Spin Chains for Perfect State Transfer and Quantum Computing. January 17th 2013 Martin Bruderer

Size: px
Start display at page:

Download "Spin Chains for Perfect State Transfer and Quantum Computing. January 17th 2013 Martin Bruderer"

Transcription

1 Spin Chains for Perfect State Transfer and Quantum Computing January 17th 2013 Martin Bruderer

2 Overview Basics of Spin Chains Engineering Spin Chains for Qubit Transfer Inverse Eigenvalue Problem spinguin Boundary States Generating Graph States

3 Spin Chains as Quantum Channel Alice sends a qubit to Bob via a spin chain Spin up = 1 Spin down = 0 Qubit is tranferred (imperfectly) by natural time evolution Quantum Communication through an Unmodulated Spin Chain Sougato Bose, Phys. Rev. Lett. 91, (2003)

4 Spin Chains XX Spin Hamiltonian Map to 1d fermionic model using Jordon-Wigner trans. non-interacting fermions Hilbert space seperates into sectors n = 0, 1, 2,

5 Single Fermion States Sector of Hilbert space with n = 0and n = 1 H0 spanned by H1 spanned by N N matrix

6 Perfect Transfer of Qubits Qubit at t = 0 is prepared at site 1 superposition possible for JW-fermions After time t = τ want qubit at site N Have to engineer Hamiltonian HF for n = 1 sector with time evolution

7 Symmetry Condition Mirror symmetry <=> Eigenstates λk have decinite parity N free parameters fingerprint of spin chain

8 Eigenvalue Condition Condition for eigenvalues λk Simplest example: Double well potential anti-symmetric states are flipped

9 Inverse Eigenvalue Problem Condition for eigenvalues λk very weak! Take τ = π and Φ = 0 => eigenvalues λk are integers Infinitely many solutions e.g. λk= {2, 13, 16, 29, 34, 35} Structured inverse eigenvalue problem: Given N eigenvalues λk find the tridiagonal N N matrix

10 Orthogonal Polynomials Characteristic polynomial pj of submatrix Hj Structure and orthogonality Shohat-Favard theorem with weigths

11 Orthogonal Polynomials Inverse relations with norm Carl R. de Boor Gene H. Golub

12 Algorithm by de Boor & Golub Calculate weights wkfrom λkfor scalar product (p0= 1) For j = 1 to ~N/2 1. Calculate Computationally cheap & stable 2. Find 3. Calculate End The numerically stable reconstruction of a Jacobi matrix from spectral data C. de Boor and G.H. Golub, Linear Algebr. Appl. 21, 245 (1978)

13 Application No approximations... Example: If λk symmetrically distributed around zero => aj = 0

14 Optimize for Robustness Create spin chains with localized boundary states Robust against perturbations Simplified evolution

15 Adding Boundary States Zero modes ~ Boundary states (cf. Majorana states) 1. Take original spin chain 2. Shift spectrum 3. Calculate new couplings 4. Compare robustness λk= 0 Works if eigenvalues λk fulfill

16 Optimization Examples Linear Spectrum Inverted Quadratic Spectrum

17 Test Robustness Couplings are uniformly randomized (± few percent) Effect on transfer fidelity (numerics) = fidelity averaged over Bloch sphere Boundary states => more high-fidelity chains => smooth time evolution

18 Test Robustness Couplings are uniformly randomized (± few percent) Effect on transfer fidelity (numerics) = fidelity averaged over Bloch sphere Boundary states => more high-fidelity chains => smooth time evolution

19 Boundary States in Quantum Wires Quantum wire with superlattice potential weak link Boundary states form double quantum dot Localized End States in Density Modulated Quantum Wires and Rings S. Gangadharaiah, L. Trifunovic and D. Loss, Phys. Rev. Lett. 108, (2012)

20 spinguin spin chain Graphical User Interface for Matlab Playful approach to spin chains (education) Algorithm iepsolve.m & GUI Some small bugs...

