Normal Approximation under Local Dependence. By Louis H.Y. Chen and Qi-Man Shao. National University of Singapore and University of Oregon

Size: px
Start display at page:

Download "Normal Approximation under Local Dependence. By Louis H.Y. Chen and Qi-Man Shao. National University of Singapore and University of Oregon"

Transcription

1 The Annals of Probablty 2004, Vol. 00, No. 00, Normal Approxmaton under Local Dependence By Lous H.Y. Chen and Q-Man Shao Natonal Unversty of Sngapore and Unversty of Oregon We establsh both unform and non-unform error bounds of the Berry-Esseen type n normal approxmaton under local dependence. These results are of an order close to the best possble f not best possble. They are more general or sharper than many exstng ones n the lterature. The proofs couple Sten s method wth the concentraton nequalty approach. Accepted for publcaton n Annals of Probablty Revsed: August 16, 2003 (Frst verson: May 3, 2002) Receved AMS 1991 subject classfcatons. Prmary 60F05; secondary 60G60. Key words and phrases. Sten s method, normal approxmaton, local dependence, concentraton nequalty, unform Berry-Esseen bound, non-unform Berry-Esseen bound, random feld. Research s partally supported by grant R at the Natonal Unversty of Sngapore Research s partally supported by NSF grant DMS , and grants R and R at the Natonal Unversty of Sngapore. 1

2 2 L.H.Y Chen and Q.-M. Shao 1. Introducton Snce the work of Berry and Esseen n the 1940 s, much has been done n the normal approxmaton for ndependent random varables. The standard tool has been the Fourer analytc method as developed by Esseen (1945). However, wthout ndependence, the Fourer analytc method becomes dffcult to apply and bounds on the accuracy of approxmaton correspondently dffcult to fnd. In such stuatons, a method of Sten (1972) provdes a much more vable alternatve to the Fourer analytc method. Correspondng to calculatng a Fourer transform and applyng the nverson formula, t nvolves dervng a drect dentty and solvng a dfferental equaton. As dependence s the rule rather than the excepton n applcatons, Sten s method has become ncreasngly useful and mportant. A crucal step n the Fourer analytc method for normal approxmaton s the use of a smoothng nequalty orgnally due to Esseen (1945). The smoothng nequalty s used to overcome the dffculty resultng from the non-smoothness of the ndcator functon whose expectaton s the dstrbuton functon. There s a correspondence of ths n Sten s method, whch s called the concentraton nequalty. It s orgnally due to Sten. Its smplest form s used n Ho and Chen (1978). More elaborate versons are proved n Chen (1986, 1998) and Chen and Shao (2001). In Chen and Shao (2001), t s developed also for obtanng non-unform error bounds. Ths paper s concerned wth normal approxmaton under local dependence usng Sten s method. Local dependence roughly means that certan subsets of the random varables are ndependent of those outsde ther respectve neghborhoods. No structure on the ndex set s assumed. Both unform and non-unform error bounds of the Berry-Esseen type are obtaned and shown to be more general or sharper than many exstng results n the lterature. These nclude those of Sher-

3 Normal Approxmaton under Local Dependence 3 gn (1979), Prakasa Rao (1981), Bald and Rnott (1989), Bald, Rnott and Sten (1989), Rnott (1994), and Dembo and Rnott (1996). The approach used n the paper s that of the concentraton nequalty. It s based on the deas of Chen (1986) where the concentraton nequalty s derved dfferently from those n Chen and Shao (2001), due to the non-postvty of the covarance functon. The unform bounds obtaned are mprovements of those n Chen (1986) and the non-unform bounds, whch are proved by followng the technques n Chen and Shao (2001), are new n the lterature. In provng the bounds, an attempt s made to acheve the best possble order for them. For example, the non-unform bounds obtaned are best possble as functons of the varables. The forms of the bounds obtaned are nspred by the results n Chen (1978), where necessary and suffcent condtons are proved for asymptotc normalty of locally dependent random varables (termed fntely dependent n that paper). Such bounds deal successfully wth those cases where the varance of a sum of n random varables grows at a dfferent rate from n. An example due to Erckson (1974) s used to llustrate ths pont. Ths paper s organzed as follows. The man results and ther applcatons are gven n Secton 2. Two unform and one non-unform condtonal concentraton nequaltes are proved n Secton 3. The proofs of the unform bounds are gven n Secton 4 and that of the non-unform bounds n Secton Man results Throughout ths paper let J be an ndex set and {X, J be a random feld wth zero means and fnte varances. Defne W = J X and assume that Var(W ) = 1. Let n be the cardnalty of J, F be the dstrbuton functon of W and Φ be the standard normal dstrbuton functon.

4 4 L.H.Y Chen and Q.-M. Shao For A J, let X A denote {X, A, A c = {j J : j A, and A the cardnalty of A. Adopt the notaton: a b = mn(a, b) and a b = max(a, b). We frst ntroduce dependence assumptons and defne notatons that wll be used throughout the paper. (LD1) For each J there exsts A J such that X and X A c are ndependent. (LD2) For each J there exst A B J such that X s ndependent of X A c and X A s ndependent of X B c. (LD3) For each J there exst A B C J such that X s ndependent of X A c, X A s ndependent of X B c, and X B s ndependent of X C c. (LD4 ) For each J there exst A B B C D J such that X s ndependent of X A c, X A s ndependent of X B c, X A s ndependent of {X Aj, j B c, {X Al, l B s ndependent of {X A j, j C c, and {X Al, l C s ndependent of {X A j, j D c. It s clear that (LD4 ) mples (LD3), (LD3) yelds (LD2) and (LD1) s the weakest assumpton. Roughly speakng, (LD4 ) s a verson of (LD3) for {X A, J. On the other hand, n many cases (LD1) mples(ld2), (LD3) and (LD4*) wth B, C, B, C and D defned as: B = j A A j, C = j B A j, B = j A B j, C = j B B j and D = j C B j. Other forms of local dependence have also been used n the lterature, such as dependency neghborhoods n Rnott and Rotar (1996) where convergence rates of multvarate central lmt theorem were obtaned. Some of ther results may not be covered by our theorems. For each J let Y = j A X j. We defne (2.1) ˆK (t) = X {I( Y t < 0) I(0 t Y ), K (t) = E ˆK (t), ˆK(t) = J ˆK (t), K(t) = E ˆK(t) = J K (t).

5 Snce Var(W ) = 1, we have Normal Approxmaton under Local Dependence 5 (2.2) K(t)dt = EW 2 = Unform Berry-Esseen bounds The Berry-Esseen theorem (Berry (1941) and Esseen (1945), see for example, Petrov (1995)) states that f {X, J are ndependent wth fnte thrd moments, then there exsts an absolute constant C such that sup F (z) Φ(z) C E X 3. z R J Here and throughout the paper C denotes an absolute constant whch may have dfferent values at dfferent places. If n addton X, J are dentcally dstrbuted, then the bound s of the order n 1/2, whch s known to be the best possble. The man objectve of ths subsecton s to obtan general unform Berry-Esseen bounds under varous dependence assumptons wth an am to acheve the best possble orders. We frst present a result under assumpton (LD1). Theorem 2.1. Under (LD1) we have (2.3) sup F (z) Φ(z) r 1 + 4r 2 + 8r 3 + r r r 6, z where r 1 = E J (X Y EX Y ), r 2 = J E X Y I( Y > 1), (2.4) r 3 = J E X (Y 2 1), r 4 = J E{ W X (Y 2 1), r 5 = Var( ˆK(t))dt, r 6 = ( t Var( ˆK(t))dt) 1/2. Snce r 1, r 2, r 3 and r 4 depend on the moments of {X, Y, W, they can be easly estmated (see Remark 2.1). The followng alternatve formulas of r 5 and r 6 may

6 6 L.H.Y Chen and Q.-M. Shao be useful. Let {X, J be an ndependent copy of {X, J and defne Y = j A X j. Then Var( ˆK(t)) =,j J { E X X j {I( Y t < 0) I(0 t Y ){I( Y j t < 0) I(0 t Y j ) X X j {I( Y t < 0) I(0 t Y ){I( Y j t < 0) I(0 t Yj ) and hence r 5 =,j J Smlarly, we have r 2 6 = (1/2) { E X X j I(Y Y j 0)( Y Y j 1) X Xj I(Y Yj 0)( Y Yj 1).,j J { E X X j I(Y Y j 0)( Y 2 Y j 2 1) X Xj I(Y Yj 0)( Y 2 Yj 2 1). In partcular, under assumpton (LD2) and r 5 r 2 6 (1/2),j J,B B j,j J,B B j { E X X j ( Y Y j 1) + X Xj ( Y Yj 1) { E X X j ( Y 2 Y j 2 1) + X Xj ( Y 2 Yj 2 1). Thus, we have a much neater result under (LD2). Theorem 2.2. Let N(B ) = {j J : B j B and 2 < p 4. Assume that (LD2) s satsfed wth N(B ) κ. Then (2.5) sup F (z) Φ(z) z ( κ) ( (E X 3 p + E Y 3 p ) κ ) 1/2 (E X p + E Y p ) J J In partcular, f E X p + E Y p θ p for some θ > 0 and for each J, then (2.6) sup F (z) Φ(z) ( κ) n θ 3 p + 2.5θ p/2 κn, z where n = J.

