Today s exercises. 5.17: Football Pools. 5.18: Cells of Line and Hyperplane Arrangements. Inclass: PPZ on the formula F

Size: px
Start display at page:

Download "Today s exercises. 5.17: Football Pools. 5.18: Cells of Line and Hyperplane Arrangements. Inclass: PPZ on the formula F"

Transcription

1 Exercise Session slide 1 Today s exercises 5.17: Football Pools 5.18: Cells of Line and Hyperplane Arrangements Inclass: PPZ on the formula F 6.1: Harmonic vs. Geometric Mean 6.2: Many j-isolated Satisfying Assignments 6.3: Many Isolated Satisfying Assignments 6.4: Make it Hard for PPZ

2 Exercise Session slide : Football Pools An outcome (or prediction) of the matches can be mapped to an element in {0, 1} n. The number of incorrect guesses for a given prediction is exactly its hamming distance from the outcome. As any outcome is possible, the smallest number of bets needed to guarantee that at least one of the predictions has at most r incorrect guesses exactly corresponds to the problem of finding the smallest code C over {0, 1} n of covering radius r or smaller.

3 Exercise Session slide : Cells of Line and Hyperplane Arrangements 1. Proof by induction. True for n = 1. Let n > 1. Consider the arrangement formed by the union of n 1 lines which partition R 2 into 1 + (n 1) + ( ) n 1 2 cells by the induction hypothesis. Add the a new line l. Since l does not pass through any of the points of intersection between line pairs in the union of n 1 lines and l is not parallel to any of these n 1 lines, l intersects each line in a unique point. Thus, the number of cells increases by exactly n. Together, 1 + (n 1) + ( n 1) ( n + n = 1 + n ).

4 Exercise Session slide 4 2. Outer induction on d and inner induction on n. Base case d = 2 is true for all n. Let d > 2. Base case is again n = 1. Let n > 1. By the (inner) induction hypothesis there are 1 + ( n 1) ( n 1) d many cells in any n 1 hyperplane arrangement in d dimensions. Add the n-th hyperplane and project all the n 1 hyperplanes onto it to form a d 1 dimensional arrangement which by the (outer) induction hypothesis has 1 + ( n 1) ( n 1) d 1 many cells of dimension d 1. The main observation is that these cells correspond exactly to the newly formed cells in d dimensions

5 Exercise Session slide 5 upon adding the n-th hyperplane. Together the number of cells in total is ( 1 + ( n 1) ( n 1) ) (1 + ( n 1) ( n 1) ) + +, 1 d 1 d 1 which simplifies to 1 + ( n 1 1 repeatedly using the identity ( n i ) + + ( n 1 ) ( = n 1 i 1 d ) ) + ( n 1 i ) for 0 i n.

6 Exercise Session slide 6 Inclass: PPZ on the formula F Consider the formula F on variables {x 1, x 2,..., x n } containing all clauses on x 1, x 2, x 3 with at least one positive literal all clauses { x 1, x 2, x i } for 4 i n Question: What is the success probability of PPZ on F?

7 Exercise Session slide 7 Inclass: PPZ on the formula F (2) Notice that (x 1 1, x 2 1,..., x n 1) is a satisfying assignment. Claim. The success probability is 1/4 ( ) n 2. Proof: With probability 1 n(n 1), x 1 and x 2 are the first two variables in the random permutation (in some order). Supposing that x 1 and x 2 are set correctly (which happens with probability 1/4), all other variables are forced.

8 Exercise Session slide 8 6.1: Harmonic vs. Geometric Mean Use Jensen s inequality to prove this statement. Recall Jensen s inequality which says for a convex function f : R R 0, E[f(x)] f(e[x]) for x chosen according to any probability distribution with finite support over R. Appendix A.5 of the lecture notes contains this application.

9 Exercise Session slide 9 6.2: Many j-isolated Satisfying Assignments One possible way is to use the example from the lecture notes over j variables (which will be critical in every assignment) and augment it with n j dummy variables not appearing in the formula (which will be non-critical in every assignment).

10 Exercise Session slide : Many Isolated Satisfying Assignments In the example formula there are t = 2 n n/k satisfying assignments all of which are isolated. PPZ has a success probability of finding each one of them with probability at least 2 (n n/k). After one round the probability that none of them were found is at most 1 2 n n/k 2 (n n/k) = 0. Thus, the probability that PPZ does not find a satisfying assignment with this input formula is zero.