21 Ex Linear Spectrum

22 Ex Boundary States

23 Ex Cubic Spectrum

24 Ex Three Band Model

25 Many Fermion States Quantum computation with fermions Previous results hold for n 2 sectors t = 0 t = τ Generate phases between subspaces Efficient generation of graph states for quantum computation S.R. Clark, C. Moura Alves and D. Jaksch, New J. Phys. 7, 124 (2005)

26 Controlled Phase Gate t = 0 t = τ = CZ Z Initialize each qubit as Very robust, but not enough for quantum computation

27 Generate Graph States Graph state of n vertices requires at most O(2n) operations

28 Summing up 1. For a given spectrum λkwe can construct the tight-binding Hamiltonian 2. Fermionic phases are useful for generating highly entangled states

29 Some People Involved Stephen R. Clark Quantum (t-drmg) Oxford, Singapore (CQT) Kurt Franke g-factor of Antiprotons CERN, Geneva Danail Obreschkow Astrophysics (SKA) Perth, Australia

30 References A Review of Perfect, Efficient, State Transfer and its Application as a Constructive Tool A. Kay, Int. J. Quantum Inform. 8, 641 (2010) Quantum Communication through an Unmodulated Spin Chain S. Bose, Phys. Rev. Lett. 91, (2003) Exploiting boundary states of imperfect spin chains for high-fidelity state transfer MB, K. Franke, S. Ragg, W. Belzig and D. Obreschkow, Phys. Rev. A 85, (2012) The numerically stable reconstruction of a Jacobi matrix from spectral data C. de Boor and G.H. Golub, Linear Algebr. Appl. 21, 245 (1978) Fermionic quantum computation S. B. Bravyi and A. Yu. Kitaev, Annals of Physics 298, 210 (2002) Efficient generation of graph states for quantum computation S.R. Clark, C. Moura Alves and D. Jaksch, New J. Phys. 7, 124 (2005) Graph state generation with noisy mirror-inverting spin chains S. R Clark, A. Klein, MB and D. Jaksch, New J. Phys. 9, 202 (2007) Localized End States in Density Modulated Quantum Wires and Rings S. Gangadharaiah, L. Trifunovic and D. Loss, Phys. Rev. Lett. 108, (2012)

TRANSPORT OF QUANTUM INFORMATION IN SPIN CHAINS

TRANSPORT OF QUANTUM INFORMATION IN SPIN CHAINS TRANSPORT OF QUANTUM INFORMATION IN SPIN CHAINS Joachim Stolze Institut für Physik, Universität Dortmund, 44221 Dortmund Göttingen, 7.6.2005 Why quantum computing? Why quantum information transfer? Entangled

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

Quantum Communication & Computation Using Spin Chains

Quantum Communication & Computation Using Spin Chains Quantum Communication & Computation Using Spin Chains Sougato Bose Institute for Quantum Information, Caltech & UCL, London Quantum Computation Part: S. C. Benjamin & S. Bose, quant-ph/02057 (to appear

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Quantum wires, orthogonal polynomials and Diophantine approximation

Quantum wires, orthogonal polynomials and Diophantine approximation Quantum wires, orthogonal polynomials and Diophantine approximation Introduction Quantum Mechanics (QM) is a linear theory Main idea behind Quantum Information (QI): use the superposition principle of

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Spin-Orbit Interactions in Semiconductor Nanostructures

Spin-Orbit Interactions in Semiconductor Nanostructures Spin-Orbit Interactions in Semiconductor Nanostructures Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Spin-Orbit Hamiltonians

More information

Efficient time evolution of one-dimensional quantum systems

Efficient time evolution of one-dimensional quantum systems Efficient time evolution of one-dimensional quantum systems Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany Sep. 5, 2012 Hsinchu Problems we will address... Finding ground states

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

What is possible to do with noisy quantum computers?