7 Normal Approxmaton under Local Dependence 7 Note that n many cases κ s bounded and θ s of order of n 1/2. In those cases κ n θ 3 p + θ p/2 κn = O(n (p 2)/4 ), whch s of the best possble order of n 1/2 when p = 4. However, the cost s the exstence of fourth moments. To reduce the assumpton on moments, we need a stronger condton. Theorem 2.3. Suppose that (LD3) s satsfed. Let N(C ) = {j J : C B j, W = j N(C ) c X j, σ 2 = Var( W ) and λ = 1 max J (1/σ ). Then (2.7) sup F (z) Φ(z) 4λ 3/2 (r 2 + r 3 + r 7 + r 8 + r 9 + r 10 + r 11 + r 12 ), z where Z = j B X j, r 7 = J E{ X Y I( X > 1), r 8 = J E{ X I( X 1)( Y 1) Z, (2.8) r 9 = J E{ W X I( X 1)( Y 1)( Z 1), r 10 =,j J,B B j r 11 = J P ( X > 1)E X ( Y 1), { E X X j ( Y Y j 1) + X Xj ( Y Yj 1), r 12 = J E{( W + 1)( Z 1)E X ( Y 1) and (X, Y ) s an ndependent copy of (X, Y ). In partcular, we have

8 8 L.H.Y Chen and Q.-M. Shao Then Theorem 2.4. Let 2 < p 3. Assume that (LD3) s satsfed wth N(C ) κ. (2.9) sup F (z) Φ(z) 75κ p 1 E X p. z J Rnott (1994) and Dembo and Rnott (1996) obtaned unform bounds of order n 1/2 when X s bounded wth order of n 1/2 under a dfferent local dependence assumpton whch appears to be weaker than (LD2). However, ther approach does not seem to be extendable to random varables whch are not necessarly bounded. Remark 2.1. Although r 4 nvolves W, there are several ways to bound t. When there s no addtonal assumpton besdes (LD1), we can use the followng estmate: E W X ( A E W X (Y 2 1) (Xj 2 1)) j A A E W X (Xj 2 1)I( X X j ) + A E W X (Xj 2 1)I( X > X j ) j A j A A E W X j (Xj 2 1) + A E W X (X 2 1) j A j A A E W Y j E X j (Xj 2 1) + A E Y j X j ( X j 1) j A j A + A 2 E W Y E X (X 2 1) + A 2 E Y X ( X 1) A (1 + E Y j )E X j (Xj 2 1) + A E Y j X j ( X j 1) j A j A + A 2 (1 + E Y )E X (X 2 1) + A 2 E Y X ( X 1) Non-unform Berry-Esseen bound Non-unform bounds were frst obtaned by Esseen (1945) for ndependent and dentcally dstrbuted random varables

9 Normal Approxmaton under Local Dependence 9 {X, J. These were mproved to CnE X 1 3 /(1+ x 3 ) by Nagaev (1965). Bkels (1966) generalzed Nagaev s result to F (z) Φ(z) C J E X z 3 for ndependent and not necessarly dentcally dstrbuted random varables. In ths subsecton we present a general non-unform bound for locally dependent random felds {X, J under (LD4 ). Theorem 2.5. Assume that E X p < for 2 < p 3 and that (LD4 ) s satsfed. Let κ = max J max( D, {j : D j ). Then (2.10) F (z) Φ(z) Cκ p (1 + z ) p J E X p m-dependent random felds Let d 1 and Z d denote the d-dmensonal space of postve ntegers. The dstance between two ponts = ( 1,, d ) and j = (j 1,, j d ) n Z d s defned by j = max 1 l d l j l and the dstance between two subsets A and B of Z d s defned by ρ(a, B) = nf{ j : A, j B. For a gven subset J of Z d, a set of random varables {X, J s sad to be an m- dependent random feld f {X, A and {X j, j B are ndependent whenever ρ(a, B) > m, for any subsets A and B of J. Thus choosng A = {j : j m J, B = {j : j 2m J, C = {j : j 3m J, B = {j : j 3m J, C = {j : j 4m J, and D = {j : j 5m J n Theorems 2.4 and 2.5 yelds a unform and a non-unform bound.

10 10 L.H.Y Chen and Q.-M. Shao Theorem 2.6. Let {X, J be an m-dependent random felds wth zero means and fnte E X p < for 2 < p 3. Then (2.11) sup F (z) Φ(z) 75(10m + 1) (p 1)d E X p z J and (2.12) F (z) Φ(z) C(1 + z ) p (11) pd (m + 1) (p 1)d J E X p. Here we have reduced the m-dependent random feld to a 1-dependent random feld by takng blocks and then appled (2.10) to get (2.12). The result (2.11) was prevously obtaned by Shergn (1979) wthout specfyng the absolute constant. For non-unform bounds, results weaker than (2.12) have been obtaned n the lterature. See, for example, Prakasa Rao (1981) and Henrch (1984). However, the result n Prakasa Rao (1981) s far from best possble even for ndependent random felds whle Henrch (1984) s the best possble only for the..d. case. For other unform and non-unform Berry-Esseen bounds for m-dependent and weakly dependent random varables, see Thomrov (1980), Dasgupta (1992), and Sunklodas (1999). In Sunkloads (1999) a lower bound s also gven Examples In ths subsecton we gve three examples dscussed n lterature to llustrate the usefulness of our general results Graph dependency Ths example was dscussed n Bald and Rnott (1989) and Rnott (1994) where some results on unform bound were obtaned. Consder a set of random varables {X, V ndexed by the vertces of a graph G = (V, E). G s sad to be a dependency graph f for any par of dsjont sets Γ 1 and Γ 2 n V such that no edge n E has one endpont n Γ 1 and the other n Γ 2, the sets of random varables {X, Γ 1 and {X, Γ 2 are ndependent. Let D denote

11 Normal Approxmaton under Local Dependence 11 the maxmal degree of G,.e., the maxmal number of edges ncdent to a sngle vertex. Let A = {j V : there s an edge connectng j and, B = j A A j, C = j B A j, B = j A B j, C = j B B j and D = j C B j. An applcaton of Theorems 2.4 and 2.5 yelds the followng theorem. Theorem 2.7. Let {X, V be random varables ndexed by the vertces of a dependency graph. Put W = V X. Assume that EW 2 = 1, EX = 0 and E X p θ p for V and for some θ > 0. Then (2.13) sup P (W z) Φ(z) 75D 5(p 1) V θ p z and for z R, (2.14) P (W z) Φ(z) C(1 + z ) p D 5p V θ p. Whle (2.13) compares favorably wth those of Bald and Rnott (1989), (2.14) s new The number of local maxma on a graph Consder a graph G = (V, E) (whch s not necessary a dependency graph) and ndependently dentcally dstrbuted contnuous random varables {Y, V. For V defne the 0-1 ndcator varable where N = {j V : 1 f Y > Y j for all j N X = 0 otherwse d(, j) = 1 and d(, j) denotes the shortest path dstance between the vertces and j. Note that d(, j) = 1 ff and j are neghbors, so X = 1 ndcates that Y s a local maxmum. Let W = V X be the number of local maxma. If (V, E) s a regular graph,.e., all vertces have the same degree d,

12 12 L.H.Y Chen and Q.-M. Shao then by Bald, Rnott and Sten (1989), EW = V /(d + 1), and σ 2 = Var(W ) = s(, j)(2d + 2 s(, j)) 1 (d + 1) 2,j V,d(,j)=2 where s(, j) = N N j. sup P (W z) Φ((z EW )/σ) Cσ 1/2, z Theorem 2.8 below s obtaned by applyng Theorem 2.2. The unform bound, whch mproves σ 1/2 of Bald, Rnott and Sten (1989) to σ 1, s smlar to that of Dembo and Rnott (1996). However the non-unform bound s new. Theorem 2.8. We have (2.15) sup P (W z) Φ((z EW )/σ) Cd 2 V /σ 3 z and (2.16) P (W z) Φ((z EW )/σ) C(1 + z ) 3 d 5 V /σ 3. Theorem 2.9. We have (2.17) P (W z) Φ((z np)/σ) Cr 2 (1 + z 3 ) np(1 p) dependence wth o(n) varance Ths example was dscussed n Erckson (1974). Defne a sequence of bounded, symmetrc and dentcally dstrbuted random varables X 1,, X n wth EX 2 = 1 as follows. Let X 1 and X 2 be ndependent bounded and symmetrc random varables wth varance 1 and put B 2 k = Var( k =1 X ). For k 2, defne X k+1 = X k f B 2 k > k1/2 and defne X k+1 to be ndependent of X 1,, X k f B 2 k k1/2. It s clear that X 1,, X n s a 1-dependent sequence, B 2 n n 1/2 2 and n =1 X s a sum of B 2 n n 1/2 terms

13 Normal Approxmaton under Local Dependence 13 of ndependent and dentcally dstrbuted random varables. By the Berry-Esseen theorem, sup P (W z) Φ(z/B n ) Cn 1/4 E X 1 3 z and the order n 1/4 s correct. Whle the bound n (2.11) generalzes and mproves many others, t s asymptotcally Cn 1/4 E X 1 3, whch goes to. On the other hand, Theorem 2.3 gves the correct order n 1/4. To see ths, we observe that f X s ndependent of all other random varables, then we can choose A = B = C = { and X = Y = Z. On the other hand f X = X 1 or X +1, then A = B = C = { 1, or {, + 1 respectvely. In ths case Y = Z = 0 dentcally. Consequently the rght hand sde of (2.7) s bounded by CE X 1 /B n 3 number of X whch s ndependent of all the other random varables CE X 1 /B n 3 B 2 n = CE X 1 3 B 1 n Cn 1/4 E X 1 3, as desred. 3. Concentraton nequaltes The concentraton nequalty n normal approxmaton usng Sten s method plays a role correspondng to that of the smoothng nequalty of Esseen (1945) n the Fourer analytc method. It s used to overcome the dffculty caused by the non-smoothness of the ndcator functon whose expectaton s the dstrbuton functon. In ths secton we establsh two unform and one non-unform condtonal concentraton nequaltes. We frst prove Propostons 3.1, 3.2 and 3.3, whch wll be used n the proofs of Theorems 2.1, 2.2, 2.5 respectvely. Esseen (1968), Petrov (1995) and others have obtaned many unform concentraton nequaltes for sums of ndependent random varables. Our unform concentraton nequaltes are dfferent from thers except n the..d. case.

14 14 L.H.Y Chen and Q.-M. Shao Let {X, J be a random feld wth EX = 0 and EX 2 <. Put W = J X. Assume that EW 2 = 1. Proposton 3.1. Assume (LD1). Then for any real numbers a < b, (3.1) P (a W b) 0.625(b a) + 4r r 3 + 4r 5, where r 2, r 3 and r 5 are as defned n (2.4). Proof. Let α = r 3 and defne (b a + α)/2 for w a α (3.2) 1 2α (w a + α)2 (b a + α)/2 f(w) = w (a + b)/2 for a α < w a for a < w b 1 2α (w b α)2 + (b a + α)/2 for b < w b + α (b a + α)/2 for w > b + α Then f s a contnuous functon gven by 1, for a w b f (w) = 0, for w a α or w b + α, lnear, for a α w a or b w b + α Clearly f(w) (b a + α)/2. Wth ths f, Y, and ˆK(t) and K(t) as defned n (2.1), we have (3.3) (b a + α)/2 EW f(w ) = J E{X (f(w ) f(w Y )) = 0 E {X f (W + t)dt J Y = { E f (W + t) ˆK (t)dt J = E f (W + t) ˆK(t)dt := H 1 + H 2 + H 3 + H 4,