11 Exercise Session slide : Make it Hard for PPZ Since we, if possible, do not want to sum over multiple satisfying assignments, let us go for a formula with a unique isolated solution. In a unique solution, each variable has a critical clause. To minimize the success probability, we want to have exactly one critical clause per variable. Moreover, for simplicity, we would like not to have long-range influences and dependencies between the variables, so the formula should consist of components as independent as possible.

12 Exercise Session slide : Make it Hard for PPZ (2) A good example is the formula F consisting of n/k independent components, where each component is a maximal satisfiable formula over k variables. This way, there is a unique solution: each component has one satisfying assignment and composing these is the only way to get a satisfying assignment for F.

13 Exercise Session slide : Make it Hard for PPZ (3) And in each component, as long as less than k 1 variables are set, there cannot arise any unit clauses. Once k 1 variables are set in a component, there is always a unit clause forcing the last variable. Therefore exactly n n/k variables are being guessed, yielding exactly the success probability desired.

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction CSC 344 Algorithms and Complexity Lecture #1 Review of Mathematical Induction Proof by Mathematical Induction Many results in mathematics are claimed true for every positive integer. Any of these results

More information

Online Learning, Mistake Bounds, Perceptron Algorithm

Online Learning, Mistake Bounds, Perceptron Algorithm Online Learning, Mistake Bounds, Perceptron Algorithm 1 Online Learning So far the focus of the course has been on batch learning, where algorithms are presented with a sample of training data, from which

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Lecture 10: Lovász Local Lemma. Lovász Local Lemma

Lecture 10: Lovász Local Lemma. Lovász Local Lemma Lecture 10: Introduction Let A 1,..., A n be indicator variables for bad events in an experiment Suppose P [A i ] p We want to avoid all the bad events If P [ A 1 A n ] > 0, then there exists a way to

More information

1 Learning Linear Separators

1 Learning Linear Separators 10-601 Machine Learning Maria-Florina Balcan Spring 2015 Plan: Perceptron algorithm for learning linear separators. 1 Learning Linear Separators Here we can think of examples as being from {0, 1} n or

More information

The Perceptron Algorithm, Margins

The Perceptron Algorithm, Margins The Perceptron Algorithm, Margins MariaFlorina Balcan 08/29/2018 The Perceptron Algorithm Simple learning algorithm for supervised classification analyzed via geometric margins in the 50 s [Rosenblatt

More information

Cauchy-Schwartz inequality and geometric incidence problems. Misha Rudnev

Cauchy-Schwartz inequality and geometric incidence problems. Misha Rudnev Cauchy-Schwart inequality and geometric incidence problems Misha Rudnev Abstract In this lecture, I will discuss a couple of examples showing what a nice way of bookkeeping the Cauchy-Schwart inequality

More information

47-831: Advanced Integer Programming Lecturer: Amitabh Basu Lecture 2 Date: 03/18/2010

47-831: Advanced Integer Programming Lecturer: Amitabh Basu Lecture 2 Date: 03/18/2010 47-831: Advanced Integer Programming Lecturer: Amitabh Basu Lecture Date: 03/18/010 We saw in the previous lecture that a lattice Λ can have many bases. In fact, if Λ is a lattice of a subspace L with

More information

1 Learning Linear Separators

1 Learning Linear Separators 8803 Machine Learning Theory Maria-Florina Balcan Lecture 3: August 30, 2011 Plan: Perceptron algorithm for learning linear separators. 1 Learning Linear Separators Here we can think of examples as being

More information

Linear Classification: Linear Programming

Linear Classification: Linear Programming Linear Classification: Linear Programming Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong 1 / 21 Y Tao Linear Classification: Linear Programming Recall the definition

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

CSC 2414 Lattices in Computer Science September 27, Lecture 4. An Efficient Algorithm for Integer Programming in constant dimensions

CSC 2414 Lattices in Computer Science September 27, Lecture 4. An Efficient Algorithm for Integer Programming in constant dimensions CSC 2414 Lattices in Computer Science September 27, 2011 Lecture 4 Lecturer: Vinod Vaikuntanathan Scribe: Wesley George Topics covered this lecture: SV P CV P Approximating CVP: Babai s Nearest Plane Algorithm