What is possible to do with noisy quantum computers? What is possible to do with noisy quantum computers? Decoherence, inaccuracy and errors in Quantum Information Processing Sara Felloni and Giuliano Strini sara.felloni@disco.unimib.it Dipartimento di Informatica

More information

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel Introduction to Topological Error Correction and Computation James R. Wootton Universität Basel Overview Part 1: Topological Quantum Computation Abelian and non-abelian anyons Quantum gates with Abelian

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

2. Introduction to quantum mechanics

2. Introduction to quantum mechanics 2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute High Fidelity to Low Weight Daniel Gottesman Perimeter Institute A Word From Our Sponsor... Quant-ph/0212066, Security of quantum key distribution with imperfect devices, D.G., H.-K. Lo, N. Lutkenhaus,

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Optimal state reconstructions

Optimal state reconstructions Quantum observations talk 3 Vladimír Bužek Research Center for Quantum Information, Bratislava, Slovakia 4 September 0 Sharif University of Technology, Tehran Optimal state reconstructions Reconstructions

More information

Spin chain model for correlated quantum channels

Spin chain model for correlated quantum channels Spin chain model for correlated quantum channels Davide Rossini Scuola Internazionale Superiore di Studi Avanzati SISSA Trieste, Italy in collaboration with: Vittorio Giovannetti (Pisa) Simone Montangero

More information

Storage of Quantum Information in Topological Systems with Majorana Fermions

Storage of Quantum Information in Topological Systems with Majorana Fermions Storage of Quantum Information in Topological Systems with Majorana Fermions Leonardo Mazza Scuola Normale Superiore, Pisa Mainz September 26th, 2013 Leonardo Mazza (SNS) Storage of Information & Majorana

More information

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 1 QMA - the quantum analog to MA (and NP). Definition 1 QMA. The complexity class QMA is the class of all languages

More information

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State based on High-threshold universal quantum computation on the surface code -Austin G. Fowler, Ashley M. Stephens, and Peter

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

The computational difficulty of finding MPS ground states

The computational difficulty of finding MPS ground states The computational difficulty of finding MPS ground states Norbert Schuch 1, Ignacio Cirac 1, and Frank Verstraete 2 1 Max-Planck-Institute for Quantum Optics, Garching, Germany 2 University of Vienna,

More information

Solutions Final exam 633

Solutions Final exam 633 Solutions Final exam 633 S.J. van Enk (Dated: June 9, 2008) (1) [25 points] You have a source that produces pairs of spin-1/2 particles. With probability p they are in the singlet state, ( )/ 2, and with

More information

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Workshop on Quantum Computing and its Application March 16, 2017 Qubits Unitary transformations Quantum Circuits Quantum Measurements Quantum

More information

Some Introductory Notes on Quantum Computing

Some Introductory Notes on Quantum Computing Some Introductory Notes on Quantum Computing Markus G. Kuhn http://www.cl.cam.ac.uk/~mgk25/ Computer Laboratory University of Cambridge 2000-04-07 1 Quantum Computing Notation Quantum Computing is best

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Use of dynamical coupling for improved quantum state transfer

Use of dynamical coupling for improved quantum state transfer Use of dynamical coupling for improved quantum state transfer A. O. Lyakhov and C. Bruder Department of Physics and Astronomy, University of Basel, Klingelbergstr. 82, 45 Basel, Switzerland We propose

More information

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Ph 219/CS 219. Exercises Due: Friday 3 November 2006 Ph 9/CS 9 Exercises Due: Friday 3 November 006. Fidelity We saw in Exercise. that the trace norm ρ ρ tr provides a useful measure of the distinguishability of the states ρ and ρ. Another useful measure

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

Seminar 1. Introduction to Quantum Computing

Seminar 1. Introduction to Quantum Computing Seminar 1 Introduction to Quantum Computing Before going in I am also a beginner in this field If you are interested, you can search more using: Quantum Computing since Democritus (Scott Aaronson) Quantum

More information

Fermionic quantum theory and superselection rules for operational probabilistic theories

