum subsystems and error correction Sarah Plosker Department of Mathematics and Computer Science Brandon University September 26, 2014 Outline 1 Classical Versus Quantum Setting Classical Setting

More information

Entanglement of Identical Particles and Reference Phase Uncertainty.

Entanglement of Identical Particles and Reference Phase Uncertainty. Griffith Research Online https://research-repository.griffith.edu.au Entanglement of Identical Particles and Reference Phase Uncertainty. Author Vaccaro, J., Anselmi, F., Wiseman, Howard Published 003

More information

arxiv: v2 [quant-ph] 14 Mar 2018

arxiv: v2 [quant-ph] 14 Mar 2018 God plays coins or superposition principle for classical probabilities in quantum suprematism representation of qubit states. V. N. Chernega 1, O. V. Man ko 1,2, V. I. Man ko 1,3 1 - Lebedev Physical Institute,

More information

CS/Ph120 Homework 4 Solutions

CS/Ph120 Homework 4 Solutions CS/Ph10 Homework 4 Solutions November 3, 016 Problem 1: Robustness of GHZ and W states, part Solution: Due to Bolton Bailey a For the GHZ state, we have T r N GHZ N GHZ N = 1 0 N 1 0 N 1 + 1 N 1 1 N 1

More information

Fidelity of Quantum Teleportation through Noisy Channels

Fidelity of Quantum Teleportation through Noisy Channels Fidelity of Quantum Teleportation through Noisy Channels Sangchul Oh, Soonchil Lee, and Hai-woong Lee Department of Physics, Korea Advanced Institute of Science and Technology, Daejon, 305-701, Korea (Dated:

More information

Detecting and using Majorana fermions in superconductors

Detecting and using Majorana fermions in superconductors Detecting and using Majorana fermions in superconductors Anton Akhmerov with Carlo Beenakker, Jan Dahlhaus, Fabian Hassler, and Michael Wimmer New J. Phys. 13, 053016 (2011) and arxiv:1105.0315 Superconductor

More information

Bound entangled states with secret key and their classical counterpart

Bound entangled states with secret key and their classical counterpart Bound entangled states with secret key and their classical counterpart Māris Ozols Graeme Smith John Smolin February 6, 2014 A brief summary Main result A new construction of bound entangled states with

More information

Quantum Dense Coding and Quantum Teleportation

Quantum Dense Coding and Quantum Teleportation Lecture Note 3 Quantum Dense Coding and Quantum Teleportation Jian-Wei Pan Bell states maximally entangled states: ˆ Φ Ψ Φ x σ Dense Coding Theory: [C.. Bennett & S. J. Wiesner, Phys. Rev. Lett. 69, 88

More information

Quantum entanglement and its detection with few measurements

Quantum entanglement and its detection with few measurements Quantum entanglement and its detection with few measurements Géza Tóth ICFO, Barcelona Universidad Complutense, 21 November 2007 1 / 32 Outline 1 Introduction 2 Bipartite quantum entanglement 3 Many-body

More information

Physics 239/139 Spring 2018 Assignment 6

Physics 239/139 Spring 2018 Assignment 6 University of California at San Diego Department of Physics Prof. John McGreevy Physics 239/139 Spring 2018 Assignment 6 Due 12:30pm Monday, May 14, 2018 1. Brainwarmers on Kraus operators. (a) Check that

More information

Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems

Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems Boston University OpenBU College of General Studies http://open.bu.edu BU Open Access Articles 2003-08-01 Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems Jaeger, Gregg AMER PHYSICAL

More information

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v2 [quant-ph] 21 Oct 2013 Genuine hidden quantum nonlocality Flavien Hirsch, 1 Marco Túlio Quintino, 1 Joseph Bowles, 1 and Nicolas Brunner 1, 1 Département de Physique Théorique, Université de Genève, 111 Genève, Switzerland H.H.

More information

Classification of Tripartite Entanglement with one Qubit. Marcio F. Cornelio and A. F. R. de Toledo Piza

Classification of Tripartite Entanglement with one Qubit. Marcio F. Cornelio and A. F. R. de Toledo Piza Classification of Tripartite Entanglement with one Qubit Marcio F. Cornelio and A. F. R. de Toledo Piza Universidade de São Paulo, Instituto de Física, CP 66318, 05315 São Paulo, S.P., Brazil July 05,

More information

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states G. Tóth 1,2,3 Collaboration: Entanglement th.: G. Vitagliano 1, I. Apellaniz 1, I.L. Egusquiza

More information

Bosonization of lattice fermions in higher dimensions

Bosonization of lattice fermions in higher dimensions Bosonization of lattice fermions in higher dimensions Anton Kapustin California Institute of Technology January 15, 2019 Anton Kapustin (California Institute of Technology) Bosonization of lattice fermions

More information

Nonlocality of single fermions branches that borrow particles

Nonlocality of single fermions branches that borrow particles 1 Nonlocality of single fermions branches that borrow particles Sofia Wechsler Computers Engineering Center, Nahariya, P.O.B. 2004, 22265, Israel Abstract An experiment performed in 2002 by Sciarrino et

More information

Quantum Gates, Circuits & Teleportation

Quantum Gates, Circuits & Teleportation Chapter 3 Quantum Gates, Circuits & Teleportation Unitary Operators The third postulate of quantum physics states that the evolution of a quantum system is necessarily unitary. Geometrically, a unitary

