Math212a1411 Lebesgue measure.

Size: px
Start display at page:

Download "Math212a1411 Lebesgue measure."

Transcription

1 Math212a1411 Lebesgue measure. October 14, 2014

2 Reminder No class this Thursday

3 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.

4 Henri Léon Lebesgue Born: 28 June 1875 in Beauvais, Oise, Picardie, France Died: 26 July 1941 in Paris, France

5 In today s lecture we will discuss the concept of measurability of a subset of R. We will begin with Lebesgue s (1902) definition of measurability, which is easy to understand and intuitive. We will then give Caratheodory s (1914) definition of measurabiity which is highly non-intuitive but has great technical advantage. For subsets of R these two definitions are equivalent (as we shall prove). But the Caratheodory definition extends to many much more general situations. In particular, the Caratheodory definition will prove useful for us later, when we study Hausdorff measures.

6 The ɛ/2 n trick. An argument which will recur several times is: and so n = 1 ɛ 2 n = ɛ. We will call this the ɛ/2 n trick and not spell it out every time we use it.

7 1 Lebesgue outer measure. 2 Lebesgue inner measure. 3 Lebesgue s definition of measurability. 4 Caratheodory s definition of measurability. 5 Countable additivity. 6 σ-fields, measures, and outer measures. 7 The Borel-Cantelli lemmas

8 The definition of Lebesgue outer measure. For any subset A R we define its Lebesgue outer measure by m (A) := inf l(i n ) : I n are intervals with A I n. (1) Here the length l(i ) of any interval I = [a, b] is b a with the same definition for half open intervals (a, b] or [a, b), or open intervals. Of course if a = and b is finite or +, or if a is finite and b = +, or if a = and b = the length is infinite.

9 It doesn t matter if the intervals are open, half open or closed. m (A) := inf l(i n ) : I n are intervals with A I n. (1) The infimum in (1) is taken over all covers of A by intervals. By the ɛ/2 n trick, i.e. by replacing each I j = [a j, b j ] by (a j ɛ/2 j+1, b j + ɛ/2 j+1 ) we may assume that the infimum is taken over open intervals. (Equally well, we could use half open intervals of the form [a, b), for example.).

10 Monotonicity, subadditivity. If A B then m (A) m (B) since any cover of B by intervals is a cover of A. For any two sets A and B we clearly have m (A B) m (A) + m (B).

11 Sets of measure zero don t matter. A set Z is said to be of (Lebesgue) measure zero it its Lebesgue outer measure is zero, i.e. if it can be covered by a countable union of (open) intervals whose total length can be made as small as we like. If Z is any set of measure zero, then m (A Z) = m (A).

12 The outer measure of a finite interval is its length. If A = [a, b] is an interval, then we can cover it by itself, so m ([a, b]) b a, and hence the same is true for (a, b], [a, b), or (a, b). If the interval is infinite, it clearly can not be covered by a set of intervals whose total length is finite, since if we lined them up with end points touching they could not cover an infinite interval. We claim that if I is a finite interval. m (I ) = l(i ) (2)

13 Proof. We may assume that I = [c, d] is a closed interval by what we have already said, and that the minimization in (1) is with respect to a cover by open intervals. So what we must show is that if [c, d] i (a i, b i ) then d c i (b i a i ). We first apply Heine-Borel to replace the countable cover by a finite cover. (This only decreases the right hand side of preceding inequality.) So let n be the number of elements in the cover.

14 We need to prove that if n [c, d] (a i, b i ) then d c i=1 n (b i a i ). i=1 We do this this by induction on n. If n = 1 then a 1 < c and b 1 > d so clearly b 1 a 1 > d c. Suppose that n 2 and we know the result for all covers (of all intervals [c, d] ) with at most n 1 intervals in the cover. If some interval (a i, b i ) is disjoint from [c, d] we may eliminate it from the cover, and then we are in the case of n 1 intervals. So we may assume that every (a i, b i ) has non-empty intersection with [c, d].

15 Among the the intervals (a i, b i ) there will be one for which a i takes on the minimum possible value. By relabeling, we may assume that this is (a 1, b 1 ). Since c is covered, we must have a 1 < c. If b 1 > d then (a 1, b 1 ) covers [c, d] and there is nothing further to do. So assume b 1 d. We must have b 1 > c since (a 1, b 1 ) [c, d]. Since b 1 [c, d], at least one of the intervals (a i, b i ), i > 1 contains the point b 1. By relabeling, we may assume that it is (a 2, b 2 ). But now we have a cover of [c, d] by n 1 intervals: [c, d] (a 1, b 2 ) n (a i, b i ). i=3 So by induction d c (b 2 a 1 ) + n i=3 (b i a i ). But b 2 a 1 (b 2 a 2 ) + (b 1 a 1 ) since a 2 < b 1.

16 We can use small intervals. We repeat that the intervals used in (1) could be taken as open, closed or half open without changing the definition. If we take them all to be half open, of the form I i = [a i, b i ), we can write each I i as a disjoint union of finite or countably many intervals each of length < ɛ. So it makes no difference to the definition if we also require the l(i i ) < ɛ (3) in (1). We will see that when we pass to other types of measures this will make a difference.

17 Summary of where we are so far. We have verified, or can easily verify the following properties: 1 m ( ) = 0. 2 A B m (A) m (B). 3 By the ɛ/2 n trick, for any finite or countable union we have m ( i A i ) i m (A i ). 4 If dist (A, B) > 0 then m (A B) = m (A) + m (B). 5 m (A) = inf{m (U) : U A, U open}. 6 For an interval m (I ) = l(i ).

18 The only items that we have not done already are items 4 and 5. But these are immediate: for 4 we may choose the intervals in (1) all to have length < ɛ where 2ɛ < dist (A, B) so that there is no overlap. As for item 5, we know from 2 that m (A) m (U) for any set U A, in particular for any open set U which contains A. We must prove the reverse inequality: if m (A) = this is trivial. Otherwise, we may take the intervals in (1) to be open and then the union on the right is an open set whose Lebesgue outer measure is less than m (A) + δ for any δ > 0 if we choose a close enough approximation to the infimum.