Fermionic quantum theory and superselection rules for operational probabilistic theories Fermionic quantum theory and superselection rules for operational probabilistic theories Alessandro Tosini, QUIT group, Pavia University Joint work with G.M. D Ariano, F. Manessi, P. Perinotti Supported

More information

Spekkens Toy Model, Finite Field Quantum Mechanics, and the Role of Linearity arxiv: v1 [quant-ph] 15 Mar 2019

Spekkens Toy Model, Finite Field Quantum Mechanics, and the Role of Linearity arxiv: v1 [quant-ph] 15 Mar 2019 Spekkens Toy Model, Finite Field Quantum Mechanics, and the Role of Linearity arxiv:903.06337v [quant-ph] 5 Mar 209 Lay Nam Chang, Djordje Minic, and Tatsu Takeuchi Department of Physics, Virginia Tech,

More information

Information quantique, calcul quantique :

Information quantique, calcul quantique : Séminaire LARIS, 8 juillet 2014. Information quantique, calcul quantique : des rudiments à la recherche (en 45min!). François Chapeau-Blondeau LARIS, Université d Angers, France. 1/25 Motivations pour

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

arxiv: v1 [quant-ph] 7 Jun 2013

arxiv: v1 [quant-ph] 7 Jun 2013 Optimal quantum state transfer in disordered spin chains arxiv:1306.1695v1 [quant-ph] 7 Jun 2013 Analia Zwick, 1, 2, 3 Gonzalo A. Álvarez, 1, 3 Joachim Stolze, 3 and Omar Osenda 2 1 Department of Chemical

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

The Fermionic Quantum Theory

The Fermionic Quantum Theory The Fermionic Quantum Theory CEQIP, Znojmo, May 2014 Authors: Alessandro Tosini Giacomo Mauro D Ariano Paolo Perinotti Franco Manessi Fermionic systems in computation and physics Fermionic Quantum theory

More information

Topological quantum computation

Topological quantum computation School US-Japan seminar 2013/4/4 @Nara Topological quantum computation -from topological order to fault-tolerant quantum computation- The Hakubi Center for Advanced Research, Kyoto University Graduate

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Ben W. Reichardt UC Berkeley NSF, ARO [quant-ph/0411036] stabilizer operations, Q: Do form a universal set? prepare

More information

Detecting and using Majorana fermions in superconductors

Detecting and using Majorana fermions in superconductors Detecting and using Majorana fermions in superconductors Anton Akhmerov with Carlo Beenakker, Jan Dahlhaus, Fabian Hassler, and Michael Wimmer New J. Phys. 13, 053016 (2011) and arxiv:1105.0315 Superconductor

More information

Bosonization of lattice fermions in higher dimensions

Bosonization of lattice fermions in higher dimensions Bosonization of lattice fermions in higher dimensions Anton Kapustin California Institute of Technology January 15, 2019 Anton Kapustin (California Institute of Technology) Bosonization of lattice fermions

More information

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick Grover s algorithm Search in an unordered database Example: phonebook, need to find a person from a phone number Actually, something else, like hard (e.g., NP-complete) problem 0, xx aa Black box ff xx

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Security Implications of Quantum Technologies

Security Implications of Quantum Technologies Security Implications of Quantum Technologies Jim Alves-Foss Center for Secure and Dependable Software Department of Computer Science University of Idaho Moscow, ID 83844-1010 email: jimaf@cs.uidaho.edu

More information

Quantum Computing 1. Multi-Qubit System. Goutam Biswas. Lect 2

Quantum Computing 1. Multi-Qubit System. Goutam Biswas. Lect 2 Quantum Computing 1 Multi-Qubit System Quantum Computing State Space of Bits The state space of a single bit is {0,1}. n-bit state space is {0,1} n. These are the vertices of the n-dimensional hypercube.

