Gradient Flow in the Wasserstein Metric

Size: px
Start display at page:

Download "Gradient Flow in the Wasserstein Metric"

Transcription

1 3 2 1 Time Position Graient Flow in the Wasserstein Metric Katy Craig University of California, Santa Barbara JMM, AMS Metric Geometry & Topology January 11th, 2018

2 graient flow an PDE Examples: t x(t) = r XE(x(t)) metric energy (L 2 (R ), k k L 2) E(f) = 1 Z rf 2 2 graient flow t f = f metric (P 2 (R ),W 2 ) energy E( ) = 1 2 Z K + Z V + 1 m 1 Z m graient flow = r ((rk ) )+r (rv )+ t m 2

3 Wasserstein metric Given two probability measures µ an on R, t : R! R transports µ onto if (B) =µ(t 1 (B)). Write this as t#µ =. The Wasserstein istance between μ an ν P2,ac(Rᵈ) is {z} effort to rearrange μ to look like ν, using t(x) {z} t sens μ to ν 3

4 geoesics Not just a metric space a geoesic metric space: there is a constant spee geoesic :[0, 1]! P 2 (R ) connecting any μ an ν. (0) = µ, (1) =, W 2 ( (t), (s)) = t s W 2 (µ, ) Monge Kantorovich µ Wasserstein geoesic (t) µ L 2 geoesic (1 t)µ + t [Peyré, Papaakis, Ouet 2013] 4

5 5 convexity Since the Wasserstein metric has geoesics, it has a notion of convexity. Recall: E: L 2 (Rᵈ) R is λ-convex if E((1 t)f + tg) apple (1 {z } t)e(f)+te(g) t(1 t) kf 2 gk 2 L 2 geoesic enpoints For any g L 2 (Rᵈ), E(f) =kf gk 2 is 2-convex =) 2 L 2 is NPC. Likewise, in the Wasserstein metric, E: P2(Rᵈ) R is λ-convex if E( (t)) apple (1 t)e(µ)+te( ) t(1 t) 2 W 2 2 (µ, ) W2 geoesic enpoints For any ν P2(Rᵈ), E(µ) =W is 2-concave =) 2 2 (µ, ) W2 is PC.

6 6 graient flow We want to efine the graient flow as, t (t) = r W 2 E( (t)) but without a Riemannian structure, we on t have a notion of graient. Given E: P2(Rᵈ) R, its local slope is: (E(µ) E( )) (µ) :=limsup!µ W 2 (µ, ) Given ρ:[0,t] P2(Rᵈ), its metric erivative is: 0 W 2 ( (s), (t)) (t) =lim s!t s t DEF: ρ(t):r P2(Rᵈ) is the Wasserstein graient flow of E:P2(Rᵈ) R if t E( (t)) apple 1 (t)) (t)

7 {z } 7 Wasserstein graient flow DEF: ρ(t):r P2(Rᵈ) is the Wasserstein graient flow of E:P2(Rᵈ) R if t E( (t)) apple 1 (t)) (t) Analogy with L 2 graient flow: Abbreviating r L 2 by r, t f(t) = re(f(t)) () f(t) = re(f(t)) t t E(f(t)) = re(f(t)) t f(t) () t E(f(t)) apple 1 2 re(f(t)) 1 2 t f(t)

8 {z} 8 graient flow an PDE t x(t) = r XE(x(t)) Goo news: graient flows structure is very useful in PDE existence uniqueness approximation {z } time iscretization contraction inequality stability Ba news: Wasserstein metric has more complicate geometry L 2 Wasserstein metric Riemannian manifol metric space non-positively curve positively curve

9 time iscretization: L 2 graient flow time iscretization f n f n 1 f(t) = re(f(t)), f(0) = g = re(f n ), f 0 = g t Analogous results hol in any NPC metric space [Mayer, 98], [CL 71] Define (h) = 1. 2 kh f n 1k E(h) What about when the metric space isn t NPC? Then f n solves r (f n )=0 convex () f n is the unique minimizer of Assume: E is λ-convex. Since L 2 (Rᵈ) is 1 NPC, is -convex. + Prop: kf n fn k 2 apple 1 1+ kf n 1 Thm: For = t, n kf(t) f nk 2 apple p C, n f n 1 k 2 kf(t) f(t)k2 apple e t kf(0) f(0)k2 time iscretization contraction inequality 9

10 10 time iscretization: W2 graient flow t E( (t)) apple 1 (t)) (t) time iscretization (JKO) n = arg min (0) = µ 0 = µ 1 2 W 2 2 (, n 1 )+E( ) Assume: E is boune below an λ-convex along generalize geoesics. 1 Then ( ) = 1 is -convex along gen geoesics. 2 W 2 2 (, n 1 )+E( ) + Thm: For = t, W 2 ( (t), n ) apple p C, W 2 ( (t), (t)) apple e t W 2 ( (0), (0)) [AGS 05] n n time iscretization contraction inequality 1 Prop: W 2 ( n, n ) apple 1+ W 2( n 1, n 1 )+O( 2 ) [C. 16] Overcome W2 geometry issues what about when E isn t λ-convex?