15 where Normal Approxmaton under Local Dependence 15 { H 1 = Ef (W ) K(t)dt, H 2 = E (f (W + t) f (W ))K(t)dt, { { H 3 = E f (W + t) ˆK(t)dt t >1, H 4 = E f (W + t)( ˆK(t) K(t))dt. Clearly, by (2.2) (3.4) { H 1 = Ef (W ) 1 K(t)dt t >1 Ef (W )(1 r 2 ) P (a W b) r 2 and (3.5) H 3 J E X Y I( Y > 1) = r 2. By the Cauchy nequalty, (3.6) H 4 (1/8)E [f (W + t)] 2 dt + 2E ( ˆK(t) K(t)) 2 dt To bound H 2, let (b a + 2α)/8 + 2r 5. Then by wrtng H 2 = E we have 1 t 0 = α t α L(α) = sup P (x W x + α). x R 0 f (W + s)dsk(t)dt E t f (W + s)dsk(t)dt {P (a α W + s a) P (b W + s b + α)dsk(t)dt t {P (a α W + s a) P (b W + s b + α)dsk(t)dt, (3.7) H 2 α 1 1 t L(α)ds K(t) dt + α t L(α)ds K(t) dt

16 16 L.H.Y Chen and Q.-M. Shao = α 1 L(α) tk(t) dt 0.5α 1 L(α)r 3 = 0.5L(α). It follows from (3.3) - (3.7) that (3.8) P (a W b) 0.625(b a) α + 2r 2 + 2r L(α). Substtutng a = x and b = x + α n (3.8), we obtan L(α) 1.375α + 2r 2 + 2r L(α) and hence (3.9) L(α) 2.75α + 4r 2 + 4r 5. Fnally combnng (3.8) and (3.9), we obtan (3.1). Proposton 3.2. Assume (LD3). Let ξ = ξ = (X, Y, Z ), where Y = j A X j and Z = j B X j. For Borel measurable functons a ξ and b ξ of ξ such that a ξ b ξ, we have (3.10) P ξ (a ξ W b ξ ) 0.625σ 1 (b ξ a ξ ) + 4σ 2 r σ 3 r 3 + 4σ 3 r 10 a.s., where σ and r 10 are as defned n Theorem 2.3, and P ξ ( ) denotes the condtonal probablty gven ξ. Proof. We use the same notaton as n Theorem 2.3 and follow the same lne of the proof as that of Proposton 3.1. Let f ξ be defned smlarly as n (3.2) such that f ξ ((a ξ + b ξ )/2) = 0 and f ξ s a contnuous functon gven by 1, for a ξ w b ξ f ξ(w) = 0, for w a ξ α or w b ξ + α, lnear, for a ξ α w a ξ or b ξ w b ξ + α

17 Normal Approxmaton under Local Dependence 17 where α = σ 2 r 3. Then, f ξ (w) (b ξ a ξ + α)/2. Put ˆM(t) = j N(C ) c ˆKj (t) and M(t) = j N(C ) c K j (t). Observe that X j and {ξ, W Y j are ndependent for j N(C ) c. Smlar to (3.3), (3.11) 0.5(b ξ a ξ + α)σ E{ W f ξ (W ) = j N(C ) c E ξ {X j (f ξ (W ) f ξ (W Y j )) = E ξ{ f ξ(w + t) ˆM(t)dt := H 1,ξ + H 2,ξ + H 3,ξ + H 4,ξ, where, E ξ ( ) denotes the condtonal expectaton gven ξ, H 1,ξ = E ξ f ξ(w ) M(t)dt, H 2,ξ = E ξ{ (f ξ(w + t) f ξ(w ))M(t)dt, H 3,ξ = E ξ{ f ξ(w + t) ˆM(t)dt, H 4,ξ = E ξ{ f ξ(w + t)( ˆM(t) M(t))dt. t >1 Note that ξ and ˆM(t) are ndependent. Analogous to (3.4), (3.5) and (3.6), (3.12) H 1,ξ P ξ (a ξ W b ξ )σ 2 r 2, (3.13) (3.14) H 3,ξ E ξ { X j Y j I( Y j > 1) j N(C ) c = E{ X j Y j I( Y j > 1) r 2, j N(C ) c H 4,ξ 0.125σ (b ξ a ξ + 2α) + 2σ 1 E ( ˆM(t) M(t)) 2 dt = 0.125σ (b ξ a ξ + 2α) + 2σ 1 ρ, where ρ = Var( ˆM(t))dt.

18 18 L.H.Y Chen and Q.-M. Shao To bound H 2,ξ, defne L ξ (α) = lm sup k x Q P ξ (x 1/k W x + 1/k + α), where Q s the set of ratonal numbers and wth a lttle abuse of notaton, we regard P ξ as a regular condtonal probablty gven ξ. Followng the proof of (3.7) yelds (3.15) H 2,ξ α 1 L ξ (α) tm(t) dt 0.5α 1 L ξ (α)r 3 = 0.5σ 2 L ξ (α). Thus by (3.12) - (3.15), (3.16) P ξ (a ξ W b ξ ) 0.625σ 1 (b ξ a ξ ) ασ 1 + 2σ 2 r 2 + 2σ 3 ρ + 0.5L ξ (α). Now substtute a ξ = x 1/k and b ξ = x + 1/k + α n (3.16). By takng supremum over x Q and then lettng k, we obtan and hence L ξ (α) 1.375ασ 1 + 2σ 2 r 2 + 2σ 3 ρ + 0.5L ξ (α) (3.17) L ξ (α) 2.75ασ 1 + 4σ 2 r 2 + 4σ 3 ρ. Combnng (3.16) and (3.17), we obtan (3.18) P ξ (a ξ W b ξ ) 0.625σ 1 (b ξ a ξ ) + 4σ 2 r σ 3 r 3 + 4σ 3 ρ. It remans to prove that ρ r 10. Let (X j, Y j ) be an ndependent copy of (X j, Y j ). Note that ˆK j (t) and ˆK l (t) are ndependent for l N(B j ) c. Drect computatons yeld ρ = j N(C ) c l N(C ) c = j N(C ) c l N(B j)n(c ) c Cov( ˆK j (t), ˆK l (t))dt Cov( ˆK j (t), ˆK l (t))dt

19 = E j N(C ) c l N(B j)n(c ) c j J = r 10. l N(B j) E Normal Approxmaton under Local Dependence 19 { X l X j I(Y l Y j 0)( Y l Y j 1) X l Xj I(Y l Yj 0)( Y l Yj 1) { X l X j ( Y l Y j 1) + X l X j ( Y l Y j 1) Ths completes the proof of the proposton. For obtanng a non-unform condtonal concentraton nequalty, we need two lemmas on moment nequaltes for locally dependent random felds. Lemma 3.1. Let {X, J be a random feld satsfyng (LD3) and let ξ be a measurable functon of X wth Eξ = 0 and Eξ 4 < for each J. Let T = J ξ and σ 2 = E(T 2 ). Then (3.19) and for a > 0, σ 2 = Eξ ξ j J j A (3.20) ET 4 = 3σ 4 6 J E(ξ ξ A )E(ξ B ξ C ) + 3 J E(ξ ξ A )Eξ 2 B 3 J E(ξ ξ 2 A ξ B ) + J E(ξ ξ 3 A ) +6 J E(ξ ξ A ξ B ξ C ) 3 J E(ξ ξ A ξ 2 B ) (3.21) 3σ J {a 3 Eξ 4 + a 1 Eξ 4 A + a 1 Eξ 4 B + a 1 Eξ 4 C, where ξ A In partcular, we have = ξ j, ξ B = ξ j, ξ C = ξ j. j A j B j C (3.22) σ 2 κ 1 J Eξ 2

20 20 L.H.Y Chen and Q.-M. Shao and (3.23) ET 4 3σ κ 3 1 Eξ 4, J where κ 1 = max J max( C, {j J : C j ). Proof. By (LD3), ξ and {ξ j, j A c are ndependent and ths mples (3.19). Note that for each J, ξ and T ξ A are ndependent, {ξ, ξ A and T ξ B are ndependent, and {ξ, ξ A, ξ B and T ξ C ET 4 = { (3.24) E ξ (T 3 (T ξ A ) 3 ) J are ndependent. Therefore = 3E { ξ ξ A T 2 3E { ξ ξa 2 T + E { ξ ξ 3 A J = 3 E { ξ ξ A E(T ξ B ) E { ξ ξ A (T 2 (T ξ B ) 2 ) J J 3 E { ξ ξ 2 A ξ B + E { ξ ξa 3 J J = 3 E { ξ ξ A (σ 2 2Eξ B ξ C + EξB 2 ) J +3 E { ξ ξ A (2ξ B ξ C ξb 2 ) 3 E { ξ ξ 2 A ξ B + E { ξ ξa 3 J J J = 3σ 4 6 E(ξ ξ A )E(ξ B ξ C ) + 3 E(ξ ξ A )EξB 2 J J 3 J E(ξ ξ 2 A ξ B ) + J E(ξ ξ 3 A ) +6 J E(ξ ξ A ξ B ξ C ) 3 J E(ξ ξ A ξ 2 B ). Now the Cauchy nequalty mples that for any a > 0 and any random varables u 1, u 2, u 3, u 4, (3.25)E u 1 u 2 u 3 u 4 (1/4) { a 3 E u a 1 E u a 1 E u a 1 E u 4 4. It follows that the rght hand sde of (3.24) s bounded by 5.5 J {a3 Eξ 4 + a 1 Eξ 4 A + a 1 Eξ 4 B + a 1 Eξ 4 C. Ths proves (3.21).

21 Normal Approxmaton under Local Dependence 21 To prove (3.22) and (3.23), put A 1 = {j J : A j and C 1 C j. Then κ 1 = max J ( C C 1 ). By the C r nequalty and (3.19) σ 2 0.5{Eξ 2 + Eξj 2 J j A 0.5κ 1 Eξ J j J κ 1 Eξ 2. J Smlarly by (3.21) wth a = κ 1, ET 4 3σ {κ 3 1Eξ 4 + κ 1 J 3σ κ 3 1 E ξ 4. J 1 κ3 1 Ths completes the proof of Lemma 3.1. C 1 j j A E ξ j 4 + κ 1 1 κ3 1 Eξ 2 j j B E ξ j 4 + κ 1 = {j J : 1 κ3 1 j C E ξ j 4 Lemma 3.2. Let {X, J be a random feld satsfyng (LD4 ). Let ξ be a measurable functon of X wth Eξ = 0 and Eξ 4 < and η a measurable functon of X A wth Eη = 0 and Eη 4 <. Let T = J ξ and S = J η. Then for any a > 0 E(T 2 S 2 ) 3ET 2 ES 2 +4 J {a 3 Eξ 4 +a 1 Eξ 4 C +a 1 Eξ 4 D +a 1 Eη 4 B +a 1 Eη 4 C +a 1 Eη 4 D, (3.26) where ξ C = ξ j, ξ D = ξ j, η B = η j, η C = η j, η D = η j. j C j D j B j C j D In partcular, we have (3.27) E(T 2 S 2 ) 3ET 2 ES κ 3 2 {E ξ 4 + E η 4, J where κ 2 = max J max( D, {j J : D j ).