19 Lebesgue outer measure on R n. All the above works for R n instead of R if we replace the word interval by rectangle, meaning a rectangular parallelepiped, i.e a set which is a product of one dimensional intervals. We also replace length by volume (or area in two dimensions). What is needed is the following:

20 Lemma Let C be a finite non-overlapping collection of closed rectangles all contained in the closed rectangle J. Then vol J I C vol I. If C is any finite collection of rectangles such that J I C I then vol J I C vol (I ).

21 This lemma occurs on page 1 of Stroock, A concise introduction to the theory of integration together with its proof. I will take this for granted. In the next few slides I will talk as if we are in R, but everything goes through unchanged if R is replaced by R n. In fact, once we will have developed enough abstract theory, we will not need this lemma. So for those of you who are purists and do not want to go through the lemma in Stroock, just stick to R.

22 The definition of Lebesgue inner measure. Item 5. in our list said that the Lebesgue outer measure of any set is obtained by approximating it from the outside by open sets. The Lebesgue inner measure is defined as m (A) = sup{m (K) : K A, K compact }. (4) Clearly m (A) m (A) since m (K) m (A) for any K A. We also have

23 The Lebesgue inner measure of an interval. Proposition. For any interval I we have m (I ) = l(i ). (5)

24 Proof. If l(i ) = the result is obvious. So we may assume that I is a finite interval which we may assume to be open, I = (a, b). If K I is compact, then I is a cover of K and hence from the definition of outer measure m (K) l(i ). So m (I ) l(i ). On the other hand, for any ɛ > 0, ɛ < 1 2 (b a) the interval [a + ɛ, b ɛ] is compact and m ([a ɛ, a + ɛ]) = b a 2ɛ m (I ). Letting ɛ 0 proves the proposition.

25 Lebesgue s definition of measurability for sets of finite outer measure. A set A with m (A) < is said to measurable in the sense of Lebesgue if m (A) = m (A). (6) If A is measurable in the sense of Lebesgue, we write m(a) = m (A) = m (A). (7) If K is a compact set, then m (K) = m (K) since K is a compact set contained in itself. Hence all compact sets are measurable in the sense of Lebesgue. If I is a bounded interval, then I is measurable in the sense of Lebesgue by the preceding Proposition.

26 Lebesgue s definition of measurability for sets of infinite outer measure. If m (A) =, we say that A is measurable in the sense of Lebesgue if all of the sets A [ n, n] are measurable.

27 Countable additivity. Theorem If A = A i is a (finite or) countable disjoint union of sets which are measurable in the sense of Lebesgue, then A is measurable in the sense of Lebesgue and m(a) = i m(a i ). In the proof we may assume that m(a) < - otherwise apply the result to A [ n, n] and A i [ n, n] for each n.

28 We have m (A) n m (A n ) = n m(a n ). Let ɛ > 0, and for each n choose compact K n A n with m (K n ) m (A n ) ɛ 2 n = m(a n) ɛ 2 n which we can do since A n is measurable in the sense of Lebesgue. The sets K n are pairwise disjoint, hence, being compact, at positive distances from one another. Hence m (K 1 K n ) = m (K 1 ) + + m (K n ) and K 1 K n is compact and contained in A.

29 m (K n ) m (A n ) ɛ 2 n = m(a n) ɛ 2 n m (K 1 K n ) = m (K 1 ) + + m (K n ) and K 1 K n is compact and contained in A. Hence m (A) m (K 1 ) + + m (K n ), and since this is true for all n we have m (A) n m(a n ) ɛ. Since this is true for all ɛ > 0 we get m (A) m(a n ). But then m (A) m (A) and so they are equal, so A is measurable in the sense of Lebesgue, and m(a) = m(a i ).

30 Open sets are measurable in the sense of Lebesgue. Proof. Any open set O can be written as the countable union of open intervals I i, and n 1 J n := I n \ is a disjoint collection of intervals (some open, some closed, some half open) and O is the disjont union of the J n. So every open set is a disjoint union of intervals hence measurable in the sense of Lebesgue. i=1 I i

31 Closed sets are measurable in the sense of Lebesgue. This requires a bit more work: If F is closed, and m (F ) =, then F [ n, n] is compact, and so F is measurable in the sense of Lebesgue. Suppose that m (F ) <.

32 For any ɛ > 0 consider the sets G 1,ɛ := [ 1 + ɛ 2 2, 1 ɛ 2 2 ] F G 2,ɛ := ([ 2 + ɛ ɛ, 1] F ) ([1, ] F ) G 3,ɛ := ([ 3 + ɛ ɛ, 2] F ) ([2, ] F ). and set G ɛ := i G i,ɛ. The G i,ɛ are all compact, and hence measurable in the sense of Lebesgue, and the union in the definition of G ɛ is disjoint, so G ɛ is measurable in the sense of Lebesgue.

33 The G i,ɛ are all compact, and hence measurable in the sense of Lebesgue, and the union in the definition of G ɛ is disjoint, so is measurable in the sense of Lebesgue. Furthermore, the sum of the lengths of the gaps between the intervals that went into the definition of the G i,ɛ is ɛ. So m(g ɛ )+ɛ = m (G ɛ )+ɛ m (F ) m (G ɛ ) = m(g ɛ ) = i m(g i,ɛ ). In particular, the sum on the right converges, and hence by considering a finite number of terms, we will have a finite sum whose value is at least m(g ɛ ) ɛ. The corresponding union of sets will be a compact set K ɛ contained in F with m(k ɛ ) m (F ) 2ɛ. Hence all closed sets are measurable in the sense of Lebesgue.

34 The inner-outer characterization of measurability. Theorem A is measurable in the sense of Lebesgue if and only if for every ɛ > 0 there is an open set U A and a closed set F A such that m(u \ F ) < ɛ. Proof in one direction. Suppose that A is measurable in the sense of Lebesgue with m(a) <. Then there is an open set U A with m(u) < m (A) + ɛ/2 = m(a) + ɛ/2, and there is a compact set F A with m(f ) m (A) ɛ/2 = m(a) ɛ/2. Since U \ F is open, it is measurable in the sense of Lebesgue, and so is F as it is compact. Also F and U \ F are disjoint. Hence m(u \ F ) = m(u) m(f ) < m(a) + ɛ ( 2 m(a) ɛ ) = ɛ. 2

35 If A is measurable in the sense of Lebesgue, and m(a) =, we can apply the above to A I where I is any compact interval, in particular to the interval [ n, n]. So there exist open sets U n A [ n, n] and closed sets F n A [ n, n] with m(u n /F n ) < ɛ/2 n. Let U := U n and F := (F n ([ n, n + 1] [n 1, n])). A convergent sequence in F must eventually lie in an interval of length one and hence to at most the union of two entries in the union defining F, so F is closed. We have U A F and U/F (U n /F n ). Indeed, any p U must belong to some ([ n, n + 1] [n 1, n]), and so if it does not belong to F then it does not belong to F n. So m(u/f ) m(u n /F n ) < ɛ.