11 11 ω-convexity Recall: E: P2(Rᵈ) R is λ-convex if E( (t)) apple (1 t)e(µ)+te( ) t(1 t) 2 W 2 2 (µ, ) Def: Given a moulus of convexity ω(x) an λ R, E is ω-convex if E(( (t)) apple (1 t)e(µ)+te( ) 2 Examples:!(x) =x, reuces to λ-convexity!(x) =x log(x) (1 t)!(t 2 W 2 2 (µ, )) + t!((1 t) 2 W 2 2 (µ, )), [Ambrosio Serfaty, 2008] [Carrillo Lisini Mainini, 2014]!(x) =x p, p > 1, [Carrillo McCann Villani, 2006]

12 time iscretization: W2 graient flow t E( (t)) apple 1 (t)) (t) time iscretization (JKO) n = arg min (0) = µ 0 = µ 1 2 W 2 2 (, n 1 )+E( ) Assume: E is boune below an ω-convex Z along generalize geoesics 1 x for ω(x) satisfying Osgoo s conition:!(x) =+1 Thm: For = t, W 2 ( (t), n )! 0, [C. 17] n time iscretization 0 F 2t (W2 2 ( 1 (t), 2 (t))) apple W2 2 ( 1 (0), 2 (0)) t F t(x) =!(F t (x)) contraction inequality In particular, for ω(x) = x log(x) an W 2 ( (0), (0)) apple 1, W 2 ( (t), (t)) apple W 2 ( (0), (0)) e2 t 12

13 Questions

14 Thank you!

From slow diffusion to a hard height constraint: characterizing congested aggregation

From slow diffusion to a hard height constraint: characterizing congested aggregation 3 2 1 Time Position -0.5 0.0 0.5 0 From slow iffusion to a har height constraint: characterizing congeste aggregation Katy Craig University of California, Santa Barbara BIRS April 12, 2017 2 collective

More information

arxiv: v1 [math.ap] 10 Oct 2013

arxiv: v1 [math.ap] 10 Oct 2013 The Exponential Formula for the Wasserstein Metric Katy Craig 0/0/3 arxiv:30.292v math.ap] 0 Oct 203 Abstract We adapt Crandall and Liggett s method from the Banach space case to give a new proof of the

More information

A regularised particle method for linear and nonlinear diffusion

A regularised particle method for linear and nonlinear diffusion 1/25 A regularised particle method for linear and nonlinear diffusion Francesco Patacchini Department of Mathematical Sciences, Carnegie Mellon University Joint work with J. A. Carrillo (Imperial College

More information

Second order differentiation formula on RCD(K, N) spaces

Second order differentiation formula on RCD(K, N) spaces Secon orer ifferentiation formula on RCD(K, N) spaces Nicola Gigli Luca Tamanini February 8, 018 Abstract We prove the secon orer ifferentiation formula along geoesics in finite-imensional RCD(K, N) spaces.

More information

Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices

Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices Graient flow of the Chapman-Rubinstein-Schatzman moel for signe vortices Luigi Ambrosio, Eoaro Mainini an Sylvia Serfaty Deicate to the memory of Michelle Schatzman (1949-2010) Abstract We continue the

More information

Spaces with Ricci curvature bounded from below

Spaces with Ricci curvature bounded from below Spaces with Ricci curvature bounded from below Nicola Gigli March 10, 2014 Lessons Basics of optimal transport Definition of spaces with Ricci curvature bounded from below Analysis on spaces with Ricci

More information

EXAMPLE OF A FIRST ORDER DISPLACEMENT CONVEX FUNCTIONAL

EXAMPLE OF A FIRST ORDER DISPLACEMENT CONVEX FUNCTIONAL EXAMPLE OF A FIRST ORDER DISPLACEMENT CONVEX FUNCTIONAL JOSÉ A. CARRILLO AND DEJAN SLEPČEV Abstract. We present a family of first-order functionals which are displacement convex, that is convex along the