22 22 L.H.Y Chen and Q.-M. Shao Proof. By (LD4 ), the followng pars of random varables are ndependent () ξ and (T ξ A )(S η B ) 2 ; () ξ ξ A and (S η B ) 2 ; () ξ η B and (T ξ C )(S η C ). Thus we have E(T 2 S 2 ) = J E(ξ T S 2 ) = ( ) E ξ {T S 2 T (S η B ) 2 + ξ A (S η B ) 2 J = 2E(ξ η B T S) E(ξ ηb 2 T ) + E(ξ ξ A )E(S η B ) 2 J J J = 2 J E{ξ η B (T S (T ξ C )(S η C )) +2 J E(ξ η B )E(T ξ C )(S η C ) J E(ξ η 2 B ξ C ) + J E(ξ ξ A ){E(S 2 ) 2Eη B S + Eη 2 B = 2 J E{ξ η B (ξ C S + η C T ξ C η C ) +2 J E(ξ η B ){E(T S) E(ξ C S) E(η C T ) + E(ξ C η C ) J E(ξ η 2 B ξ C ) + ET 2 E(S 2 ) 2 J E(ξ ξ A )Eη B η C + J E(ξ ξ A )Eη 2 B = 2(E(T S)) 2 + ET 2 ES J E{ξ η B ξ C η D +2 J E{ξ η B η C ξ D 2 J E{ξ η B ξ C η C ) +2 J E(ξ η B ){ E(ξ C η D ) E(η C ξ D ) + E(ξ C η C ) J E(ξ η 2 B ξ C ) 2 J E(ξ ξ A )Eη B η C + J E(ξ ξ A )Eη 2 B 3ET 2 ES J {a 3 Eξ 4 + a 1 Eξ 4 C + a 1 Eξ 4 D + a 1 Eη 4 B + a 1 Eη 4 C + a 1 Eη 4 D, where (3.25) was used to obtan the last nequalty. By the C r nequalty, (3.27) follows drectly from (3.26). We are now ready to state and prove a non-unform concentraton nequalty.

23 Normal Approxmaton under Local Dependence 23 Proposton 3.3. Let {X, J be a random feld satsfyng (LD4 ) and put κ = max J max( D, {j J : D j ). Let ξ be a measurable functon of X satsfyng Eξ = 0 and ξ 1/(4κ). Defne ξ Aj = ξ l, ξ Bj = ξ l, T = ξ j. l A j l B j j J Assume that 1/2 ET 2 2 and let ζ = ζ = (ξ, ξ A, ξ B ). Then for Borel measurable functons a ζ and b ζ of ζ such that b ζ a ζ 0 (3.28) E ζ{ (1 + T ) 3 I(a ζ T b ζ ) C(b ζ a ζ + α) a.s., where α = 16κ 2 j J E ξ j 3. In partcular f a ζ x > 1, then (3.29) P ζ (a ζ T b ζ ) C(1 + x) 3 (b ζ a ζ + α) a.s. Proof. Let C c = J C and let ˆK j,ξ (t) = ξ j {I( ξ Aj t < 0) I(0 t ξ Aj ), ˆM ξ (t) = j C c ˆK j,ξ (t), M ξ (t) = E ˆM ξ (t), T = Snce ξ j 1/(4κ) and 1/2 ET 2 2, we have j C c ξ j = T ξ C. (3.30) ξ C j 1/4, E T ξ C j 2 6 and by (3.23), (3.31) E T ξ C j κ 2 j J E ξ j α. Consder two cases. Case I. α > 1. By (3.23), E ζ{ (1 + T ) 3 I(a ζ T b ζ ) (E ζ 1 + T 4 ) 3/4 8 ( 16 + E T ξ C 4) { E ζ (2 + T ξ C ) 4 3/4 E(2 + T ξc ) 4

24 24 L.H.Y Chen and Q.-M. Shao 8(16 + 3(E T ξ C 2 ) κ 3 j J E ξ j 4 ) 2 16( 1 + κ 2 j J E ξ j 3) 2 17 α. Ths proves (3.28). Case II. 0 < α < 1. Defne 0 for w a ζ α 1 2α (w a ζ + α) 2 h ζ (w) = w a ζ + α/2 1 2α (w b ζ α) 2 + b ζ a ζ + α b ζ a ζ + α for a ζ α < w a ζ for a ζ < w b ζ for b ζ < w b ζ + α for w > b ζ + α and f ζ (w) = (1 + w) 3 h ζ (w). Clearly, h ζ s a contnuous functon gven by 1, for a ζ w b ζ (3.32) h ζ(w) = 0, for w a ζ α or w b ζ + α, lnear, for a ζ α w a ζ or b ζ w b ζ + α and 0 h ζ (w) b ζ a ζ + α. Wth ths f ζ, and by the fact that for every j C c, ξ j and (ζ, T ξ Aj ) are ndependent, (3.33) E ζ {T f ζ (T ) = j C c = j C c + j C c := G 1 + G 2. Wrte G 1 = 3G 1,1 3G 1,2 + G 1,3, where G 1,1 = j C c G 1,2 = j C c E ζ ( ξ j {f ζ (T ) f ζ (T ξ Aj ) ) E ζ ( ξ j {(1 + T ) 3 (1 + T ξ Aj ) 3 h ζ (T ξ Aj ) ) E ζ {ξ j (1 + T ) 3 (h ζ (T ) h ζ (T ξ Aj )) E ζ ( ξ j ξ Aj (1 + T ) 2 h ζ (T ξ Aj ) ), ( ) E ζ ξ j ξa 2 j (1 + T )h ζ (T ξ Aj )

25 Normal Approxmaton under Local Dependence 25 G 1,3 = j C c ( ) E ζ ξ j ξa 3 j h ζ (T ξ Aj ). Then (ξ j, ξ Aj, T ξ C ) and ζ are ndependent for each j C c. Hence by (3.30), G 1,2 (b ζ a ζ + α) j C c (b ζ a ζ + α) j C c C(b ζ a ζ + α) j C c C(b ζ a ζ + α) j C c E ζ { ξ j ξ 2 A j (1 + T ) C(b ζ a ζ + α) j J E{ ξ j ξ 2 A j E{ ξ j ξ 2 A j (3 + T ξ C ) E{ ξ j ξ 2 A j (1 + T ξ C j ) E{ ξ j ξ 2 A j E(1 + T ξ C j ) C(b ζ a ζ + α)κ 2 j J C(b ζ a ζ + α). E ξ j 3 Smlarly by (3.30), G 1,3 C(b ζ a ζ + α). To bound G 1,1, wrte G 1,1 = j C c + j C c ( = E ( ) E(ξ j ξ Aj )E ζ (1 + T ξ C j ) 2 h ζ (T ξ C j ) j C c + j C c + j C c ( ) E ζ ξ j ξ Aj {(1 + T ) 2 h ζ (T ξ Aj ) (1 + T ξ C j ) 2 h ζ (T ξ C j ) ξ j ξ Aj ) E ζ ( (1 + T ) 2 h ζ (T ) ) ( ) E(ξ j ξ Aj )E ζ (1 + T ξ C j ) 2 h ζ (T ξ C j ) (1 + T ) 2 h ζ (T ) ( ) E ζ ξ j ξ Aj {(1 + T ) 2 h ζ (T ξ Aj ) (1 + T ξ C j ) 2 h ζ (T ξ C j ) := G 1,1,1 + G 1,1,2 + G 1,1,3.

26 26 L.H.Y Chen and Q.-M. Shao Frst we have G 1,1,1 = E(T ξ C ) 2 E ζ ( (1 + T ) 2 h ζ (T ) ) C(b ζ a ζ + α)e ζ (1 + T ) 2 C(b ζ a ζ + α)(1 + E(1 + T ξ C ) 2 ) C(b ζ a ζ + α). Next, as n boundng G 1,2, we obtan G 1,1,3 j C c + j C c j C c ( ) E ζ ξ j ξ Aj (1 + T ) 2 {h ζ (T ξ Aj ) h ζ (T ξ C j ) ( ) E ζ ξ j ξ Aj {(1 + T ) 2 (1 + T ξ C j ) 2 h ζ (T ξ C j ) ( ) E ζ ξ j ξ Aj (1 + T ) 2 ξ Aj ξ C j +C(b ζ a ζ + α) C j J j C c ( E ξ j ξ 2 A j + E ξ j ξ Aj ξ C j C(b ζ a ζ + α). ( ) E ζ ξ j ξ Aj ξ C j (1 + T ) ) + C(b ζ a ζ + α) E ξ j ξ Aj ξ C j j J Fnally, n a smlar way, G 1,1,2 C(b ζ a ζ + α). Combnng the above nequaltes yelds (3.34) G 1 C(b ζ a ζ + α). Now we bound G 2. Usng the defnton of ˆK j,ξ (t), we wrte G 2 = j C c = j C c E ζ( 0 ) ξ j (1 + T ) 3 h ζ(t + t)dt ξ Aj E ζ( (1 + T ) 3 h ζ(t + t) ˆK ) j,ξ (t)dt

27 Normal Approxmaton under Local Dependence 27 = E ζ( (1 + T ) 3 h ζ(t + t) ˆM ) ξ (t)dt = E ζ( ) (1 + T ) 3 h ζ(t )M ξ (t)dt +E ζ( ) (1 + T ) 3 (h ζ(t + t) h ζ(t ))M ξ (t)dt +E ζ( (1 + T ) 3 h ζ(t + t)( ˆM ) ξ (t) M ξ (t))dt := G 2,1 + G 2,2 + G 2,3. Note that ET 2 = E(T ξ C ) 2 (1/2)ET 2 Eξ 2 C 1/4 1/8=1/8 and hence G 2,1 = ET 2 E ζ{ (3.35) (1 + T ) 3 h ζ(t ) (1/8)E ζ{ (1 + T ) 3 I(a ζ T b ζ ). By the Cauchy nequalty, (3.26) and (3.31), G 2,3 E ζ( (1 + T ) 4 ) [h ζ(t + t)] 2 dt + E ζ( + T ) (1 2 ( ˆM ) ξ (t) M ξ (t)) 2 dt (b ζ a ζ + 2α)E ζ (1 + T ) 4 + CE ζ{ (1 + (T ξ C ) 2 ) C(b ζ a ζ + α)(1 + E(T ξ C ) 4 ) + G 2,3,1 ( ˆM ξ (t) M ξ (t)) 2 dt C(b ζ a ζ + α) + G 2,3,1, where G 2,3,1 = { E (1 + (T ξ C ) 2 )( ˆM ξ (t) M ξ (t)) 2 dt. By (3.22) and (3.27), we have E {(1 + (T ξ C ) 2 )( ˆM ξ (t) M ξ (t)) 2 Cκ j J E ˆK j,ξ (t) 2 + Cκ 3 j J E ξ j 4 + Cκ 3 j J E ˆK j,ξ (t) 4