More information

Linear Classification: Linear Programming

Linear Classification: Linear Programming Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong Recall the definition of linear classification. Definition 1. Let R d denote the d-dimensional space where the domain

More information

Outline. We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction

Outline. We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction Outline We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction Induction P(1) ( n 2)[P(n 1) P(n)] ( n 1)[P(n)] Why Does This Work? I P(1) ( n 2)[P(n

More information

Mathematical Logic Part Three

Mathematical Logic Part Three Mathematical Logic Part hree riday our Square! oday at 4:15PM, Outside Gates Announcements Problem Set 3 due right now. Problem Set 4 goes out today. Checkpoint due Monday, October 22. Remainder due riday,

More information

This means that we can assume each list ) is

This means that we can assume each list ) is This means that we can assume each list ) is of the form ),, ( )with < and Since the sizes of the items are integers, there are at most +1pairs in each list Furthermore, if we let = be the maximum possible

More information

Warm-up Quantifiers and the harmonic series Sets Second warmup Induction Bijections. Writing more proofs. Misha Lavrov

Warm-up Quantifiers and the harmonic series Sets Second warmup Induction Bijections. Writing more proofs. Misha Lavrov Writing more proofs Misha Lavrov ARML Practice 3/16/2014 and 3/23/2014 Warm-up Using the quantifier notation on the reference sheet, and making any further definitions you need to, write the following:

More information

Math Bootcamp 2012 Miscellaneous

Math Bootcamp 2012 Miscellaneous Math Bootcamp 202 Miscellaneous Factorial, combination and permutation The factorial of a positive integer n denoted by n!, is the product of all positive integers less than or equal to n. Define 0! =.

More information

UNC Charlotte Super Competition Comprehensive Test March 5, 2018

UNC Charlotte Super Competition Comprehensive Test March 5, 2018 Solutions. A survey of 60 graduate and undegraduate students attending a university found that 9 were living off campus and 36 were undergraduates. Also, 3 were undergraduates living off campus. How many

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

Perceptron (Theory) + Linear Regression

Perceptron (Theory) + Linear Regression 10601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Perceptron (Theory) Linear Regression Matt Gormley Lecture 6 Feb. 5, 2018 1 Q&A

More information

. Get closed expressions for the following subsequences and decide if they converge. (1) a n+1 = (2) a 2n = (3) a 2n+1 = (4) a n 2 = (5) b n+1 =

. Get closed expressions for the following subsequences and decide if they converge. (1) a n+1 = (2) a 2n = (3) a 2n+1 = (4) a n 2 = (5) b n+1 = Math 316, Intro to Analysis subsequences. Recall one of our arguments about why a n = ( 1) n diverges. Consider the subsequences a n = ( 1) n = +1. It converges to 1. On the other hand, the subsequences

More information

Proving simple set properties...

Proving simple set properties... Proving simple set properties... Part 1: Some examples of proofs over sets Fall 2013 Proving simple set properties... Fall 2013 1 / 17 Introduction Overview: Learning outcomes In this session we will...

More information

Module 1. Probability

Module 1. Probability Module 1 Probability 1. Introduction In our daily life we come across many processes whose nature cannot be predicted in advance. Such processes are referred to as random processes. The only way to derive

More information

Lecture 4: Linear predictors and the Perceptron

Lecture 4: Linear predictors and the Perceptron Lecture 4: Linear predictors and the Perceptron Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 4 1 / 34 Inductive Bias Inductive bias is critical to prevent overfitting.

More information

Quick Sort Notes , Spring 2010

Quick Sort Notes , Spring 2010 Quick Sort Notes 18.310, Spring 2010 0.1 Randomized Median Finding In a previous lecture, we discussed the problem of finding the median of a list of m elements, or more generally the element of rank m.