More information

BLACK HOLES AND QUBITS

BLACK HOLES AND QUBITS BLACK HOLES AND QUBITS M. J. Duff Physics Department Imperial College London 19th September 2008 MCTP, Michigan Abstract We establish a correspondence between the entanglement measures of qubits in quantum

More information

arxiv: v3 [quant-ph] 9 Jul 2018

arxiv: v3 [quant-ph] 9 Jul 2018 Operational nonclassicality of local multipartite correlations in the limited-dimensional simulation scenario arxiv:70.0363v3 [quant-ph] 9 Jul 08 C. Jebaratnam E-mail: jebarathinam@bose.res.in S. N. Bose

More information

Quantum metrology from a quantum information science perspective

Quantum metrology from a quantum information science perspective 1 / 41 Quantum metrology from a quantum information science perspective Géza Tóth 1 Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science,

More information

Sharing of Nonlocality of a Single Member of an Entangled Pair of Qubits Is Not Possible by More than Two Unbiased Observers on the Other Wing

Sharing of Nonlocality of a Single Member of an Entangled Pair of Qubits Is Not Possible by More than Two Unbiased Observers on the Other Wing mathematics Article Sharing of Nonlocality of a Single Member of an Entangled Pair of Qubits Is Not Possible by More than Two Unbiased Observers on the Other Wing Shiladitya Mal 1, Archan S. Majumdar 1

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den aturwissenschaften Leipzig Genuine multipartite entanglement detection and lower bound of multipartite concurrence by Ming Li, Shao-Ming Fei, Xianqing Li-Jost,

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

Lecture notes: Quantum gates in matrix and ladder operator forms

Lecture notes: Quantum gates in matrix and ladder operator forms Phys 7 Topics in Particles & Fields Spring 3 Lecture v.. Lecture notes: Quantum gates in matrix and ladder operator forms Jeffrey Yepez Department of Physics and Astronomy University of Hawai i at Manoa

More information

Limitations on separable measurements by convex optimization

Limitations on separable measurements by convex optimization Limitations on separable measurements by convex optimization (Full paper available at arxiv:1408.6981) Somshubhro Bandyopadhyay 1 Alessandro Cosentino 2,3 Nathaniel Johnston 2,4 Vincent Russo 2,3 John

More information

Many-body entanglement witness

Many-body entanglement witness Many-body entanglement witness Jeongwan Haah, MIT 21 January 2015 Coogee, Australia arxiv:1407.2926 Quiz Energy Entanglement Charge Invariant Momentum Total spin Rest Mass Complexity Class Many-body Entanglement

More information

Superselection Rules

Superselection Rules Superselection Rules Domenico Giulini Max-Planck-Institute for Gravitational Physics Albert-Einstein-Institute Am Mühlenberg 1 D-14476 Golm/Potsdam Abstract This note provides a summary of the meaning

More information

Majorization-preserving quantum channels

Majorization-preserving quantum channels Majorization-preserving quantum channels arxiv:1209.5233v2 [quant-ph] 15 Dec 2012 Lin Zhang Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, PR China Abstract In this report, we give

More information

The CHSH game as a Bell test thought experiment

The CHSH game as a Bell test thought experiment The CHSH game as a Bell test thought experiment Logan Meredith December 10, 2017 1 Introduction The CHSH inequality, named after John Clauser, Michael Horne, Abner Shimony, and Richard Holt, provides an

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University)

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University) Concentration of Measure Effects in Quantum Information Patrick Hayden (McGill University) Overview Superdense coding Random states and random subspaces Superdense coding of quantum states Quantum mechanical

More information

Theory of Quantum Entanglement

Theory of Quantum Entanglement Theory of Quantum Entanglement Shao-Ming Fei Capital Normal University, Beijing Universität Bonn, Bonn Richard Feynman 1980 Certain quantum mechanical effects cannot be simulated efficiently on a classical

More information

Entanglement Manipulation

Entanglement Manipulation Entanglement Manipulation Steven T. Flammia 1 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the

More information

Three-qubit entangled embeddings of CPT and Dirac groups within E8 Weyl group

Three-qubit entangled embeddings of CPT and Dirac groups within E8 Weyl group Three-qubit entangled embeddings of CPT and Dirac groups within E8 Weyl group Michel Planat To cite this version: Michel Planat. Three-qubit entangled embeddings of CPT and Dirac groups within E8 Weyl

More information

Distinguishing different classes of entanglement for three qubit pure states

Distinguishing different classes of entanglement for three qubit pure states Distinguishing different classes of entanglement for three qubit pure states Chandan Datta Institute of Physics, Bhubaneswar chandan@iopb.res.in YouQu-2017, HRI Chandan Datta (IOP) Tripartite Entanglement

More information

Geometry of Entanglement

Geometry of Entanglement Geometry of Entanglement Bachelor Thesis Group of Quantum Optics, Quantum Nanophysics and Quantum Information University of Vienna WS 21 2659 SE Seminar Quantenphysik I Supervising Professor: Ao. Univ.-Prof.

More information

Multipartite entangled quantum states: Transformation, Entanglement monotones and Application. Wei Cui

Multipartite entangled quantum states: Transformation, Entanglement monotones and Application. Wei Cui Multipartite entangled quantum states: Transformation, Entanglement monotones and Application by Wei Cui A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate

More information

Quantum Computing with Para-hydrogen

Quantum Computing with Para-hydrogen Quantum Computing with Para-hydrogen Muhammad Sabieh Anwar sabieh@lums.edu.pk International Conference on Quantum Information, Institute of Physics, Bhubaneswar, March 12, 28 Joint work with: J.A. Jones

More information