28 28 L.H.Y Chen and Q.-M. Shao and hence G 2,3,1 Cκ j J E ξ j 2 ξ Aj + Cκ 3 j J E ξ j 4 + Cκ 3 j J E ξ j 4 ξ Aj Cκ E ξ j 2 ξ Aj + Cκ 2 E ξ j 3 j J j J Cκ E ξ j 2 ξ l + Cκ 2 E ξ j 3 j J l A j j J Cκ 2 E ξ j 3 Cα. j J To bound G 2,2, defne L ζ (α) = lm sup k x 0,x Q E ζ {(1 + T ) 3 I(x 1/k T x + 1/k + α), where Q s the set of ratonal numbers and E ζ s regarded as a regular condtonal expectaton gven ζ. Then for a ζ > 1, so that a ζ α > 0, we have G 2,2 = E ζ( (1 + T ) 3 1 and = α α 1 0 t (3.36) G 2,2 α 1 0 t 0 h ζ (T + s)dsm ξ (t)dt ) E ζ( 0 (1 + T ) t ) h ζ (T + s)dsm ξ (t)dt E ζ{ (1 + T ) 3 (I(a ζ α T + s a ζ ) I(b ζ T + s b ζ + α)) dsm ξ (t)dt t 0 E ζ{ (1 + T ) 3 (I(a ζ α T + s a ζ ) I(b ζ T + s b ζ + α)) dsm ξ (t)dt t 0 = α 1 L ζ (α) L ζ (α)ds M ξ (t) dt + α 1 0 (1/2)κ 2 α 1 L ζ (α) j J (1/16)L ζ (α). 1 0 t L ζ (α)ds M ξ (t) dt tm ξ (t) dt (1/2)α 1 L ζ (α) j J E ξ j ξ 2 A j E ξ j 3 Therefore (3.37) G 2 (1/8)E ζ{ (1 + T ) 3 I(a ζ T b ζ ) C(b ζ a ζ + α) (1/16)L ζ (α).

29 Normal Approxmaton under Local Dependence 29 Now by (3.31) (3.38) E ζ {T f ζ (T ) (b ζ a ζ + α)e ζ T (1 + T ) 3 C(b ζ a ζ + α)e( T (1 + T 3 )) C(b ζ a ζ + α). So combnng (3.33), (3.34), (3.37) and (3.38), we have for a ζ > 1, (3.39) E ζ{ (1 + T ) 3 I(a ζ T b ζ ) C(b ζ a ζ + α) + (1/2)L ζ (α). For 0 < a ζ 1, t suffces to consder b ζ a ζ 1. Applyng Proposton 3.2 to {ξ, J, we obtan (3.40) E ζ {(1 + T ) 3 I(a ζ < T < b ζ + α) CP ζ (a ζ < T < b ζ + α) C(b ζ a ζ + α). Now take a ζ = x 1/k and b ζ = x + 1/k + α. By takng supremum over x Q and then lettng k, (3.39) and (3.40) mply L ζ (α) Cα + (1/2)L ζ (α). Hence (3.41) L ζ (α) Cα. Ths together wth (3.39) and (3.40) proves (3.28) and hence Proposton Proofs of Theorems We frst derve a Sten dentty for W. Let f be a bounded absolutely contnuous functon. Then (4.1) E{W f(w ) = J E{X (f(w ) f(w Y )) = 0 E {X f (W + t)dt J Y = { E f (W + t) ˆK (t)dt J

30 30 L.H.Y Chen and Q.-M. Shao = E f (W + t) ˆK(t)dt and hence by the fact that K(t)dt = EW 2 = 1, (4.2) Ef (W ) EW f(w ) = E f (W )K(t)dt E = E +E +E +E f (W )(K(t) ˆK(t))dt t >1 := R 1 + R 2 + R 3 + R 4. (f (W ) f (W + t)) ˆK(t)dt f (W + t) ˆK(t)dt (f (W ) f (W + t))( ˆK(t) K(t))dt (f (W ) f (W + t))k(t)dt Now choose f to be f z,α, the unque bounded soluton of the dfferental equaton (4.3) f (w) wf(w) = h z,α (w) Nh z,α where α > 0 s to be determned later, 1, for w z (4.4) h z,α (w) = 1 + (z w)/α, for z w z + α 0, for w z + α and Nh zα = (2π) 1/2 h z,α (x)e x2 /2 dx. The soluton of (4.3) s gven by f z,α (w) = e w2 /2 = e w2 /2 w w [h z,α (x) Nh z,α ]e x2 /2 dx [h z,α (x) Nh z,α ]e x2 /2 dx. From Lemma 2 and arguments on pages 23 and 24 n Sten (1986), we have for all w and v, (4.5) 0 f z,α (w) 1,

31 Normal Approxmaton under Local Dependence 31 (4.6) f z,α(w) 1, f z,α(w) f z,α(v) 1 and f z,α(w + s) f z,α(w + t) (4.7) (4.8) ( w + 1) mn( s + t, 1) + α 1 t s I(z w + u z + α)du ( w + 1) mn( s + t, 1) + I(z s t w z s t + α). Proof of Theorem 2.1. By (4.6) (4.9) R 1 = Ef (W ) J (X Y EX Y ) r 1 and (4.10) R 2 J E X Y I( Y > 1) = r 2. By (4.8), (4.11) R 3 E ( W + 1) t ˆK(t) K(t) dt +E +E I(z t W z + α) ˆK(t) K(t) dt I(z W z t + α) ˆK(t) K(t) dt r 3 + r 4 + R 3,1 + R 3,2, where R 3,1 = E R 3,2 = E I(z t W z + α) ˆK(t) K(t) dt, I(z W z t + α) ˆK(t) K(t) dt. Let δ = 0.625α + 4r r 3 + 4r 5. Then by Proposton 3.1, P (z t W z + α) δ t

32 32 L.H.Y Chen and Q.-M. Shao for t > 0. Hence by the Cauchy nequalty, { 1 R 3,1 E 0 0.5α + 0.5α 1 δ ( 0.5α(δ t) 1 I(z t W z + α) + 0.5α 1 (δ t) ˆK(t) K(t) 2) dt Var( ˆK(t))dt α 1 tvar( ˆK(t))dt. A smlar nequalty holds for R 3,2. Thus we arrve at 0 (4.12) R 3 α + 0.5α 1 δr α 1 r r 3 + r 4. By (4.7) and Proposton 3.1 agan, we have (4.13) R 4 E ( W + 1) tk(t) dt t +α 1 P (z W + u z + α)du K(t) dt 2r 3 + α 1 0 Combnng the above nequaltes yelds tδ K(t) dt 2r 3 + α 1 δr 3. Eh z,α (W ) Nh z,α r 1 + r 2 + 3r 3 + r 4 + α + α 1{ δ(0.5r 5 + r 3 ) r 2 6 r 1 + r r 3 + r r 5 + α +α 1{ (4r r 3 + 4r 5 )(0.5r 5 + r 3 ) r 2 6 Usng the fact that Eh z α,α (W ) P (W z) Eh z,α (W ) and that Φ(z + α) Φ(z) (2π) 1/2 α, we have. (4.14) Lettng sup z P (W z) Φ(z) sup Eh z,α (W ) Nh z,α + 0.5α. z α = 2/3 ( ) 1/2 (4r r 3 + 4r 5 )(0.5r 5 + r 3 ) r6 2 yelds (4.15) sup P (W z) Φ(z) z

33 Normal Approxmaton under Local Dependence 33 r 1 + r r 3 + r r ( ) 1/2 (4r r 3 + 4r 5 )(0.5r 5 + r 3 ) r6 2 ( ) r 1 + r r 3 + r r r (4r r 3 + 4r 5 ) + 4(0.5r 5 + r 3 ) r 1 + 4r 2 + 8r 3 + r r r 6. Ths proves Theorem 2.1. Proof of Theorem 2.2. Let p 3 = 3 p. Usng the followng well-known nequalty: x 0, α 0 wth α = 1 (4.16) x r α x, we have r 2 J J E X Y p3 1 { 1 p 3 E X p3 + p 3 1 p 3 E Y p3 and r 3 J J E X Y p3 1 { 1 p 3 E X p3 + p 3 1 p 3 E Y p3. Smlarly, we have and r 5 2,j J,B B j,j J,B B j 2κ J r 2 6 (1/2) {E X X j Y p3 2 + E X X j Y p3 2 { 1 E X p3 + 1 E X j p3 + (p 3 2) E Y p3 p 3 p 3 p 3 { 2 p 3 E X p3 + (p 3 2) p 3 E Y p3,j J,B B j {E X X j Y p 2 + E X X j Y p 2

34 34 L.H.Y Chen and Q.-M. Shao κ { 2 p E X p + J (p 2) E Y p. p Now we estmate r 4. Recall that Z = j B X j and that (X, Y ) and W Z are ndependent. We have r 4 J {E W Z E X (Y 2 1) + E Z X (Y 2 1) {(1 + E Z )E X (Y 2 1) + E Z X Y p3 2 J E X Y p3 1 + E X j E X Y p3 2 J J j B + E X j X Y p3 2 J j B J { 1 E X p3 + (p 3 1) E Y p3 + 2κ { 2 E X p3 + (p 3 2) E Y p3. p 3 p 3 p 3 p 3 J To estmate r 1, let ξ = X Y I( X Y 1). We have r 1 E J (ξ Eξ ) + 2 J E X Y I( X Y > 1) Var( J ξ ) 1/2 + 2 J E X Y p3/2 Var( J ξ ) 1/2 + J {E X p3 + E Y p3. Smlarly to boundng r 6 Var( ξ ) J (E ξ ξ j + E ξ E ξ j ),j J,B B j,j J,B B j (E X Y p/4 X j Y j p/4 + E X Y p/4 E X j Y j p/4 ) κ (E X p + E Y p ). J Combnng the nequaltes above yelds (2.5). Proof of Theorem 2.3. The dea of the proof s smlar to that of Theorem 2.1. Notng that ˆK and W Z are ndependent, we rewrte (4.2) as (4.17) Ef (W ) EW f(w )

35 where = J = J E Normal Approxmaton under Local Dependence 35 { E f (W )K (t)dt E f (W + t) ˆK (t)dt + J E (f (W ) f (W Z + t))k (t)dt = Q 1 + Q 2 + Q 3 + Q 4, (f (W Z + t) f (W + t)) ˆK (t)dt Q 1 = E (f (W ) f (W Z + t))k (t)dt, J Q 2 = E (f (W ) f (W Z + t))k (t)dt, J Q 3 = E J Q 4 = E J By (4.6), smlar to (4.10), t >1 t >1 (f (W Z + t) f (W + t)) ˆK (t)dt, (f (W Z + t) f (W + t)) ˆK (t)dt. (4.18) Q 2 + Q 3 2 J E X Y I( Y > 1) = 2r 2. To bound Q 4, wrte Q 4 = Q 4,1 + Q 4,2, where Q 4,1 = EI( X > 1) (f (W Z + t) f (W + t)) ˆK (t)dt, J Q 4,2 = EI( X 1) J Then by (4.6) (f (W Z + t) f (W + t)) ˆK (t)dt. (4.19) Q 4,1 J E X Y I( X > 1) = r 7. From (4.7), we obtan (4.20) Q 4,2 EI( X 1) ( W + t + 1)( Z 1) ˆK (t) dt J