More information

Separate sum (may be implied) ( 1)(2 1) ( 1) 6 n n n n n A1,A1 1 mark for each part oe

Separate sum (may be implied) ( 1)(2 1) ( 1) 6 n n n n n A1,A1 1 mark for each part oe 4755 Mark Scheme June 04 n n n (i) (ii) 0 0 (iii) r( r ) r r Separate sum (may be implied) ( )( ) ( ) 6 n n n n n A,A mark for each part oe ( )[( ) 6] 6 n n n nn ( )(linear factor) ( )( 5) 6 n n n A Or

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

CS 161 Summer 2009 Homework #2 Sample Solutions

CS 161 Summer 2009 Homework #2 Sample Solutions CS 161 Summer 2009 Homework #2 Sample Solutions Regrade Policy: If you believe an error has been made in the grading of your homework, you may resubmit it for a regrade. If the error consists of more than

More information

2 2 + x =

2 2 + x = Lecture 30: Power series A Power Series is a series of the form c n = c 0 + c 1 x + c x + c 3 x 3 +... where x is a variable, the c n s are constants called the coefficients of the series. n = 1 + x +

More information

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES CLASSICAL PROBABILITY 2008 2. MODES OF CONVERGENCE AND INEQUALITIES JOHN MORIARTY In many interesting and important situations, the object of interest is influenced by many random factors. If we can construct

More information

Lecture 02: Summations and Probability. Summations and Probability

Lecture 02: Summations and Probability. Summations and Probability Lecture 02: Overview In today s lecture, we shall cover two topics. 1 Technique to approximately sum sequences. We shall see how integration serves as a good approximation of summation of sequences. 2

More information

25 Minimum bandwidth: Approximation via volume respecting embeddings

25 Minimum bandwidth: Approximation via volume respecting embeddings 25 Minimum bandwidth: Approximation via volume respecting embeddings We continue the study of Volume respecting embeddings. In the last lecture, we motivated the use of volume respecting embeddings by

More information

The integers. Chapter 3

The integers. Chapter 3 Chapter 3 The integers Recall that an abelian group is a set A with a special element 0, and operation + such that x +0=x x + y = y + x x +y + z) =x + y)+z every element x has an inverse x + y =0 We also

More information

--------------------------------------------------------------------------------------------- Math 6023 Topics: Design and Graph Theory ---------------------------------------------------------------------------------------------

More information

1 Seidel s LP algorithm

1 Seidel s LP algorithm 15-451/651: Design & Analysis of Algorithms October 21, 2015 Lecture #14 last changed: November 7, 2015 In this lecture we describe a very nice algorithm due to Seidel for Linear Programming in lowdimensional

More information

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions Economics 204 Fall 2011 Problem Set 1 Suggested Solutions 1. Suppose k is a positive integer. Use induction to prove the following two statements. (a) For all n N 0, the inequality (k 2 + n)! k 2n holds.

More information

Exercises. Template for Proofs by Mathematical Induction

Exercises. Template for Proofs by Mathematical Induction 5. Mathematical Induction 329 Template for Proofs by Mathematical Induction. Express the statement that is to be proved in the form for all n b, P (n) forafixed integer b. 2. Write out the words Basis

More information

Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem

Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem IITM-CS6845: Theory Toolkit February 08, 2012 Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem Lecturer: Jayalal Sarma Scribe: Dinesh K Theme: Error correcting codes In the previous lecture,

More information

Lecture 1: An introduction to probability theory

Lecture 1: An introduction to probability theory Econ 514: Probability and Statistics Lecture 1: An introduction to probability theory Random Experiments Random experiment: Experiment/phenomenon/action/mechanism with outcome that is not (fully) predictable.

More information

Probability Theory and Statistics

Probability Theory and Statistics robability Theory and Statistics Kasper K. erthelsen, Dept. For Mathematical Sciences kkb@math.aau.dk Literature: Walpole, Myers, Myers & Ye: robability and Statistics for Engineers and Scientists, rentice

More information

Mathathon Round 1 (2 points each)

Mathathon Round 1 (2 points each) Mathathon Round ( points each). A circle is inscribed inside a square such that the cube of the radius of the circle is numerically equal to the perimeter of the square. What is the area of the circle?