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

A complete criterion for convex-gaussian states detection

A complete criterion for convex-gaussian states detection A complete criterion for convex-gaussian states detection Anna Vershynina Institute for Quantum Information, RWTH Aachen, Germany joint work with B. Terhal NSF/CBMS conference Quantum Spin Systems The

More information

Quantum dots and Majorana Fermions Karsten Flensberg

Quantum dots and Majorana Fermions Karsten Flensberg Quantum dots and Majorana Fermions Karsten Flensberg Center for Quantum Devices University of Copenhagen Collaborator: Martin Leijnse and R. Egger M. Kjærgaard K. Wölms Outline: - Introduction to Majorana

More information

Kitaev honeycomb lattice model: from A to B and beyond

Kitaev honeycomb lattice model: from A to B and beyond Kitaev honeycomb lattice model: from A to B and beyond Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Postdoc: PhD students: Collaborators: Graham Kells Ahmet Bolukbasi

More information

Errata list, Nielsen & Chuang. rrata/errata.html

Errata list, Nielsen & Chuang.  rrata/errata.html Errata list, Nielsen & Chuang http://www.michaelnielsen.org/qcqi/errata/e rrata/errata.html Part II, Nielsen & Chuang Quantum circuits (Ch 4) SK Quantum algorithms (Ch 5 & 6) Göran Johansson Physical realisation

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

Quantum walks: Definition and applications

Quantum walks: Definition and applications Quantum walks: Definition and applications 尚云 2017 年 5 月 5 日 ( 量子计算与密码分析讨论班 ) Talk structure Introduction to quantum walks Defining a quantum walk...on the line...on the graphs Applications of quantum

More information

Golden chain of strongly interacting Rydberg atoms

Golden chain of strongly interacting Rydberg atoms Golden chain of strongly interacting Rydberg atoms Hosho Katsura (Gakushuin Univ.) Acknowledgment: Igor Lesanovsky (MUARC/Nottingham Univ. I. Lesanovsky & H.K., [arxiv:1204.0903] Outline 1. Introduction

More information

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

Magic States. Presented by Nathan Babcock

Magic States. Presented by Nathan Babcock Magic States Presented by Nathan Babcock Overview I will discuss the following points:. Quantum Error Correction. The Stabilizer Formalism. Clifford Group Quantum Computation 4. Magic States 5. Derivation

More information

Quantum state transfer on distance regular. spin networks with intrinsic decoherence

Quantum state transfer on distance regular. spin networks with intrinsic decoherence Quantum state transfer on distance regular spin networks with intrinsic decoherence arxiv:1701.00647v1 [quant-ph] 3 Jan 2017 R. Sufiani a and A. Pedram a Department of Theoretical Physics and Astrophysics,

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Measuring Entanglement Entropy in Synthetic Matter

Measuring Entanglement Entropy in Synthetic Matter Measuring Entanglement Entropy in Synthetic Matter Markus Greiner Harvard University H A R V A R D U N I V E R S I T Y M I T CENTER FOR ULTRACOLD ATOMS Ultracold atom synthetic quantum matter: First Principles

More information

Why does nature like the square root of negative one? William K. Wootters Williams College

Why does nature like the square root of negative one? William K. Wootters Williams College Why does nature like the square root of negative one? William K. Wootters Williams College A simple quantum experiment Computing probabilities in a sensible way (½)(½)+(½)(½) = ½ ½ ½ Computing probabilities

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 17 1 / 26 Overview

More information

Topological invariants for 1-dimensional superconductors

Topological invariants for 1-dimensional superconductors Topological invariants for 1-dimensional superconductors Eddy Ardonne Jan Budich 1306.4459 1308.soon SPORE 13 2013-07-31 Intro: Transverse field Ising model H TFI = L 1 i=0 hσ z i + σ x i σ x i+1 σ s:

More information

Selection rules - electric dipole

Selection rules - electric dipole Selection rules - electric dipole As an example, lets take electric dipole transitions; when is j, m z j 2, m 2 nonzero so that j 1 = 1 and m 1 = 0. The answer is equivalent to the question when can j