More information

Convex discretization of functionals involving the Monge-Ampère operator

Convex discretization of functionals involving the Monge-Ampère operator Convex discretization of functionals involving the Monge-Ampère operator Quentin Mérigot CNRS / Université Paris-Dauphine Joint work with J.D. Benamou, G. Carlier and É. Oudet Workshop on Optimal Transport

More information

The geometry of low-rank Kalman filters

The geometry of low-rank Kalman filters The geometry of low-rank Kalman filters S. Bonnabel (Mines ParisTech) Joint work with R. Sepulchre (Université e Liège) CAS, Paris, 16 Fev 2012 Introuction: proof of concept The natural metric of the cone

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Gradient Flow. Chang Liu. April 24, Tsinghua University. Chang Liu (THU) Gradient Flow April 24, / 91

Gradient Flow. Chang Liu. April 24, Tsinghua University. Chang Liu (THU) Gradient Flow April 24, / 91 Gradient Flow Chang Liu Tsinghua University April 24, 2017 Chang Liu (THU) Gradient Flow April 24, 2017 1 / 91 Contents 1 Introduction 2 Gradient flow in the Euclidean space Variants of Gradient Flow in

More information

Spaces with Ricci curvature bounded from below

Spaces with Ricci curvature bounded from below Spaces with Ricci curvature bounded from below Nicola Gigli February 23, 2015 Topics 1) On the definition of spaces with Ricci curvature bounded from below 2) Analytic properties of RCD(K, N) spaces 3)

More information

Generative Models and Optimal Transport

Generative Models and Optimal Transport Generative Models and Optimal Transport Marco Cuturi Joint work / work in progress with G. Peyré, A. Genevay (ENS), F. Bach (INRIA), G. Montavon, K-R Müller (TU Berlin) Statistics 0.1 : Density Fitting

More information

Gradient Flows: Qualitative Properties & Numerical Schemes

Gradient Flows: Qualitative Properties & Numerical Schemes Gradient Flows: Qualitative Properties & Numerical Schemes J. A. Carrillo Imperial College London RICAM, December 2014 Outline 1 Gradient Flows Models Gradient flows Evolving diffeomorphisms 2 Numerical

More information

Convergence of Langevin MCMC in KL-divergence

Convergence of Langevin MCMC in KL-divergence Convergence of Langevin MCMC in KL-ivergence Xiang Cheng x.cheng@berkeley.eu an Peter Bartlett peter@berkeley.eu Eitor: Abstract Langevin iffusion is a commonly use tool for sampling from a given istribution.

More information

Logarithmic Sobolev Inequalities

Logarithmic Sobolev Inequalities Logarithmic Sobolev Inequalities M. Ledoux Institut de Mathématiques de Toulouse, France logarithmic Sobolev inequalities what they are, some history analytic, geometric, optimal transportation proofs

More information

Notes on the second moment method, Erdős multiplication tables

Notes on the second moment method, Erdős multiplication tables Notes on the second moment method, Erdős multiplication tables January 25, 20 Erdős multiplication table theorem Suppose we form the N N multiplication table, containing all the N 2 products ab, where

More information

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa.

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa. PATH FUNCTIONALS OVER WASSERSTEIN SPACES Giuseppe Buttazzo Dipartimento di Matematica Università di Pisa buttazzo@dm.unipi.it http://cvgmt.sns.it ENS Ker-Lann October 21-23, 2004 Several natural structures

More information

Convex discretization of functionals involving the Monge-Ampère operator

Convex discretization of functionals involving the Monge-Ampère operator Convex discretization of functionals involving the Monge-Ampère operator Quentin Mérigot CNRS / Université Paris-Dauphine Joint work with J.D. Benamou, G. Carlier and É. Oudet GeMeCod Conference October

More information

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0.