More information

Vote. Vote on timing for night section: Option 1 (what we have now) Option 2. Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9

Vote. Vote on timing for night section: Option 1 (what we have now) Option 2. Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9 Vote Vote on timing for night section: Option 1 (what we have now) Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9 Option 2 Lecture, 6:10-7 10 minute break Lecture, 7:10-8 10 minute break Tutorial,

More information

SUMSETS AND THE CONVEX HULL MÁTÉ MATOLCSI AND IMRE Z. RUZSA

SUMSETS AND THE CONVEX HULL MÁTÉ MATOLCSI AND IMRE Z. RUZSA SUMSETS AND THE CONVEX HULL MÁTÉ MATOLCSI AND IMRE Z RUZSA Abstract We extend Freiman s inequality on the cardinality of the sumset of a d dimensional set We consider different sets related by an inclusion

More information

DECOUPLING LECTURE 6

DECOUPLING LECTURE 6 18.118 DECOUPLING LECTURE 6 INSTRUCTOR: LARRY GUTH TRANSCRIBED BY DONGHAO WANG We begin by recalling basic settings of multi-linear restriction problem. Suppose Σ i,, Σ n are some C 2 hyper-surfaces in

More information

Introduction to Decision Sciences Lecture 10

Introduction to Decision Sciences Lecture 10 Introduction to Decision Sciences Lecture 10 Andrew Nobel October 17, 2017 Mathematical Induction Given: Propositional function P (n) with domain N + Basis step: Show that P (1) is true Inductive step:

More information

Mathematical Structures Combinations and Permutations

Mathematical Structures Combinations and Permutations Definitions: Suppose S is a (finite) set and n, k 0 are integers The set C(S, k) of k - combinations consists of all subsets of S that have exactly k elements The set P (S, k) of k - permutations consists

More information

We saw in the last chapter that the linear Hamming codes are nontrivial perfect codes.

We saw in the last chapter that the linear Hamming codes are nontrivial perfect codes. Chapter 5 Golay Codes Lecture 16, March 10, 2011 We saw in the last chapter that the linear Hamming codes are nontrivial perfect codes. Question. Are there any other nontrivial perfect codes? Answer. Yes,

More information

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6 MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION Extra Reading Material for Level 4 and Level 6 Part A: Construction of Lebesgue Measure The first part the extra material consists of the construction

More information

Use mathematical induction in Exercises 3 17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis.

Use mathematical induction in Exercises 3 17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis. Exercises Exercises 1. There are infinitely many stations on a train route. Suppose that the train stops at the first station and suppose that if the train stops at a station, then it stops at the next

More information

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

A NICE PROOF OF FARKAS LEMMA

A NICE PROOF OF FARKAS LEMMA A NICE PROOF OF FARKAS LEMMA DANIEL VICTOR TAUSK Abstract. The goal of this short note is to present a nice proof of Farkas Lemma which states that if C is the convex cone spanned by a finite set and if

More information

Theory of LSH. Distance Measures LS Families of Hash Functions S-Curves

Theory of LSH. Distance Measures LS Families of Hash Functions S-Curves Theory of LSH Distance Measures LS Families of Hash Functions S-Curves 1 Distance Measures Generalized LSH is based on some kind of distance between points. Similar points are close. Two major classes

More information

CS286.2 Lecture 13: Quantum de Finetti Theorems

CS286.2 Lecture 13: Quantum de Finetti Theorems CS86. Lecture 13: Quantum de Finetti Theorems Scribe: Thom Bohdanowicz Before stating a quantum de Finetti theorem for density operators, we should define permutation invariance for quantum states. Let

More information

Assignment 1: From the Definition of Convexity to Helley Theorem

Assignment 1: From the Definition of Convexity to Helley Theorem Assignment 1: From the Definition of Convexity to Helley Theorem Exercise 1 Mark in the following list the sets which are convex: 1. {x R 2 : x 1 + i 2 x 2 1, i = 1,..., 10} 2. {x R 2 : x 2 1 + 2ix 1x

More information

The Inclusion Exclusion Principle

The Inclusion Exclusion Principle The Inclusion Exclusion Principle 1 / 29 Outline Basic Instances of The Inclusion Exclusion Principle The General Inclusion Exclusion Principle Counting Derangements Counting Functions Stirling Numbers

More information

1 The Local-to-Global Lemma

1 The Local-to-Global Lemma Point-Set Topology Connectedness: Lecture 2 1 The Local-to-Global Lemma In the world of advanced mathematics, we are often interested in comparing the local properties of a space to its global properties.

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 P and NP P: The family of problems that can be solved quickly in polynomial time.