36 Proof in the other direction. Suppose that for each ɛ, there exist U A F with m(u \ F ) < ɛ. Suppose that m (A) <. Then m(f ) < and m(u) m(u \ F ) + m(f ) < ɛ + m(f ) <. Then m (A) m(u) < m(f ) + ɛ = m (F ) + ɛ m (A) + ɛ. Since this is true for every ɛ > 0 we conclude that m (A) m (A) so they are equal and A is measurable in the sense of Lebesgue. If m (A) =, we have U ( n ɛ, n + ɛ) A [ n, n] F [ n, n] and m((u ( n ɛ, n + ɛ) \ (F [ n, n]) < 2ɛ + ɛ = 3ɛ so we can proceed as before to conclude that m (A [ n, n]) = m (A [ n, n]).

37 Consequences of the theorem. Proposition. If A is measurable in the sense of Lebesgue, so is its complement A c = R \ A. Proof. Indeed, if F A U with F closed and U open, then F c A c U c with F c open and U c closed. Furthermore, F c \ U c = U \ F so if A satisfies the condition of the theorem so does A c.

38 More consequences. Proposiition. If A and B are measurable in the sense of Lebesgue so is A B Proof. For ɛ > 0 choose U A A F A and U B B F B with m(u A \ F A ) < ɛ/2 and m(u B \ F B ) < ɛ/2. Then (U A U B ) (A B) (F A F B ) and (U A U B ) \ (F A F B ) (U A \ F A ) (U B \ F B ).

39 Still more consequences of the theorem. Proposition. If A and B are measurable in the sense of Lebesgue then so is A B. Proof. Indeed, A B = (A c B c ) c. Since A \ B = A B c we also get Proposition. If A and B are measurable in the sense of Lebesgue then so is A \ B.

40 Caratheodory s definition of measurability. A set E R is said to be measurable according to Caratheodory if for any set A R we have m (A) = m (A E) + m (A E c ) (8) where (recall that) E c denotes the complement of E. In other words, A E c = A \ E. This definition has many advantages, as we shall see. Our first task will be to show that it is equivalent to Lebesgue s. Notice that we always have m (A) m (A E) + m (A \ E) so condition (8) is equivalent to for all A. m (A E) + m (A \ E) m (A) (9)

41 Caratheodory = Lebesgue. Theorem A set E is measurable in the sense of Caratheodory if and only if it is measurable in the sense of Lebesgue. Proof that Lebesgue Caratheodory. Suppose E is measurable in the sense of Lebesgue. Let ɛ > 0. Choose U E F with U open, F closed and m(u/f ) < ɛ which we can do by the inner-outer Theorem. Let V be an open set containing A. Then A \ E V \ F and A E (V U) so

42 A \ E V \ F and A E (V U) m (A \ E) + m (A E) m(v \ F ) + m(v U) so m(v \ U) + m(u \ F ) + m(v U) m(v ) + ɛ. (We can pass from the second line to the third since both V \ U and V U are measurable in the sense of Lebesgue and we can apply the proposition about disjoint unions.) Taking the infimum over all open V containing A, the last term becomes m (A) + ɛ, and as ɛ is arbitrary, we have established (9) showing that E is measurable in the sense of Caratheodory.

43 Caratheodory Lebesgue, case where m (E) <. Then for any ɛ > 0 there exists an open set U E with m(u) < m (E) + ɛ. We may apply condition (8) to A = U to get so m(u) = m (U E) + m (U \ E) = m (E) + m (U \ E) m (U \ E) < ɛ. This means that there is an open set V (U \ E) with m(v ) < ɛ. But we know that U \ V is measurable in the sense of Lebesgue, since U and V are, and m(u) m(v ) + m(u \ V ) so m(u \ V ) > m(u) ɛ.

44 m(u \ V ) > m(u) ɛ. So there is a closed set F U \ V with m(f ) > m(u) ɛ. But since V U \ E = U E c, we have U \ V = U V c U (U c E) = E. So F E. So F E U and m(u \ F ) = m(u) m(f ) < ɛ. Hence E is measurable in the sense of Lebesgue.

45 Caratheodory Lebesgue, case where m (E) =. If m(e) =, we must show that E [ n, n] is measurable in the sense of Caratheodory, for then it is measurable in the sense of Lebesgue from what we already know. We know that the interval [ n, n] itself, being measurable in the sense of Lebesgue, is measurable in the sense of Caratheodory. So we will have completed the proof of the theorem if we show that the intersection of E with [ n, n] is measurable in the sense of Caratheodory.

46 Unions and intersections. More generally, we will show that the union or intersection of two sets which are measurable in the sense of Caratheodory is again measurable in the sense of Caratheodory. Notice that the definition (8) is symmetric in E and E c so if E is measurable in the sense of Caratheodory so is E c. So it suffices to prove the next lemma to complete the proof. Lemma If E 1 and E 2 are measurable in the sense of Caratheodory so is E 1 E 2.

47 Proof of the lemma, 1. For any set A we have m (A) = m (A E 1 ) + m (A E1 c ) by (8) applied to E 1. Applying (8) to A E1 c and E 2 gives m (A E1 c ) = m (A E1 c E 2 ) + m (A E1 c E2 c ). Substituting this back into the preceding equation gives m (A) = m (A E 1 ) + m (A E1 c E 2 ) + m (A E1 c E2 c ). (10) Since E1 c E 2 c = (E 1 E 2 ) c we can write this as m (A) = m (A E 1 ) + m (A E1 c E 2 ) + m (A (E 1 E 2 ) c ).