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0. CHAPTER 4. INTEGRATION 68 Previously, we chose an antierivative which is correct for the given integran /. However, recall 6 if 0. That is F 0 () f() oesn t hol for apple apple. We have to be sure the

More information

A family of functional inequalities: lojasiewicz inequalities and displacement convex functions

A family of functional inequalities: lojasiewicz inequalities and displacement convex functions 17-66 A family of functional inequalities: lojasiewicz inequalities an isplacement convex functions Arien Blanchet an Jérôme Bolte A FAMILY OF FUNCTIONAL INEQUALITIES: LOJASIEWICZ INEQUALITIES AND DISPLACEMENT

More information

WUCHEN LI AND STANLEY OSHER

WUCHEN LI AND STANLEY OSHER CONSTRAINED DYNAMICAL OPTIMAL TRANSPORT AND ITS LAGRANGIAN FORMULATION WUCHEN LI AND STANLEY OSHER Abstract. We propose ynamical optimal transport (OT) problems constraine in a parameterize probability

More information

CONGESTED AGGREGATION VIA NEWTONIAN INTERACTION

CONGESTED AGGREGATION VIA NEWTONIAN INTERACTION CONGESTED AGGREGATION VIA NEWTONIAN INTERACTION KATY CRAIG, INWON KIM, AND YAO YAO Abstract. We consider a congested aggregation model that describes the evolution of a density through the competing effects

More information

arxiv: v1 [math.dg] 30 May 2012

arxiv: v1 [math.dg] 30 May 2012 VARIATION OF THE ODUUS OF A FOIATION. CISKA arxiv:1205.6786v1 [math.dg] 30 ay 2012 Abstract. The p moulus mo p (F) of a foliation F on a Riemannian manifol is a generalization of extremal length of plane

More information

Discrete transport problems and the concavity of entropy

Discrete transport problems and the concavity of entropy Discrete transport problems and the concavity of entropy Bristol Probability and Statistics Seminar, March 2014 Funded by EPSRC Information Geometry of Graphs EP/I009450/1 Paper arxiv:1303.3381 Motivating

More information

Approximations of displacement interpolations by entropic interpolations

Approximations of displacement interpolations by entropic interpolations Approximations of displacement interpolations by entropic interpolations Christian Léonard Université Paris Ouest Mokaplan 10 décembre 2015 Interpolations in P(X ) X : Riemannian manifold (state space)

More information

The dynamics of Schrödinger bridges

The dynamics of Schrödinger bridges Stochastic processes and statistical machine learning February, 15, 2018 Plan of the talk The Schrödinger problem and relations with Monge-Kantorovich problem Newton s law for entropic interpolation The

More information

Riemannian geometry of surfaces

Riemannian geometry of surfaces Riemannian geometry of surfaces In this note, we will learn how to make sense of the concepts of differential geometry on a surface M, which is not necessarily situated in R 3. This intrinsic approach

More information

RESEARCH STATEMENT MICHAEL MUNN

RESEARCH STATEMENT MICHAEL MUNN RESEARCH STATEMENT MICHAEL MUNN Ricci curvature plays an important role in understanding the relationship between the geometry and topology of Riemannian manifolds. Perhaps the most notable results in

More information

A description of transport cost for signed measures

A description of transport cost for signed measures A description of transport cost for signed measures Edoardo Mainini Abstract In this paper we develop the analysis of [AMS] about the extension of the optimal transport framework to the space of real measures.

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v Math Fall 06 Section Monay, September 9, 06 First, some important points from the last class: Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v passing through

More information

Lecture 10: October 30, 2017

Lecture 10: October 30, 2017 Information an Coing Theory Autumn 2017 Lecturer: Mahur Tulsiani Lecture 10: October 30, 2017 1 I-Projections an applications In this lecture, we will talk more about fining the istribution in a set Π

More information

The Metric Geometry of the Multivariable Matrix Geometric Mean

The Metric Geometry of the Multivariable Matrix Geometric Mean Trieste, 2013 p. 1/26 The Metric Geometry of the Multivariable Matrix Geometric Mean Jimmie Lawson Joint Work with Yongdo Lim Department of Mathematics Louisiana State University Baton Rouge, LA 70803,

More information

MEASURE THEORY AND LEBESGUE INTEGRAL 15

MEASURE THEORY AND LEBESGUE INTEGRAL 15 MASUR THORY AND LBSGU INTGRAL 15 Proof. Let 2Mbe such that µ() = 0, and f 1 (x) apple f 2 (x) apple and f n (x) =f(x) for x 2 c.settingg n = c f n and g = c f, we observe that g n = f n a.e. and g = f

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

The Exponential Formula for the Wasserstein Metric

The Exponential Formula for the Wasserstein Metric The Exponential Formula for the Wasserstein Metric A dissertation submitted to Rutgers, The State University of New Jersey, in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Section 2.6 (cont.) Properties of Real Functions Here we first study properties of functions from R to R, making use of the additional structure

More information

Generalized Orlicz spaces and Wasserstein distances for convex concave scale functions