36 36 L.H.Y Chen and Q.-M. Shao +α 0 1 EI( X 1) I(Z 0) I(z W + t + u z + α)du ˆK (t) dt J Z +α Z 1 EI( X 1) I(Z < 0) I(z W + t + u z + α)du ˆK (t) dt J 0 J E( W + 1) X I( X 1)( Z 1)( Y 1) J E X ( Y 2 1) + Q 4,3 r 8 + r r 3 + Q 4,3, where Q 4,3 = α { 1 E I( X 1) J +α { 1 E I( X 1) J and ξ = (X, Y, Z ). By Proposton 3.2, 0 I(Z 0) P ξ (z W + t + u z + α)du ˆK (t) dt Z Z I(Z < 0) P ξ (z W + t + u z + α)du ˆK (t) dt 0 Q 4,3 (4.21) α { 1 E I( X 1) J (0.625σ 1 α + 4σ 2 r σ 3 r 3 + 4σ 3 r 10 ) Z ˆK (t) dt 0.625λ J E{ X I( X 1)( Y 1) Z + α 1{ 4λ 2 r λ 3 r 3 + 4λ 3 r 10 r 8 = 0.625λr 8 + α 1{ 4λ 2 r λ 3 r 3 + 4λ 3 r 10 r 8. Combnng (4.19), (4.20) and (4.21) yelds (4.22) Q 4 r 7 + r λr r 3 + α 1{ 4λ 2 r λ 3 r 3 + 4λ 3 r 10 r 8. Smlarly we have, (4.23) Q 1 J P ( X > 1)E X ( Y 1) + J E{( W + 1)( Z 1)E X ( Y 1) + r 3 +α 1{ 0.625λα + 4λ 2 r λ 3 r 3 + 4λ 3 r 10 { 0.5r 3 + E{( W + 1)( Z 1)E X ( Y 1) J

37 Normal Approxmaton under Local Dependence 37 r 11 + r 12 + r 3 +α 1{ 0.625λα + 4λ 2 r λ 3 r 3 + 4λ 3 r 10 (0.5r 3 + r 12 ). Combnng (4.17), (4.18), (4.22), (4.23) and (4.14), we obtan (4.24) sup F (z) Φ(z) z 0.5α + 2r 2 + 2λr 3 + r λr 8 + r 9 + r λr 12 +α 1{ 4λ 2 r λ 3 r 3 + 4λ 3 r 10 (r r 3 + r 12 ). Let α = ( 2(+4λ 2 r λ 3 r 3 + 4λ 3 r 10 )(r r 3 + r 12 )) 1/2. Then the rght hand sde of (4.24) s = 2r 2 + 2λr 3 + r λr 8 + r 9 + r λr 12 { 1/2 + 2(4λ 2 r λ 3 r 3 + 4λ 3 r 10 )(r r 3 + r 12 ) 2r 2 + 2λr 3 + r λr 8 + r 9 + r λr λ 3/2 (4λ 2 r λ 3 r 3 + 4λ 3 r 10 ) + λ 3/2 (r r 3 + r 12 ) 4λ 3/2 (r 2 + r 3 + r 7 + r 8 + r 9 + r 10 + r 11 + r 12 ). Ths proves Theorem 2.3. Proof of Theorem 2.4. We can assume that (4.25) κ p 1 J E X p 1/75. Otherwse (2.9) s trval. Let ξ = j N(C ) X j. Then by (4.25) (4.26) Eξ 2 (E ξ p ) 1/p ( N(C ) p 1 j N(C ) E X j p ) 1/p

38 38 L.H.Y Chen and Q.-M. Shao (κ p 1 j J E X j p ) 1/p (1/75) 1/p (1/75) 1/3 < and σ EW 2 Eξ = Thus 4λ 3/ By (4.16) and the Mnkowsk nequalty r 8 J E X Z Y p 2 = J E(κ (p 1)/p X ( Z /κ 1/p )( Y /κ 1/p ) p 2 ) J κp 1 p 1 p κp 1 E X p + ( 1 pκ E Z p (p 2) + pκ E Y p ) J J E X p + J κ p 1 J E X p. C p 1 (p 1) pκ j C E X j p Smlarly, we have r 2 + r 3 + r 7 + r 11 2κ p 1 J E X p. Note that N(B ) N(C ). Followng the proof for r 2 6 yelds r 10 2,j J,B B j {E(κ (p 2)/p X κ (p 2)/p X j ( Y /κ 2/p ) p 2 ) +E(κ (p 2)/p X κ (p 2)/p X ( Y /κ 2/p ) p 2 ),j J,B B j { κp 2 2κ p 1 J E X p. p (E X p + E X j p ) + (p 2) pκ 2 E Y p The r 9 can be bounded as r 8 and r 4. By (4.26) r 9 E W ξ E X ( Y 1)( Z 1) + E ξ X Y p 2 J J J E X Y Z p 2 + J E X ξ Y p 2

39 Normal Approxmaton under Local Dependence κ p 1 J E X p. Smlarly, r κ p 1 J E X p. Theorem 2.4 follows from (2.7) and the above nequaltes. 5. Proof of Theorem 2.5 The basc dea of the proof of Theorem 2.5 s smlar to that of Theorem 2.3. We use the same notaton as n Secton 2.2 and remnd the reader that {X, J satsfes (LD4 ) and that E X p < for 2 < p 3. Frst we need a few prelmnary lemmas. Let (5.1) τ = 1/(8κ), X = X I( X τ), ˆX = X I( X > τ), W = J X, Y = j A X j and (5.2) β 1 = J E X Y I( X > τ), β 2 = J EX 2 I( X > τ), β 3 = J E X 3 I( X τ). Our frst lemma shows that W s close to W. Lemma 5.1. Assume β 2 τ/16. Then there exsts an absolute constant C such that for z 0 (5.3) P (W > z) P ( W > z) J P ( Y > (z + 1)/4) + C(z + 1) 3 κ 3 β 3 +64κ 2 β 2 {(1 + z) 3 + P (W > (z 1)/2).

40 40 L.H.Y Chen and Q.-M. Shao Proof. Observe that (5.4) P (W > z) = P (W > z, max J X τ) + P (W > z, max J X > τ) P ( W > z) + J P (W > z, X > τ) P ( W > z) + J { P (W Y > 3(z 1/3)/4, X > τ) + P (Y > (z + 1)/4, X > τ) P ( W > z) + J P ( W > z) + J { P (W Y > 3(z 1/3)/4)P ( X > τ) + P (Y > (z + 1)/4) { P (W > (z 1)/2)P ( X > τ) + P ( Y > (z + 1)/4) +P (Y > (z + 1)/4) P ( W > z) + P (W > (z 1)/2)τ 2 J E X 2 I( X > τ) + J P ( Y > (z + 1)/4) = P ( W > z) + 64κ 2 β 2 P (W > (z 1)/2) + J P ( Y > (z + 1)/4). Smlarly, notng that j A Xj 1, we have (5.5) P ( W > z) P (W > z) + κ 2 β 2 P ( W > z 2). Note that β 2 τ/16 mples E W 1/16 and by (3.22), (5.6) Var( W ) 1 = Var( W ) Var(W ) 2(EW 2 ) 1/2 (Var( J ˆX )) 1/2 + Var( J ˆX ) 2(κβ 2 ) 1/2 + κβ 2 2/3. Applyng (3.23) to W E W yelds (5.7) P ( W > z 2) E W E W (z + 2 E W ) 4

41 Normal Approxmaton under Local Dependence 41 C(z + 1) 4( 1 + κ ) 3 E X 4 I( X τ) J C(z + 1) 4( 1 + κ 3 τ ) E X 3 I( X τ) J C(z + 1) 4 (1 + κ 2 β 3 ). By (5.4) - (5.7) and assumpton that κβ 2 1., (5.3) s proved and hence the lemma. Lemma 5.2. Assume E X p < for some 2 < p 3. Then there exsts an absolute constant C such that for z 0 (5.8) P (W > (z 1)/2) C(1 + z) p (1 + κ p 1 γ) and P ( Y > (z + 1)/4) + κ 3 (1 + z) 3 β 3 + (1 + z) 3 β 1 J + κ 2 β 2 {(1 + z) 3 + P (W (z 1)/2) (5.9) Cκ p (1 + z) p γ + C(1 + z) 3 κ 2p 1 γ 2, where γ = J E X p. Proof. If κ p 1 γ > (1 + z) p 2, then (5.8) s trval because P (W > (z 1)/2) 4(z + 1) 2 E(W + 1) 2 = 8(z + 1) 2. To prove (5.8) for κ p 1 γ (1 + z) p 2, let X = X I( X (1 + z)τ) EX I( X (1 + z)τ), X = X I( X > (1 + z)τ) EX I( X > (1 + z)τ), W = J X, W = J X. Then P (W > (z 1)/2) P ( W > (z 3)/4) + P ( W > (z + 1)/4)

42 42 L.H.Y Chen and Q.-M. Shao C(1 + z) 4 E W (1 + z) 1 E W C(1 + z) 4 (1 + E W 4 ) + C(1 + z) 1 ((1 + z)τ) p+1 γ. Smlar to (5.6), κ p 1 γ (1 + z) p 2 mples Var( W ) 4. Hence by (3.23) E W 4 C(1 + κ 3 J E X 4 I( X (1 + z)τ)) C(1 + κ p 1 (1 + z) 4 p γ). By combnng the above nequaltes, (5.8) s proved. We now prove (5.9). From (5.8), the Chebyshev nequalty and the Hölder nequalty, the left hand sde of (5.9) s bounded by ((z + 1)/4) p J +C(1 + z) 3 κ 2 τ p+2 γ(1 + κ p 1 γ) E Y p + κ 3 (1 + z) 3 τ 3 p γ + (1 + z) 3 τ p+2 J E X p 1 Y C(1 + z) p κ p γ + C(1 + z) 3 κ 2p 1 γ 2. Ths completes the proof of the lemma. Proof of Theorem 2.5. Wthout loss of generalty, assume z 0. When κ p 1 γ > 1, (2.10) follows drectly from (5.8). When κ p 1 γ 1, then (2.10) s a consequence of (5.9) and the followng nequalty (5.10) F (z) Φ(z) J P ( Y > (z + 1)/4) + C(1 + z) 3 β 1 +Cκ 2 β 2 {(1 + z) 3 + P (W (z 1)/2) +Cκ 2 (1 + z) 3 β 3. So t suffces to prove (5.10). It s clear that for z 0, P (W > z) (1 Φ(z)) P (W > (z 1)/2) + 16(1 + z) 3.