48 Proof of the lemma, 2. m (A) = m (A E 1 ) + m (A E c 1 E 2 ) + m (A (E 1 E 2 ) c ). Now A (E 1 E 2 ) = (A E 1 ) (A (E c 1 E 2) so m (A E 1 ) + m (A E c 1 E 2 ) m (A (E 1 E 2 )). Substituting this for the two terms on the right of the previous displayed equation gives m (A) m (A (E 1 E 2 )) + m (A (E 1 E 2 ) c ) which is just (9) for the set E 1 E 2. This proves the lemma and the theorem.

49 The class M of measurable sets. We let M denote the class of measurable subsets of R - measurability in the sense of Lebesgue or Caratheodory these being equivalent. Notice by induction starting with two terms as in the lemma, that any finite union of sets in M is again in M

50 The first main theorem in the subject is the following description of M and the function m on it: Theorem M and the function m : M [0, ] have the following properties: R M. E M E c M. If E n M for n = 1, 2, 3,... then n E n M. If F n M and the F n are pairwise disjoint, then F := n F n M and m(f ) = m(f n ). n=1

51 We already know the first two items on the list, and we know that a finite union of sets in M is again in M. We also know the last assertion. But it will be instructive and useful for us to have a proof starting directly from Caratheodory s definition of measurablity:

52 Recall m (A) = m (A E 1 )+m (A E c 1 E 2 )+m (A E c 1 E c 2 ). (10) If F 1 M, F 2 M and F 1 F 2 = then taking A = F 1 F 2, E 1 = F 1, E 2 = F 2 in (10) gives m(f 1 F 2 ) = m(f 1 ) + m(f 2 ). Induction then shows that if F 1,..., F n are pairwise disjoint elements of M then their union belongs to M and m(f 1 F 2 F n ) = m(f 1 ) + m(f 2 ) + + m(f n ).

53 m (A) = m (A E 1 )+m (A E c 1 E 2 )+m (A E c 1 E c 2 ). (10) More generally, if we let A be arbitrary and take E 1 = F 1, E 2 = F 2 in (10) we get m (A) = m (A F 1 ) + m (A F 2 ) + m (A (F 1 F 2 ) c ). If F 3 M is disjoint from F 1 and F 2 we may apply (8) with A replaced by A (F 1 F 2 ) c and E by F 3 to get m (A (F 1 F 2 ) c )) = m (A F 3 ) + m (A (F 1 F 2 F 3 ) c ), since (F 1 F 2 ) c F c 3 = F c 1 F c 2 F c 3 = (F 1 F 2 F 3 ) c. Substituting this back into the preceding equation gives m (A) = m (A F 1 )+m (A F 2 )+m (A F 3 )+m (A (F 1 F 2 F 3 ) c ).

54 m (A) = m (A F 1 )+m (A F 2 )+m (A F 3 )+m (A (F 1 F 2 F 3 ) c ). Proceeding inductively, we conclude that if F 1,..., F n are pairwise disjoint elements of M then m (A) = n m (A F i ) + m (A (F 1 F n ) c ). (11) 1

55 Now suppose that we have a countable family {F i } of pairwise disjoint sets belonging to M. Since ( n ) c ( ) c F i F i i=1 i=1 we conclude from (11) that ( n ) c ) m (A) m (A F i ) + m (A F i 1 i=1 and hence passing to the limit ( ) c ) m (A) m (A F i ) + m (A F i. 1 i=1

56 Now given any collection of sets B k we can find intervals {I k,j } with B k I k,j j and m (B k ) j l(i k,j ) + ɛ 2 k. So and hence B k k k,j I k,j m ( Bk ) m (B k ), the inequality being trivially true if the sum on the right is infinite.

57 So i=1 m (A F k ) m (A ( i=1 F i)). Thus ( ) c ) m (A) m (A F i ) + m (A F i 1 i=1 ( )) ( ) c ) m (A F i + m (A F i. i=1 The extreme right of this inequality is the left hand side of (9) applied to E = F i, i and so E M and the preceding string of inequalities must be equalities since the middle is trapped between both sides which must be equal. i=1

58 Hence we have proved that if F n is a disjoint countable family of sets belonging to M then their union belongs to M and m (A) = ( ) c ) m (A F i ) + m (A F i. (12) i i=1 If we take A = F i we conclude that if the F j are disjoint and m(f ) = m(f n ) (13) n=1 F = F j. So we have reproved the last assertion of the theorem using Caratheodory s definition.

59 Proof of 3:If E n M for n = 1, 2, 3,... then n E n M. For the proof of this third assertion, we need only observe that a countable union of sets in M can be always written as a countable disjoint union of sets in M. Indeed, set F 1 := E 1, F 2 := E 2 \ E 1 = E 1 E c 2 F 3 := E 3 \ (E 1 E 2 ) etc. The right hand sides all belong to M since M is closed under taking complements and finite unions and hence intersections, and F j = E j. We have completed the proof of the theorem. j

60 Some consequences - symmetric differences. The symmetric difference between two sets is the set of points belonging to one or the other but not both: A B := (A \ B) (B \ A). Proposition. If A M and m(a B) = 0 then B M and m(a) = m(b).

61 Proof. By assumption A \ B has measure zero (and hence is measurable) since it is contained in the set A B which is assumed to have measure zero. Similarly for B \ A. Also (A B) M since A B = A \ (A \ B). Thus B = (A B) (B \ A) M. Since B \ A and A B are disjoint, we have m(b) = m(a B)+m(B\A) = m(a B) = m(a B)+m(A\B) = m(a).

62 More consequences: increasing limits. Proposition. Suppose that A n M and A n A n+1 for n = 1, 2,.... Then ( ) m An = lim m(a n). n If A := A n we write the hypotheses of the proposition as A n A. In this language the proposition asserts that A n A m(a n ) m(a).

63 Proof. Setting B n := A n \ A n 1 (with B 1 = A 1 ) the B i are pairwise disjoint and have the same union as the A i so ( ) m An = = lim n m i=1 ( n i=1 m(b i ) = lim n n m(b n ) i=1 B i ) = lim n m(a n).