More information

Fidelity of Quantum Teleportation through Noisy Channels

Fidelity of Quantum Teleportation through Noisy Channels Fidelity of Quantum Teleportation through Noisy Channels Sangchul Oh, Soonchil Lee, and Hai-woong Lee Department of Physics, Korea Advanced Institute of Science and Technology, Daejon, 305-701, Korea (Dated:

More information

Majorana bound states in spatially inhomogeneous nanowires

Majorana bound states in spatially inhomogeneous nanowires Master Thesis Majorana bound states in spatially inhomogeneous nanowires Author: Johan Ekström Supervisor: Assoc. Prof. Martin Leijnse Division of Solid State Physics Faculty of Engineering November 2016

More information

b) (5 points) Give a simple quantum circuit that transforms the state

b) (5 points) Give a simple quantum circuit that transforms the state C/CS/Phy191 Midterm Quiz Solutions October 0, 009 1 (5 points) Short answer questions: a) (5 points) Let f be a function from n bits to 1 bit You have a quantum circuit U f for computing f If you wish

More information

Inverse Eigenvalue Problems: Theory, Algorithms, and Applications

Inverse Eigenvalue Problems: Theory, Algorithms, and Applications Inverse Eigenvalue Problems: Theory, Algorithms, and Applications Moody T. Chu North Carolina State University Gene H. Golub Stanford University OXPORD UNIVERSITY PRESS List of Acronyms List of Figures

More information

arxiv:quant-ph/ v1 21 Nov 2003

arxiv:quant-ph/ v1 21 Nov 2003 Analytic solutions for quantum logic gates and modeling pulse errors in a quantum computer with a Heisenberg interaction G.P. Berman 1, D.I. Kamenev 1, and V.I. Tsifrinovich 2 1 Theoretical Division and

More information

Quantum computation in topological Hilbertspaces. A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen

Quantum computation in topological Hilbertspaces. A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen Quantum computation in topological Hilbertspaces A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen Introduction In two words what is it about? Pushing around fractionally

More information

Time Independent Perturbation Theory Contd.

Time Independent Perturbation Theory Contd. Time Independent Perturbation Theory Contd. A summary of the machinery for the Perturbation theory: H = H o + H p ; H 0 n >= E n n >; H Ψ n >= E n Ψ n > E n = E n + E n ; E n = < n H p n > + < m H p n

More information

arxiv: v2 [quant-ph] 9 Jan 2015

arxiv: v2 [quant-ph] 9 Jan 2015 Quantum state transfer in disordered spin chains: How much engineering is reasonable? arxiv:1306.1695v2 [quant-ph] 9 Jan 2015 Analia Zwick, 1, 2, 3 Gonzalo A. Álvarez, 1, 3 Joachim Stolze, 3 and Omar Osenda

More information

FRG Workshop in Cambridge MA, May

FRG Workshop in Cambridge MA, May FRG Workshop in Cambridge MA, May 18-19 2011 Programme Wednesday May 18 09:00 09:10 (welcoming) 09:10 09:50 Bachmann 09:55 10:35 Sims 10:55 11:35 Borovyk 11:40 12:20 Bravyi 14:10 14:50 Datta 14:55 15:35

More information

The Future. Currently state of the art chips have gates of length 35 nanometers.

The Future. Currently state of the art chips have gates of length 35 nanometers. Quantum Computing Moore s Law The Future Currently state of the art chips have gates of length 35 nanometers. The Future Currently state of the art chips have gates of length 35 nanometers. When gate lengths

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω Dynamics of a Quantum System: QM postulate: The time evolution of a state ψ> of a closed quantum system is described by the Schrödinger equation where H is the hermitian operator known as the Hamiltonian