43 Normal Approxmaton under Local Dependence 43 So (5.10) holds f κ 2 β 2 > 1/16. It remans to consder the case that (5.11) κ 2 β 2 1/16. Let W be defned as n (5.2). By Lemma 5.1, t suffces to show that (5.12) P ( W z) Φ(z) C(1 + z) 3 β 1 + Cκ(1 + z) 3 β 2 + Cκ 2 (1 + z) 3 β 3. Let σ 2 = Var( W ), T = ( W E W )/σ. Then (5.13) P ( W z) Φ(z) = P (T (z E W )/σ) Φ(z) P (T (z E W )/σ) Φ((z E W )/σ) + Φ((z E W )/σ) Φ(z). By the Chebyshev nequalty, (5.14) E W τ 1 J EX 2 I( X > τ) 1/16. By (5.6), we have 1/3 < σ 2 < 2, and moreover, smlar to (5.6), (5.15) σ 2 1 = 2 J E( ˆX W ) + Var( J ˆX ) 2 J = 2β 1 + κβ 2. E X Y I( X > τ) + κ J EX 2 I( X > τ) Thus by (5.14) and (5.15), (5.16) Φ((z E W )/σ) Φ(z) Φ((z E W )/σ) Φ(z/σ) + Φ(z/σ) Φ(z) C(1 + z) 3 E W + C(1 + z) 3 σ 2 1 C(1 + z) 3 κβ 2 + C(1 + z) 3 β 1.

44 44 L.H.Y Chen and Q.-M. Shao Wth x = (z E W )/σ (> 1/2), we only need to show that (5.17) P (T x) Φ(x) Cκ 2 (1 + x) 3 β 3. Put ξ = X /σ, ξ A = ξ j, ξ B = ξ j, j A j B ˆK (t) = ξ (I( ξ A < t 0) I(0 < t < ξ A )), K (t) = E ˆK (t). By the defnton of τ, we have ξ A 1/4 and ξ B 1/4. If (1 + x)κ 2 β 3 > 1, then by (3.23), P (T > x) (1 Φ(x)) (1 + x) 4 E 1 + T 4 + (1 + x) 4 C(1 + x) 4( 1 + κ 3 E ξ 4) J C(1 + x) 4( 1 + κ 3 τ E ξ 3) J C(1 + x) 4 (1 + κ 2 β 3 ) C(1 + x) 3 κ 2 β 3, whch proves (5.17). If (1 + x)κ 2 β 3 1, let α = 64κ 2 β 3. Also let h x,α (w) be as n (4.4) and let f(w) = f x,α (w) be the unque bounded soluton of the Sten equaton (4.3) wth x replacng z. Then by (4.1) and smlar to (4.2), Ef (T ) ET f(t ) = (5.18) E (f (T ξ B + t) f (T + t)) ˆK (t)dt J + E (f (T ) f (T ξ B + t))k (t)dt J := R 1 + R 2. Let g(w) = (wf(w)) and let R 1,1 = ξb E g(t + u)du ˆK (t)dt, J 0

45 Notng that Normal Approxmaton under Local Dependence 45 R 1,2 = α ξb 1 E I(x T + u x + α)du ˆK (t)dt. J 0 (5.19) f x,α(w + t) f x,α(w + s) α 1 t s t I(x w + u x + α)du, s g(w + u)du we have R 1 R 1,1 + R 1,2. Let ζ = (ξ, ξ A, ξ B ). By Lemma 5.3 below, R 1,1 ξb E E ζ g(t + u)du ˆK (t) dt J 0 C(1 + x) 3 E ξ B ˆK (t) dt J C(1 + x) 3 J E ξ ξ A ξ B Cκ 2 (1 + x) 3 β 3, and by Proposton 3.3 R 1,2 α ξb 1 E P ζ (x T + u x + α)du ˆK (t) dt J 0 Cα 1 (1 + x) 3 E (κ 2 β 3 + α) ξ B ˆK (t) dt J Cα 1 (1 + x) 3 (κ 2 β 3 + α) J E ξ ξ A ξ B Cκ 2 (1 + x) 3 β 3. Ths proves R 1 Cκ 2 (1 + x) 3 β 3.

46 46 L.H.Y Chen and Q.-M. Shao Smlarly we have R 2 Cκ 2 (1 + x) 3 β 3. Hence we have (5.20) Eh x,α (T ) Nh x,α Cκ 2 (1 + x) 3 β 3. Fnally usng the fact that Eh x, α (T ) P (T x) Eh x,α (T ) and that Φ(x + α) Φ(x) C(1 + x) 3 α for x > 1/2, we have (5.17). Ths completes the proof of Theorem 2.5. It remans to prove Lemma 5.3 whch was used above. Lemma 5.3. Let ζ = ζ = (ξ, ξ A, ξ B ) and (5.21) g(w) = g x,α (w) = (wf x,α (w)). Then for x > 1/2 and u 4, we have (5.22) E ζ g(t + u) C(1 + x) 3 (1 + κ 2 β 3 ). Proof. From the defntons of Nh x,α, f x,α and g, we have Nh x,α = Φ(x) + α 1 se (x+α αs)2 /2 ds, 2π 0 2πe w 2 /2 Φ(w)(1 Nh x,α ), w x 2πe w 2 /2 (1 Φ(w))Nh x,α f x,α (w) = αe w2 /2 1+(z w)/α se (z+α αs)2 /2 ds, x < w x + α 0 2πe w 2 /2 (1 Φ(w))Nh x,α, w > x + α

47 Normal Approxmaton under Local Dependence 47 ( 2π(1 + w 2 )e w2 /2 Φ(w) + w) (1 Nh x,α ), w < x, ( 2π(1 g(w) = + w 2 )e w2 /2 (1 Φ(w)) w) Nh x,α + r x,α (w), x w x + α ( 2π(1 + w 2 )e w2 /2 (1 Φ(w)) w) Nh x,α, w > x + α, where r x,α (w) = we w2 /2 x+α w < x + α, we have by ntegraton by parts, r x,α e w2 /2 = e w2 /2 w x+α w x+α w (1 + x s 2 α )e s /2 ds + (1 + (x w)/α). For x < s(1 + x s 2 α )e s /2 ds + (1 + (x w)/α) e s2 /2 ds 0. So 0 r x,α 1 for x < w < x + α. It can be verfed that 0 < g(w) C(1 + x ) for all x. Therefore (5.22) holds when 1 < x 6. When x > 6, the proof of (5.22) s very smlar to that of Lemma 5.2 of Chen and Shao (2001). A drect calculaton shows that for w 0, (5.23) 0 2π(1 + w 2 )e w2 /2 (1 Φ(w)) w w 3. Ths mples that g 0, g(w) 2(1 Φ(x)) for w 0 and 2 1+w 3 +I(x < w < x+α) for w x; furthermore, g s clearly ncreasng for 0 w < x. Therefore E ζ g(t + u) = E ζ g(t + u)i(t + u x 1) + E ζ g(t + u)i(t + u x) +E ζ g(t + u)i(x 1 < T + u < x) 2(1 Φ(x)) + g(x 1) + 2(1 + x 3 ) 1 + P ζ (x T + u x + α) +E ζ g(t + u)i(x 1 < T + u < x) ( ) C (1 + x) 3 + x 2 e (x 1)2/2 (1 Φ(x)) + C(1 + x) 3 α

48 48 L.H.Y Chen and Q.-M. Shao +E ζ g(t + u)i(x 1 < T + u < x) (5.24) C(1 + x) 3 (1 + α) + E ζ g(t + u)i(x 1 < T + u < x). By Proposton 3.3 and the fact that w u x 5 > (x + 1)/7 for w x 1 5 and u 4, E ζ g(t + u)i(x 1 < T + u < x) = x x 1 g(w)dp ζ (w < T + u < x) = g(x 1)P ζ (x 1 < T + u < x) + C(1 + x) 3 + C(1 + x) 3 x C(1 + x) 3{ 1 + αg(x ) + C(1 + x) 3{ x 1 + α x + x 1 C(1 + x) 3{ 1 + xf x,α (x) x 1 x x 1 x x 1 g (w)p ζ (w < T + u < x)dw g (w){α + (x w)dw (x w)dg(w) g(w)dw (5.25) C(1 + x) 3. Combnng (5.24) and (5.25) yelds (5.22). Ths completes the proof of Lemma 5.3. Acknowledgments. The authors thank the referee for hs valuable comments whch have led to substantal mprovement on the presentaton of the paper. REFERENCES [1] Bald, P. and Rnott, Y. (1989). On normal approxmaton of dstrbutons n terms of dependency graph. Ann. Probab. 17,

49 Normal Approxmaton under Local Dependence 49 [2] Bald, P., Rnott, Y. and Sten, C. (1989). A normal approxmaton for the number of local maxma of a random functon on a graph. In: Anderson, T.W., Athreya, K.B., Iglehart, D.L. (edts): Probablty, statstcs, and mathematcs. Papers n honor of Samuel Karln. Academc Press, Boston, pp [3] Berry, A.C. (1941). The accuracy of the Gaussan approxmaton to the sum of ndependent varables. Trans. Amer. Math. Soc. 49, [4] Bkels, A. (1966). Estmates of the remander n the central lmt theorem. Ltovsk. Mat. Sb. 6(3), (n Russan). [5] Chen, L. H. Y. (1978). Two central lmt problems for dependent random varables. Z. Wahrsch. Verw. Gebete 43, [6] Chen, L. H. Y. (1986). The rate of convergence n a central lmt theorem for dependent random varables wth arbtrary ndex set. IMA Preprnt Seres #243, Unv. Mnnesota. [7] Chen, L. H. Y. (1998). Sten s method: some perspectves wth applcatons. Probablty Towards 2000 (L. Accard and C. C. Heyde, eds.), Lecture Notes n Statstcs No. 128, Sprnger Verlag, [8] Chen, L.H.Y. and Shao, Q.M. (2001). A non-unform Berry-Esseen bound va Sten s method. Probab. Theory Related Felds 120, [9] Dembo, A. and Rnott, Y. (1996). Some examples of normal approxmatons by Sten s method. In: Random Dscrete Structures. (Aldous, D. and Pemantle, R. eds). Sprnger, New York, pp [10] Erckson, R. V. (1974). L 1 bounds for asymptotc normalty of m-dependent sums usng Sten s technque. Ann. Probab. 2, [11] Esseen, C. G. (1945). Fourer analyss of dstrbuton functons: a mathematcal study of the Laplace-Gaussan law. Acta Math. 77, [12] Esseen, C. G. (1968). On the concentraton functon of a sum of ndependent random varables. Z. Wahrsch. Verw. Gebete 9,