64 More consequences: decreasing limits. Proposition. If C n C n+1 is a decreasing family of sets in M and m(c 1 ) < then ( ) m Cn = lim m(c n). n Proof. Let C = C n and A n := C 1 /C n. Then A n is a monotone increasing family of sets as in the preceding proposition so m(c 1 ) m(c n ) = m(a n ) m(c 1 /C) = m(c 1 ) m(c). Now subtract m(c 1 ) from both sides. Taking C n = [n, ) shows that we need m(c k ) < for some k.

65 Constantin Carathéodory Born: 13 Sept 1873 in Berlin, Germany Died: 2 Feb 1950 in Munich, Germany

66 Axiomatic approach. We will now take the items in Theorem 6 as axioms: Let X be a set. (Usually X will be a topological space or even a metric space). A collection F of subsets of X is called a σ field if: X F, If E F then E c = X \ E F, and If {E n } is a sequence of elements in F then n E n F, The intersection of any family of σ-fields is again a σ-field, and hence given any collection C of subsets of X, there is a smallest σ-field F which contains it. Then F is called the σ-field generated by C.

67 Borel sets. If X is a metric space, the σ-field generated by the collection of open sets is called the Borel σ-field, usually denoted by B or B(X ) and a set belonging to B is called a Borel set.

68 Measures on a σ-field. Given a σ-field F a (non-negative) measure is a function such that m( ) = 0 and m : F [0, ] Countable additivity: If F n is a disjoint collection of sets in F then ( ) m F n = m(f n ). n n In the countable additivity condition it is understood that both sides might be infinite.

69 Outer measures. An outer measure on a set X is a map m to [0, ] defined on the collection of all subsets of X which satisfies m ( ) = 0, Monotonicity: If A B then m (A) m (B), and Countable subadditivity: m ( n A n) n m (A n ).

70 Measures from outer measures via Caratheordory. Given an outer measure, m, we defined a set E to be measurable (relative to m ) if m (A) = m (A E) + m (A E c ) for all sets A. Then Caratheodory s theorem that we proved just now asserts that the collection of measurable sets is a σ-field, and the restriction of m to the collection of measurable sets is a measure which we shall usually denote by m.

71 Terminological conflict. There is an unfortunate disagreement in terminology, in that many of the professionals, especially in geometric measure theory, use the term measure for what we have been calling outer measure. However we will follow the above conventions which used to be the old fashioned standard.

72 The next task. An obvious task, given Caratheodory s theorem, is to look for ways of constructing outer measures. This will be the subject of the next lecture.

73 Over the next few slides I want to give remarkable applications of our two monotone convergence propositions: and (with the obvious notation) A n A m(a n ) m(a) C n C and m(c 1 ) < m(c n ) m(c).

74 Some notation Let E n be a sequence of measurable sets. The following definitions of the set E are synonymous: E := {E n i.o.} = {E n infinitely often} := lim sup E n := E n k n k := {x k n(k) k such that x E n(k) } := {x x E n for infinitely many E n }.

75 The first Borel-Cantelli lemma (BC1) Lemma Suppose that m(e n ) < then m(lim sup E n ) = 0. Proof. Let G k = n k E n. So k n p E n G k. But m E n k n p k n p m(e n ) and so m(g k ) k m(e n). Since lim sup E n G k for all k and m(en ) < we conclude that m(lim sup E n ) is less than any positive number by choosing k sufficiently large.

76 Some probabilistic language We now restrict to the case where m(x ) = 1 and use P instead of m. A measurable set is now called an event. A sequence of events E n is called independent if, for every k N, if all the i 1,... i k are distinct then P(E i1 E ik ) = P(E ij ).

77 The second Borel-Cantelli lemma (BC2) Lemma Let E n be a sequence of independent events. Then P(En ) = P(E n i.o.) = 1. Notice that E n i.o. = k n k E n so its complement is En c. k n k We must show that this has probability zero, and for this it is enough to show that n k E n c has probability zero. Now En c k n l n k ( ) so it is enough to show that P k n l E n c 0 as l. E c n

78 Proof. Let p n := P(E n ) so that P(En c ) = 1 p n. Then, by independence, P = (1 p n ). En c k n l k n l Now for x 0, 1 x e x so (1 p n ) e k n l pn k n l and since p n = this last expression 0.

79 Notice we get a 0 or 1 law in that for a sequence E n of independent events we conclude that P(E n infinitely often) is either zero or one.

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( )

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( ) Lebesgue Measure The idea of the Lebesgue integral is to first define a measure on subsets of R. That is, we wish to assign a number m(s to each subset S of R, representing the total length that S takes

More information

Measures and Measure Spaces

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not

More information

Math212a1413 The Lebesgue integral.

Math212a1413 The Lebesgue integral. Math212a1413 The Lebesgue integral. October 28, 2014 Simple functions. In what follows, (X, F, m) is a space with a σ-field of sets, and m a measure on F. The purpose of today s lecture is to develop the

More information

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity A crash course in Lebesgue measure theory, Math 317, Intro to Analysis II These lecture notes are inspired by the third edition of Royden s Real analysis. The Jordan content is an attempt to extend the

More information

Chapter 4. Measure Theory. 1. Measure Spaces

Chapter 4. Measure Theory. 1. Measure Spaces Chapter 4. Measure Theory 1. Measure Spaces Let X be a nonempty set. A collection S of subsets of X is said to be an algebra on X if S has the following properties: 1. X S; 2. if A S, then A c S; 3. if

More information

(2) E M = E C = X\E M

(2) E M = E C = X\E M 10 RICHARD B. MELROSE 2. Measures and σ-algebras An outer measure such as µ is a rather crude object since, even if the A i are disjoint, there is generally strict inequality in (1.14). It turns out to

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

212a1214Daniell s integration theory.

212a1214Daniell s integration theory. 212a1214 Daniell s integration theory. October 30, 2014 Daniell s idea was to take the axiomatic properties of the integral as the starting point and develop integration for broader and broader classes

More information

Measures. Chapter Some prerequisites. 1.2 Introduction

Measures. Chapter Some prerequisites. 1.2 Introduction Lecture notes Course Analysis for PhD students Uppsala University, Spring 2018 Rostyslav Kozhan Chapter 1 Measures 1.1 Some prerequisites I will follow closely the textbook Real analysis: Modern Techniques

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

Lebesgue Measure on R n

Lebesgue Measure on R n CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define 1 Measures 1.1 Jordan content in R N II - REAL ANALYSIS Let I be an interval in R. Then its 1-content is defined as c 1 (I) := b a if I is bounded with endpoints a, b. If I is unbounded, we define c 1

More information

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries Chapter 1 Measure Spaces 1.1 Algebras and σ algebras of sets 1.1.1 Notation and preliminaries We shall denote by X a nonempty set, by P(X) the set of all parts (i.e., subsets) of X, and by the empty set.