More information

arxiv: v1 [quant-ph] 3 Feb 2011

arxiv: v1 [quant-ph] 3 Feb 2011 Heisenberg Spin Bus as a Robust Transmission Line for Perfect State Transfer Sangchul Oh, Lian-Ao Wu,, Yun-Pil Shim, Mark Friesen, and Xuedong Hu Department of Physics, University at Buffalo, State University

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

Coulomb entangler and entanglement-testing network for waveguide qubits

Coulomb entangler and entanglement-testing network for waveguide qubits PHYSICAL REVIEW A 72, 032330 2005 Coulomb entangler and entanglement-testing network for waveguide qubits Linda E. Reichl and Michael G. Snyder Center for Studies in Statistical Mechanics and Complex Systems,

More information

Unitary Dynamics and Quantum Circuits

Unitary Dynamics and Quantum Circuits qitd323 Unitary Dynamics and Quantum Circuits Robert B. Griffiths Version of 20 January 2014 Contents 1 Unitary Dynamics 1 1.1 Time development operator T.................................... 1 1.2 Particular

More information

Supervised quantum gate teaching for quantum hardware design

Supervised quantum gate teaching for quantum hardware design Supervised quantum gate teaching for quantum hardware design Leonardo Banchi1, Nicola Pancotti2 and Sougato Bose1 1- Department of Physics and Astronomy, University College London, Gower Street, London

More information

Quantum Cloning WOOTTERS-ZUREK CLONER

Quantum Cloning WOOTTERS-ZUREK CLONER Quantum Cloning Quantum cloning has been a topic of considerable interest for many years. It turns out to be quantum limit for copying an input state and is closely related to linear amplification when

More information

Accelerating QMC on quantum computers. Matthias Troyer

Accelerating QMC on quantum computers. Matthias Troyer Accelerating QMC on quantum computers Matthias Troyer International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California

More information

Lecture 3: Superdense coding, quantum circuits, and partial measurements

Lecture 3: Superdense coding, quantum circuits, and partial measurements CPSC 59/69: Quantum Computation John Watrous, University of Calgary Lecture 3: Superdense coding, quantum circuits, and partial measurements Superdense Coding January 4, 006 Imagine a situation where two

More information

6. Quantum error correcting codes

6. Quantum error correcting codes 6. Quantum error correcting codes Error correcting codes (A classical repetition code) Preserving the superposition Parity check Phase errors CSS 7-qubit code (Steane code) Too many error patterns? Syndrome

More information

Pauli Exchange and Quantum Error Correction

Pauli Exchange and Quantum Error Correction Contemporary Mathematics Pauli Exchange and Quantum Error Correction Mary Beth Ruskai Abstract. In many physically realistic models of quantum computation, Pauli exchange interactions cause a special type

More information

Fermions in Quantum Complexity Theory

Fermions in Quantum Complexity Theory Fermions in Quantum Complexity Theory Edwin Ng MIT Department of Physics December 14, 2012 Occupation Number Formalism Consider n identical particles in m modes. If there are x j particles in the jth mode,

More information

Quantum information and quantum computing

Quantum information and quantum computing Middle East Technical University, Department of Physics January 7, 009 Outline Measurement 1 Measurement 3 Single qubit gates Multiple qubit gates 4 Distinguishability 5 What s measurement? Quantum measurement

More information

Exact diagonalization methods

Exact diagonalization methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Exact diagonalization methods Anders W. Sandvik, Boston University Representation of states in the computer bit

More information

Topological Quantum Computation from non-abelian anyons

Topological Quantum Computation from non-abelian anyons Topological Quantum Computation from non-abelian anyons Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

The quantum speed limit

The quantum speed limit The quantum speed limit Vittorio Giovannetti a,sethlloyd a,b, and Lorenzo Maccone a a Research Laboratory of Electronics b Department of Mechanical Engineering Massachusetts Institute of Technology 77

More information

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU)

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU) Application of Structural Physical Approximation to Partial Transpose in Teleportation Satyabrata Adhikari Delhi Technological University (DTU) Singlet fraction and its usefulness in Teleportation Singlet

More information