More information

20.1 2SAT. CS125 Lecture 20 Fall 2016

20.1 2SAT. CS125 Lecture 20 Fall 2016 CS125 Lecture 20 Fall 2016 20.1 2SAT We show yet another possible way to solve the 2SAT problem. Recall that the input to 2SAT is a logical expression that is the conunction (AND) of a set of clauses,

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

A CLASS OF MAJORITY GAMES

A CLASS OF MAJORITY GAMES A CLASS OF MAJORITY GAMES By J. R. ISBELL {Washington, D.C.) [Reoeived 16 December 1955] THIS paper is concerned with the description of a class of combinatorial objects, the weighted majority games of

More information

Welsh s problem on the number of bases of matroids

Welsh s problem on the number of bases of matroids Welsh s problem on the number of bases of matroids Edward S. T. Fan 1 and Tony W. H. Wong 2 1 Department of Mathematics, California Institute of Technology 2 Department of Mathematics, Kutztown University

More information

LECTURE NOTE #8 PROF. ALAN YUILLE. Can we find a linear classifier that separates the position and negative examples?

LECTURE NOTE #8 PROF. ALAN YUILLE. Can we find a linear classifier that separates the position and negative examples? LECTURE NOTE #8 PROF. ALAN YUILLE 1. Linear Classifiers and Perceptrons A dataset contains N samples: { (x µ, y µ ) : µ = 1 to N }, y µ {±1} Can we find a linear classifier that separates the position

More information

DEGREE SEQUENCES OF INFINITE GRAPHS

DEGREE SEQUENCES OF INFINITE GRAPHS DEGREE SEQUENCES OF INFINITE GRAPHS ANDREAS BLASS AND FRANK HARARY ABSTRACT The degree sequences of finite graphs, finite connected graphs, finite trees and finite forests have all been characterized.

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

6 Permutations Very little of this section comes from PJE.

6 Permutations Very little of this section comes from PJE. 6 Permutations Very little of this section comes from PJE Definition A permutation (p147 of a set A is a bijection ρ : A A Notation If A = {a b c } and ρ is a permutation on A we can express the action

More information

CSE 206A: Lattice Algorithms and Applications Spring Basis Reduction. Instructor: Daniele Micciancio

CSE 206A: Lattice Algorithms and Applications Spring Basis Reduction. Instructor: Daniele Micciancio CSE 206A: Lattice Algorithms and Applications Spring 2014 Basis Reduction Instructor: Daniele Micciancio UCSD CSE No efficient algorithm is known to find the shortest vector in a lattice (in arbitrary

More information

Lecture 4: Codes based on Concatenation

Lecture 4: Codes based on Concatenation Lecture 4: Codes based on Concatenation Error-Correcting Codes (Spring 206) Rutgers University Swastik Kopparty Scribe: Aditya Potukuchi and Meng-Tsung Tsai Overview In the last lecture, we studied codes

More information

Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya

Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Introduction to Mathematical Programming IE406. Lecture 3. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 3. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 3 Dr. Ted Ralphs IE406 Lecture 3 1 Reading for This Lecture Bertsimas 2.1-2.2 IE406 Lecture 3 2 From Last Time Recall the Two Crude Petroleum example.

More information

Quick Tour of the Topology of R. Steven Hurder, Dave Marker, & John Wood 1

Quick Tour of the Topology of R. Steven Hurder, Dave Marker, & John Wood 1 Quick Tour of the Topology of R Steven Hurder, Dave Marker, & John Wood 1 1 Department of Mathematics, University of Illinois at Chicago April 17, 2003 Preface i Chapter 1. The Topology of R 1 1. Open

More information

Math 291-1: Lecture Notes Northwestern University, Fall 2015

Math 291-1: Lecture Notes Northwestern University, Fall 2015 Math 29-: Lecture Notes Northwestern University, Fall 25 Written by Santiago Cañez These are lecture notes for Math 29-, the first quarter of MENU: Intensive Linear Algebra and Multivariable Calculus,

More information

Greedy Algorithms. CSE 101: Design and Analysis of Algorithms Lecture 9

Greedy Algorithms. CSE 101: Design and Analysis of Algorithms Lecture 9 Greedy Algorithms CSE 101: Design and Analysis of Algorithms Lecture 9 CSE 101: Design and analysis of algorithms Greedy algorithms Reading: Kleinberg and Tardos, sections 4.1, 4.2, and 4.3 Homework 4