More information

DRAFT MAA6616 COURSE NOTES FALL 2015

DRAFT MAA6616 COURSE NOTES FALL 2015 Contents 1. σ-algebras 2 1.1. The Borel σ-algebra over R 5 1.2. Product σ-algebras 7 2. Measures 8 3. Outer measures and the Caratheodory Extension Theorem 11 4. Construction of Lebesgue measure 15 5.

More information

Lebesgue Measure on R n

Lebesgue Measure on R n 8 CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

Lebesgue Measure. Dung Le 1

Lebesgue Measure. Dung Le 1 Lebesgue Measure Dung Le 1 1 Introduction How do we measure the size of a set in IR? Let s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its

More information

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6 MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION Extra Reading Material for Level 4 and Level 6 Part A: Construction of Lebesgue Measure The first part the extra material consists of the construction

More information

Construction of a general measure structure

Construction of a general measure structure Chapter 4 Construction of a general measure structure We turn to the development of general measure theory. The ingredients are a set describing the universe of points, a class of measurable subsets along

More information

Measures. 1 Introduction. These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland.

Measures. 1 Introduction. These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland. Measures These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland. 1 Introduction Our motivation for studying measure theory is to lay a foundation

More information

U e = E (U\E) e E e + U\E e. (1.6)

U e = E (U\E) e E e + U\E e. (1.6) 12 1 Lebesgue Measure 1.2 Lebesgue Measure In Section 1.1 we defined the exterior Lebesgue measure of every subset of R d. Unfortunately, a major disadvantage of exterior measure is that it does not satisfy

More information

Section 2: Classes of Sets

Section 2: Classes of Sets Section 2: Classes of Sets Notation: If A, B are subsets of X, then A \ B denotes the set difference, A \ B = {x A : x B}. A B denotes the symmetric difference. A B = (A \ B) (B \ A) = (A B) \ (A B). Remarks

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures.

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures. Measures In General Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures. Definition: σ-algebra Let X be a set. A

More information

Introduction to Hausdorff Measure and Dimension

Introduction to Hausdorff Measure and Dimension Introduction to Hausdorff Measure and Dimension Dynamics Learning Seminar, Liverpool) Poj Lertchoosakul 28 September 2012 1 Definition of Hausdorff Measure and Dimension Let X, d) be a metric space, let

More information

The Caratheodory Construction of Measures

The Caratheodory Construction of Measures Chapter 5 The Caratheodory Construction of Measures Recall how our construction of Lebesgue measure in Chapter 2 proceeded from an initial notion of the size of a very restricted class of subsets of R,

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

Introductory Analysis 2 Spring 2010 Exam 1 February 11, 2015

Introductory Analysis 2 Spring 2010 Exam 1 February 11, 2015 Introductory Analysis 2 Spring 21 Exam 1 February 11, 215 Instructions: You may use any result from Chapter 2 of Royden s textbook, or from the first four chapters of Pugh s textbook, or anything seen

More information

Lebesgue measure and integration

Lebesgue measure and integration Chapter 4 Lebesgue measure and integration If you look back at what you have learned in your earlier mathematics courses, you will definitely recall a lot about area and volume from the simple formulas

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 2: Countability and Cantor Sets Countable and Uncountable Sets The concept of countability will be important in this course

More information

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE CHRISTOPHER HEIL 1.4.1 Introduction We will expand on Section 1.4 of Folland s text, which covers abstract outer measures also called exterior measures).

More information

Measure Theory. John K. Hunter. Department of Mathematics, University of California at Davis

Measure Theory. John K. Hunter. Department of Mathematics, University of California at Davis Measure Theory John K. Hunter Department of Mathematics, University of California at Davis Abstract. These are some brief notes on measure theory, concentrating on Lebesgue measure on R n. Some missing

More information

Final. due May 8, 2012

Final. due May 8, 2012 Final due May 8, 2012 Write your solutions clearly in complete sentences. All notation used must be properly introduced. Your arguments besides being correct should be also complete. Pay close attention

More information

Real Variables: Solutions to Homework 3

Real Variables: Solutions to Homework 3 Real Variables: Solutions to Homework 3 September 3, 011 Exercise 0.1. Chapter 3, # : Show that the cantor set C consists of all x such that x has some triadic expansion for which every is either 0 or.

More information

+ = x. ± if x > 0. if x < 0, x

+ = x. ± if x > 0. if x < 0, x 2 Set Functions Notation Let R R {, + } and R + {x R : x 0} {+ }. Here + and are symbols satisfying obvious conditions: for any real number x R : < x < +, (± + (± x + (± (± + x ±, (± (± + and (± (, ± if

More information

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures 2 1 Borel Regular Measures We now state and prove an important regularity property of Borel regular outer measures: Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

Moreover, µ is monotone, that is for any A B which are both elements of A we have

Moreover, µ is monotone, that is for any A B which are both elements of A we have FRACTALS Contents. Algebras, sigma algebras, and measures 2.. Carathéodory s outer measures 5.2. Completeness 6.3. Homework: Measure theory basics 7 2. Completion of a measure, creating a measure from

More information

JORDAN CONTENT. J(P, A) = {m(i k ); I k an interval of P contained in int(a)} J(P, A) = {m(i k ); I k an interval of P intersecting cl(a)}.