50 50 L.H.Y Chen and Q.-M. Shao [13] Dasgupta, R. (1992). Nonunform speed of convergence to normalty for some statonary m-dependent processes. Calcutta Statst. Assoc. Bull. 42, [14] Henrch, L. (1984). Nonunform estmates and asymptotc expansons of the remander n the central lmt theorem for m-dependent random varables. Math. Nachr. 115, [15] Nagaev, S. V. (1965). Some lmt theorems for large devatons. Theory Probab. Appl. 10, [16] Petrov, V.V. (1995). Lmt Theorems of Probablty Theory: Sequences of Independent Random Varables. Oxford Studes n Probablty 4, Clarendon Press, Oxford. [17] Prakasa Rao, B.L.S. (1981). A nonunform estmate of the rate of convergence n the central lmt theorem for m-dependent random felds. Z. Wahrsch. Verw. Gebete 58, [18] Rnott, Y. (1994). On normal approxmaton rates for certan sums of dependent random varables. J. Computatonal and Appled Mathematcs 55, [19] Rnott, Y. and Rotar, V. (1996). A multvarate CLT for local dependence wth n 1/2 log n rate and applcatons to multvarate graph related statstcs. J. Multvarate Anal. 56, [20] Shergn, V.V. (1979). On the convergence rate n the central lmt theorem for m-dependent random varables. Theory Probab. Appl. 24, [21] Sten, C. (1972). A bound for the error n the normal approxmaton to the dstrbuton of a sum of dependent random varables. Proc. Sxth Berkeley Symp. Math. Stat. Prob. 2, , Unv. Calforna Press. Berkeley, Calf. [22] Sten, C. (1986). Approxmaton Computaton of Expectatons. Lecture Notes 7, Inst. Math. Statst., Hayward, Calf. [23] Sunklodas, J. (1999). A lower bound for the rate of convergence n the central lmt theorem for m-dependent random felds. Theory Probab. Appl. 43,

NORMAL APPROXIMATION UNDER LOCAL DEPENDENCE. BY LOUIS H. Y. CHEN 1 AND QI-MAN SHAO 2 National University of Singapore and University of Oregon

NORMAL APPROXIMATION UNDER LOCAL DEPENDENCE. BY LOUIS H. Y. CHEN 1 AND QI-MAN SHAO 2 National University of Singapore and University of Oregon The Annals of Probablty 2004, Vol. 32, No. 3A, 1985 2028 DOI 10.1214/009117904000000450 Insttute of Mathematcal Statstcs, 2004 NORMAL APPROXIMATION UNDER LOCAL DEPENDENCE BY LOUIS H. Y. CHEN 1 AND QI-MAN

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

Supplement to Clustering with Statistical Error Control

Supplement to Clustering with Statistical Error Control Supplement to Clusterng wth Statstcal Error Control Mchael Vogt Unversty of Bonn Matthas Schmd Unversty of Bonn In ths supplement, we provde the proofs that are omtted n the paper. In partcular, we derve

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

P exp(tx) = 1 + t 2k M 2k. k N

P exp(tx) = 1 + t 2k M 2k. k N 1. Subgaussan tals Defnton. Say that a random varable X has a subgaussan dstrbuton wth scale factor σ< f P exp(tx) exp(σ 2 t 2 /2) for all real t. For example, f X s dstrbuted N(,σ 2 ) then t s subgaussan.

More information

Another converse of Jensen s inequality

Another converse of Jensen s inequality Another converse of Jensen s nequalty Slavko Smc Abstract. We gve the best possble global bounds for a form of dscrete Jensen s nequalty. By some examples ts frutfulness s shown. 1. Introducton Throughout

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

Restricted divisor sums

Restricted divisor sums ACTA ARITHMETICA 02 2002) Restrcted dvsor sums by Kevn A Broughan Hamlton) Introducton There s a body of work n the lterature on varous restrcted sums of the number of dvsors of an nteger functon ncludng

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

Lecture 4: September 12

Lecture 4: September 12 36-755: Advanced Statstcal Theory Fall 016 Lecture 4: September 1 Lecturer: Alessandro Rnaldo Scrbe: Xao Hu Ta Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer: These notes have not been

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

The L(2, 1)-Labeling on -Product of Graphs

The L(2, 1)-Labeling on -Product of Graphs Annals of Pure and Appled Mathematcs Vol 0, No, 05, 9-39 ISSN: 79-087X (P, 79-0888(onlne Publshed on 7 Aprl 05 wwwresearchmathscorg Annals of The L(, -Labelng on -Product of Graphs P Pradhan and Kamesh

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

n ). This is tight for all admissible values of t, k and n. k t + + n t

n ). This is tight for all admissible values of t, k and n. k t + + n t MAXIMIZING THE NUMBER OF NONNEGATIVE SUBSETS NOGA ALON, HAROUT AYDINIAN, AND HAO HUANG Abstract. Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N)

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N) SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) S.BOUCKSOM Abstract. The goal of ths note s to present a remarably smple proof, due to Hen, of a result prevously obtaned by Gllet-Soulé,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper Games of Threats Elon Kohlberg Abraham Neyman Workng Paper 18-023 Games of Threats Elon Kohlberg Harvard Busness School Abraham Neyman The Hebrew Unversty of Jerusalem Workng Paper 18-023 Copyrght 2017

More information

arxiv: v1 [math.ho] 18 May 2008

arxiv: v1 [math.ho] 18 May 2008 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

EXPONENTIAL ERGODICITY FOR SINGLE-BIRTH PROCESSES

EXPONENTIAL ERGODICITY FOR SINGLE-BIRTH PROCESSES J. Appl. Prob. 4, 022 032 (2004) Prnted n Israel Appled Probablty Trust 2004 EXPONENTIAL ERGODICITY FOR SINGLE-BIRTH PROCESSES YONG-HUA MAO and YU-HUI ZHANG, Beng Normal Unversty Abstract An explct, computable,

More information

Determinants Containing Powers of Generalized Fibonacci Numbers

Determinants Containing Powers of Generalized Fibonacci Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 19 (2016), Artcle 1671 Determnants Contanng Powers of Generalzed Fbonacc Numbers Aram Tangboonduangjt and Thotsaporn Thanatpanonda Mahdol Unversty Internatonal

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction REGULAR POSITIVE TERNARY QUADRATIC FORMS BYEONG-KWEON OH Abstract. A postve defnte quadratc form f s sad to be regular f t globally represents all ntegers that are represented by the genus of f. In 997

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

A new construction of 3-separable matrices via an improved decoding of Macula s construction

A new construction of 3-separable matrices via an improved decoding of Macula s construction Dscrete Optmzaton 5 008 700 704 Contents lsts avalable at ScenceDrect Dscrete Optmzaton journal homepage: wwwelsevercom/locate/dsopt A new constructon of 3-separable matrces va an mproved decodng of Macula

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

A Note on Bound for Jensen-Shannon Divergence by Jeffreys

A Note on Bound for Jensen-Shannon Divergence by Jeffreys OPEN ACCESS Conference Proceedngs Paper Entropy www.scforum.net/conference/ecea- A Note on Bound for Jensen-Shannon Dvergence by Jeffreys Takuya Yamano, * Department of Mathematcs and Physcs, Faculty of

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES TAKASHI ITOH AND MASARU NAGISA Abstract We descrbe the Haagerup tensor product l h l and the extended Haagerup tensor product l eh l n terms of

More information

Strong Markov property: Same assertion holds for stopping times τ.

Strong Markov property: Same assertion holds for stopping times τ. Brownan moton Let X ={X t : t R + } be a real-valued stochastc process: a famlty of real random varables all defned on the same probablty space. Defne F t = nformaton avalable by observng the process up

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION PROCDINGS OF TH AMRICAN MATHMATICAL SOCITY Volume 125, Number 7, July 1997, Pages 2119{2125 S 0002-9939(97)03816-1 TH STRONG OPN ST CONDITION IN TH RANDOM CAS NORBRT PATZSCHK (Communcated by Palle. T.

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Existence results for a fourth order multipoint boundary value problem at resonance

Existence results for a fourth order multipoint boundary value problem at resonance Avalable onlne at www.scencedrect.com ScenceDrect Journal of the Ngeran Mathematcal Socety xx (xxxx) xxx xxx www.elsever.com/locate/jnnms Exstence results for a fourth order multpont boundary value problem

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Self-complementing permutations of k-uniform hypergraphs

Self-complementing permutations of k-uniform hypergraphs Dscrete Mathematcs Theoretcal Computer Scence DMTCS vol. 11:1, 2009, 117 124 Self-complementng permutatons of k-unform hypergraphs Artur Szymańsk A. Paweł Wojda Faculty of Appled Mathematcs, AGH Unversty

More information

Google PageRank with Stochastic Matrix

Google PageRank with Stochastic Matrix Google PageRank wth Stochastc Matrx Md. Sharq, Puranjt Sanyal, Samk Mtra (M.Sc. Applcatons of Mathematcs) Dscrete Tme Markov Chan Let S be a countable set (usually S s a subset of Z or Z d or R or R d

More information

3 Basic boundary value problems for analytic function in the upper half plane

3 Basic boundary value problems for analytic function in the upper half plane 3 Basc boundary value problems for analytc functon n the upper half plane 3. Posson representaton formulas for the half plane Let f be an analytc functon of z throughout the half plane Imz > 0, contnuous

More information

Vapnik-Chervonenkis theory

Vapnik-Chervonenkis theory Vapnk-Chervonenks theory Rs Kondor June 13, 2008 For the purposes of ths lecture, we restrct ourselves to the bnary supervsed batch learnng settng. We assume that we have an nput space X, and an unknown

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Math 702 Midterm Exam Solutions

Math 702 Midterm Exam Solutions Math 702 Mdterm xam Solutons The terms measurable, measure, ntegrable, and almost everywhere (a.e.) n a ucldean space always refer to Lebesgue measure m. Problem. [6 pts] In each case, prove the statement

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

THE CHVÁTAL-ERDŐS CONDITION AND 2-FACTORS WITH A SPECIFIED NUMBER OF COMPONENTS

THE CHVÁTAL-ERDŐS CONDITION AND 2-FACTORS WITH A SPECIFIED NUMBER OF COMPONENTS Dscussones Mathematcae Graph Theory 27 (2007) 401 407 THE CHVÁTAL-ERDŐS CONDITION AND 2-FACTORS WITH A SPECIFIED NUMBER OF COMPONENTS Guantao Chen Department of Mathematcs and Statstcs Georga State Unversty,

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information