More information

Homework #5 Solutions

Homework #5 Solutions Homework #5 Solutions p 83, #16. In order to find a chain a 1 a 2 a n of subgroups of Z 240 with n as large as possible, we start at the top with a n = 1 so that a n = Z 240. In general, given a i we will

More information

Lecture 5: CVP and Babai s Algorithm

Lecture 5: CVP and Babai s Algorithm NYU, Fall 2016 Lattices Mini Course Lecture 5: CVP and Babai s Algorithm Lecturer: Noah Stephens-Davidowitz 51 The Closest Vector Problem 511 Inhomogeneous linear equations Recall that, in our first lecture,

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 2.6.3, 2.7.4, 2.7.5, 2.7.2,

More information

Solutions to Homework 2

Solutions to Homework 2 Solutions to Homewor Due Tuesday, July 6,. Chapter. Problem solution. If the series for ln+z and ln z both converge, +z then we can find the series for ln z by term-by-term subtraction of the two series:

More information

Irredundant Families of Subcubes

Irredundant Families of Subcubes Irredundant Families of Subcubes David Ellis January 2010 Abstract We consider the problem of finding the maximum possible size of a family of -dimensional subcubes of the n-cube {0, 1} n, none of which

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School Basic counting techniques Periklis A. Papakonstantinou Rutgers Business School i LECTURE NOTES IN Elementary counting methods Periklis A. Papakonstantinou MSIS, Rutgers Business School ALL RIGHTS RESERVED

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

a 2n = . On the other hand, the subsequence a 2n+1 =

a 2n = . On the other hand, the subsequence a 2n+1 = Math 316, Intro to Analysis subsequences. This is another note pack which should last us two days. Recall one of our arguments about why a n = ( 1) n diverges. Consider the subsequence a n = It converges

More information

Active Learning: Disagreement Coefficient

Active Learning: Disagreement Coefficient Advanced Course in Machine Learning Spring 2010 Active Learning: Disagreement Coefficient Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz In previous lectures we saw examples in which

More information

The decomposability of simple orthogonal arrays on 3 symbols having t + 1 rows and strength t

The decomposability of simple orthogonal arrays on 3 symbols having t + 1 rows and strength t The decomposability of simple orthogonal arrays on 3 symbols having t + 1 rows and strength t Wiebke S. Diestelkamp Department of Mathematics University of Dayton Dayton, OH 45469-2316 USA wiebke@udayton.edu

More information

CS261: A Second Course in Algorithms Lecture #12: Applications of Multiplicative Weights to Games and Linear Programs

CS261: A Second Course in Algorithms Lecture #12: Applications of Multiplicative Weights to Games and Linear Programs CS26: A Second Course in Algorithms Lecture #2: Applications of Multiplicative Weights to Games and Linear Programs Tim Roughgarden February, 206 Extensions of the Multiplicative Weights Guarantee Last

More information

Lecture 22. m n c (k) i,j x i x j = c (k) k=1

Lecture 22. m n c (k) i,j x i x j = c (k) k=1 Notes on Complexity Theory Last updated: June, 2014 Jonathan Katz Lecture 22 1 N P PCP(poly, 1) We show here a probabilistically checkable proof for N P in which the verifier reads only a constant number

More information

Math212a1411 Lebesgue measure.

Math212a1411 Lebesgue measure. Math212a1411 Lebesgue measure. October 14, 2014 Reminder No class this Thursday Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 5: Divide and Conquer (Part 2) Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ A Lower Bound on Convex Hull Lecture 4 Task: sort the

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively);

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively); STABILITY OF EQUILIBRIA AND LIAPUNOV FUNCTIONS. By topological properties in general we mean qualitative geometric properties (of subsets of R n or of functions in R n ), that is, those that don t depend

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Information Theory and Communication

Information Theory and Communication Information Theory and Communication Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/8 General Chain Rules Definition Conditional mutual information

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

Linear Classifiers: Expressiveness

Linear Classifiers: Expressiveness Linear Classifiers: Expressiveness Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture outline Linear classifiers: Introduction What functions do linear classifiers express?

More information

Algorithms for Satisfiability Using Independent Sets of Variables

Algorithms for Satisfiability Using Independent Sets of Variables Algorithms for Satisfiability Using Independent Sets of Variables Ravi Gummadi, N.S. Narayanaswamy,, and R. Venkatakrishnan 2 Department of Computer Science and Engineering, Indian Institute of Technology

More information