JORDAN CONTENT. J(P, A) = {m(i k ); I k an interval of P contained in int(a)} J(P, A) = {m(i k ); I k an interval of P intersecting cl(a)}. JORDAN CONTENT Definition. Let A R n be a bounded set. Given a rectangle (cartesian product of compact intervals) R R n containing A, denote by P the set of finite partitions of R by sub-rectangles ( intervals

More information

FUNDAMENTALS OF REAL ANALYSIS by. II.1. Prelude. Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as

FUNDAMENTALS OF REAL ANALYSIS by. II.1. Prelude. Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as FUNDAMENTALS OF REAL ANALYSIS by Doğan Çömez II. MEASURES AND MEASURE SPACES II.1. Prelude Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as b n f(xdx :=

More information

Estimates for probabilities of independent events and infinite series

Estimates for probabilities of independent events and infinite series Estimates for probabilities of independent events and infinite series Jürgen Grahl and Shahar evo September 9, 06 arxiv:609.0894v [math.pr] 8 Sep 06 Abstract This paper deals with finite or infinite sequences

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

Abstract Measure Theory

Abstract Measure Theory 2 Abstract Measure Theory Lebesgue measure is one of the premier examples of a measure on R d, but it is not the only measure and certainly not the only important measure on R d. Further, R d is not the

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

Solutions to Tutorial 1 (Week 2)

Solutions to Tutorial 1 (Week 2) THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Tutorial 1 (Week 2 MATH3969: Measure Theory and Fourier Analysis (Advanced Semester 2, 2017 Web Page: http://sydney.edu.au/science/maths/u/ug/sm/math3969/

More information

The small ball property in Banach spaces (quantitative results)

The small ball property in Banach spaces (quantitative results) The small ball property in Banach spaces (quantitative results) Ehrhard Behrends Abstract A metric space (M, d) is said to have the small ball property (sbp) if for every ε 0 > 0 there exists a sequence

More information

CHAPTER I THE RIESZ REPRESENTATION THEOREM

CHAPTER I THE RIESZ REPRESENTATION THEOREM CHAPTER I THE RIESZ REPRESENTATION THEOREM We begin our study by identifying certain special kinds of linear functionals on certain special vector spaces of functions. We describe these linear functionals

More information

Quick Tour of the Topology of R. Steven Hurder, Dave Marker, & John Wood 1

Quick Tour of the Topology of R. Steven Hurder, Dave Marker, & John Wood 1 Quick Tour of the Topology of R Steven Hurder, Dave Marker, & John Wood 1 1 Department of Mathematics, University of Illinois at Chicago April 17, 2003 Preface i Chapter 1. The Topology of R 1 1. Open

More information

Lecture 3: Probability Measures - 2

Lecture 3: Probability Measures - 2 Lecture 3: Probability Measures - 2 1. Continuation of measures 1.1 Problem of continuation of a probability measure 1.2 Outer measure 1.3 Lebesgue outer measure 1.4 Lebesgue continuation of an elementary

More information

Homework 1 Real Analysis

Homework 1 Real Analysis Homework 1 Real Analysis Joshua Ruiter March 23, 2018 Note on notation: When I use the symbol, it does not imply that the subset is proper. In writing A X, I mean only that a A = a X, leaving open the

More information

University of Sheffield. School of Mathematics & and Statistics. Measure and Probability MAS350/451/6352

University of Sheffield. School of Mathematics & and Statistics. Measure and Probability MAS350/451/6352 University of Sheffield School of Mathematics & and Statistics Measure and Probability MAS350/451/6352 Spring 2018 Chapter 1 Measure Spaces and Measure 1.1 What is Measure? Measure theory is the abstract

More information

arxiv: v1 [math.fa] 14 Jul 2018

arxiv: v1 [math.fa] 14 Jul 2018 Construction of Regular Non-Atomic arxiv:180705437v1 [mathfa] 14 Jul 2018 Strictly-Positive Measures in Second-Countable Locally Compact Non-Atomic Hausdorff Spaces Abstract Jason Bentley Department of

More information

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers Page 1 Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property Suppose is an ordered set with the least-upper-bound property Suppose, and is bounded below be the set of lower

More information

Measure Theoretic Probability. P.J.C. Spreij

Measure Theoretic Probability. P.J.C. Spreij Measure Theoretic Probability P.J.C. Spreij this version: September 16, 2009 Contents 1 σ-algebras and measures 1 1.1 σ-algebras............................... 1 1.2 Measures...............................

More information

MAT1000 ASSIGNMENT 1. a k 3 k. x =

MAT1000 ASSIGNMENT 1. a k 3 k. x = MAT1000 ASSIGNMENT 1 VITALY KUZNETSOV Question 1 (Exercise 2 on page 37). Tne Cantor set C can also be described in terms of ternary expansions. (a) Every number in [0, 1] has a ternary expansion x = a

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

1.4 Outer measures 10 CHAPTER 1. MEASURE

1.4 Outer measures 10 CHAPTER 1. MEASURE 10 CHAPTER 1. MEASURE 1.3.6. ( Almost everywhere and null sets If (X, A, µ is a measure space, then a set in A is called a null set (or µ-null if its measure is 0. Clearly a countable union of null sets

More information

The Kolmogorov extension theorem

The Kolmogorov extension theorem The Kolmogorov extension theorem Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto June 21, 2014 1 σ-algebras and semirings If X is a nonempty set, an algebra of sets on

More information

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define HILBERT SPACES AND THE RADON-NIKODYM THEOREM STEVEN P. LALLEY 1. DEFINITIONS Definition 1. A real inner product space is a real vector space V together with a symmetric, bilinear, positive-definite mapping,

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY. by arxiv: v1 [math.ca] 29 Jan 2017 MAGNUS D. LADUE

THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY. by arxiv: v1 [math.ca] 29 Jan 2017 MAGNUS D. LADUE THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY by arxiv:170109087v1 [mathca] 9 Jan 017 MAGNUS D LADUE 0 Abstract In [1] Grossman Turett define the Cantor game In [] Matt Baker proves several results

More information

Filters in Analysis and Topology

Filters in Analysis and Topology Filters in Analysis and Topology David MacIver July 1, 2004 Abstract The study of filters is a very natural way to talk about convergence in an arbitrary topological space, and carries over nicely into

More information

The Borel-Cantelli Group

The Borel-Cantelli Group The Borel-Cantelli Group Dorothy Baumer Rong Li Glenn Stark November 14, 007 1 Borel-Cantelli Lemma Exercise 16 is the introduction of the Borel-Cantelli Lemma using Lebesue measure. An approach using

More information

7 Complete metric spaces and function spaces

7 Complete metric spaces and function spaces 7 Complete metric spaces and function spaces 7.1 Completeness Let (X, d) be a metric space. Definition 7.1. A sequence (x n ) n N in X is a Cauchy sequence if for any ɛ > 0, there is N N such that n, m

More information

Sequence convergence, the weak T-axioms, and first countability

Sequence convergence, the weak T-axioms, and first countability Sequence convergence, the weak T-axioms, and first countability 1 Motivation Up to now we have been mentioning the notion of sequence convergence without actually defining it. So in this section we will

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE Most of the material in this lecture is covered in [Bertsekas & Tsitsiklis] Sections 1.3-1.5

More information

3 Measurable Functions

3 Measurable Functions 3 Measurable Functions Notation A pair (X, F) where F is a σ-field of subsets of X is a measurable space. If µ is a measure on F then (X, F, µ) is a measure space. If µ(x) < then (X, F, µ) is a probability

More information

MATS113 ADVANCED MEASURE THEORY SPRING 2016

MATS113 ADVANCED MEASURE THEORY SPRING 2016 MATS113 ADVANCED MEASURE THEORY SPRING 2016 Foreword These are the lecture notes for the course Advanced Measure Theory given at the University of Jyväskylä in the Spring of 2016. The lecture notes can

More information

Reminder Notes for the Course on Measures on Topological Spaces

Reminder Notes for the Course on Measures on Topological Spaces Reminder Notes for the Course on Measures on Topological Spaces T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Integration on Measure Spaces

Integration on Measure Spaces Chapter 3 Integration on Measure Spaces In this chapter we introduce the general notion of a measure on a space X, define the class of measurable functions, and define the integral, first on a class of

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Introduction to Geometric Measure Theory

Introduction to Geometric Measure Theory Introduction to Geometric easure Theory Leon Simon 1 Leon Simon 2014 1 The research described here was partially supported by NSF grants DS-9504456 & DS 9207704 at Stanford University Contents 1 Preliminary

More information

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989), Real Analysis 2, Math 651, Spring 2005 April 26, 2005 1 Real Analysis 2, Math 651, Spring 2005 Krzysztof Chris Ciesielski 1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer

More information

G1CMIN Measure and Integration

G1CMIN Measure and Integration G1CMIN Measure and Integration 2003-4 Prof. J.K. Langley May 13, 2004 1 Introduction Books: W. Rudin, Real and Complex Analysis ; H.L. Royden, Real Analysis (QA331). Lecturer: Prof. J.K. Langley (jkl@maths,

More information

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India Measure and Integration: Concepts, Examples and Exercises INDER K. RANA Indian Institute of Technology Bombay India Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai 400076,

More information

Carathéodory s extension of a measure on a semi-ring

Carathéodory s extension of a measure on a semi-ring Carathéodory s extension of a measure on a semi-ring Reinhardt Messerschmidt www.rmesserschmidt.me.uk 7 October 2018 1 Introduction This article presents Carathéodory s extension of a measure on a semi-ring,

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

2. The Concept of Convergence: Ultrafilters and Nets

2. The Concept of Convergence: Ultrafilters and Nets 2. The Concept of Convergence: Ultrafilters and Nets NOTE: AS OF 2008, SOME OF THIS STUFF IS A BIT OUT- DATED AND HAS A FEW TYPOS. I WILL REVISE THIS MATE- RIAL SOMETIME. In this lecture we discuss two

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

Hausdorff measure. Jordan Bell Department of Mathematics, University of Toronto. October 29, 2014

Hausdorff measure. Jordan Bell Department of Mathematics, University of Toronto. October 29, 2014 Hausdorff measure Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto October 29, 2014 1 Outer measures and metric outer measures Suppose that X is a set. A function ν :

More information

Topological properties of Z p and Q p and Euclidean models

Topological properties of Z p and Q p and Euclidean models Topological properties of Z p and Q p and Euclidean models Samuel Trautwein, Esther Röder, Giorgio Barozzi November 3, 20 Topology of Q p vs Topology of R Both R and Q p are normed fields and complete

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M. 1. Abstract Integration The main reference for this section is Rudin s Real and Complex Analysis. The purpose of developing an abstract theory of integration is to emphasize the difference between the

More information

Measurable Choice Functions

Measurable Choice Functions (January 19, 2013) Measurable Choice Functions Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/choice functions.pdf] This note

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

On the cells in a stationary Poisson hyperplane mosaic

On the cells in a stationary Poisson hyperplane mosaic On the cells in a stationary Poisson hyperplane mosaic Matthias Reitzner and Rolf Schneider Abstract Let X be the mosaic generated by a stationary Poisson hyperplane process X in R d. Under some mild conditions

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Measures and integrals

Measures and integrals Appendix A Measures and integrals SECTION 1 introduces a method for constructing a measure by inner approximation, starting from a set function defined on a lattice of sets. SECTION 2 defines a tightness

More information

Math 117: Topology of the Real Numbers

Math 117: Topology of the Real Numbers Math 117: Topology of the Real Numbers John Douglas Moore November 10, 2008 The goal of these notes is to highlight the most important topics presented in Chapter 3 of the text [1] and to provide a few

More information

Part III. 10 Topological Space Basics. Topological Spaces

Part III. 10 Topological Space Basics. Topological Spaces Part III 10 Topological Space Basics Topological Spaces Using the metric space results above as motivation we will axiomatize the notion of being an open set to more general settings. Definition 10.1.

More information

Review of measure theory

Review of measure theory 209: Honors nalysis in R n Review of measure theory 1 Outer measure, measure, measurable sets Definition 1 Let X be a set. nonempty family R of subsets of X is a ring if, B R B R and, B R B R hold. bove,

More information

Serena Doria. Department of Sciences, University G.d Annunzio, Via dei Vestini, 31, Chieti, Italy. Received 7 July 2008; Revised 25 December 2008

Serena Doria. Department of Sciences, University G.d Annunzio, Via dei Vestini, 31, Chieti, Italy. Received 7 July 2008; Revised 25 December 2008 Journal of Uncertain Systems Vol.4, No.1, pp.73-80, 2010 Online at: www.jus.org.uk Different Types of Convergence for Random Variables with Respect to Separately Coherent Upper Conditional Probabilities

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

02. Measure and integral. 1. Borel-measurable functions and pointwise limits

02. Measure and integral. 1. Borel-measurable functions and pointwise limits (October 3, 2017) 02. Measure and integral Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2017-18/02 measure and integral.pdf]

More information