Generalized Orlicz spaces and Wasserstein distances for convex concave scale functions Bull. Sci. math. 135 (2011 795 802 www.elsevier.com/locate/bulsci Generalized Orlicz spaces and Wasserstein distances for convex concave scale functions Karl-Theodor Sturm Institut für Angewandte Mathematik,

More information

Lecture 5: The Bellman Equation

Lecture 5: The Bellman Equation Lecture 5: The Bellman Equation Florian Scheuer 1 Plan Prove properties of the Bellman equation (In particular, existence and uniqueness of solution) Use this to prove properties of the solution Think

More information

Cauchy quotient means and their properties

Cauchy quotient means and their properties Cauchy quotient means and their properties 1 Department of Mathematics University of Zielona Góra Joint work with Janusz Matkowski Outline 1 Introduction 2 Means in terms of beta-type functions 3 Properties

More information

Topic 2.3: The Geometry of Derivatives of Vector Functions

Topic 2.3: The Geometry of Derivatives of Vector Functions BSU Math 275 Notes Topic 2.3: The Geometry of Derivatives of Vector Functions Textbook Sections: 13.2 From the Toolbox (what you nee from previous classes): Be able to compute erivatives scalar-value functions

More information

Introduction to Optimal Transport Theory

Introduction to Optimal Transport Theory Introduction to Optimal Transport Theory Filippo Santambrogio Grenoble, June 15th 2009 These very short lecture notes do not want to be an exhaustive presentation of the topic, but only a short list of

More information

Uniqueness of the solution to the Vlasov-Poisson system with bounded density

Uniqueness of the solution to the Vlasov-Poisson system with bounded density Uniqueness of the solution to the Vlasov-Poisson system with bounded density Grégoire Loeper December 16, 2005 Abstract In this note, we show uniqueness of weak solutions to the Vlasov- Poisson system

More information

Free Energy, Fokker-Planck Equations, and Random walks on a Graph with Finite Vertices

Free Energy, Fokker-Planck Equations, and Random walks on a Graph with Finite Vertices Free Energy, Fokker-Planck Equations, and Random walks on a Graph with Finite Vertices Haomin Zhou Georgia Institute of Technology Jointly with S.-N. Chow (Georgia Tech) Wen Huang (USTC) Yao Li (NYU) Research

More information

A new Hellinger-Kantorovich distance between positive measures and optimal Entropy-Transport problems

A new Hellinger-Kantorovich distance between positive measures and optimal Entropy-Transport problems A new Hellinger-Kantorovich distance between positive measures and optimal Entropy-Transport problems Giuseppe Savaré http://www.imati.cnr.it/ savare Dipartimento di Matematica, Università di Pavia Nonlocal

More information

Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was

Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Wasserstein Space With many discussions with Yann Brenier and Wilfrid Gangbo Brenierfest, IHP, January 9-13, 2017 ain points of the

More information

Proof of SPNs as Mixture of Trees

Proof of SPNs as Mixture of Trees A Proof of SPNs as Mixture of Trees Theorem 1. If T is an inuce SPN from a complete an ecomposable SPN S, then T is a tree that is complete an ecomposable. Proof. Argue by contraiction that T is not a

More information

arxiv:math/ v3 [math.dg] 30 Jul 2007

arxiv:math/ v3 [math.dg] 30 Jul 2007 OPTIMAL TRANSPORT AND RICCI CURVATURE FOR METRIC-MEASURE SPACES ariv:math/0610154v3 [math.dg] 30 Jul 2007 JOHN LOTT Abstract. We survey work of Lott-Villani and Sturm on lower Ricci curvature bounds for

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Metric measure spaces with Riemannian Ricci curvature bounded from below Lecture I

Metric measure spaces with Riemannian Ricci curvature bounded from below Lecture I 1 Metric measure spaces with Riemannian Ricci curvature bounded from below Lecture I Giuseppe Savaré http://www.imati.cnr.it/ savare Dipartimento di Matematica, Università di Pavia Analysis and Geometry

More information

Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements

Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements Optimal A Priori iscretization Error Bouns for Geoesic Finite Elements Philipp Grohs, Hanne Harering an Oliver Saner Bericht Nr. 365 Mai 13 Key wors: geoesic finite elements, iscretization error, a priori

More information

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE FRANÇOIS BOLLEY Abstract. In this note we prove in an elementary way that the Wasserstein distances, which play a basic role in optimal transportation

More information

Witten s Proof of Morse Inequalities

Witten s Proof of Morse Inequalities Witten s Proof of Morse Inequalities by Igor Prokhorenkov Let M be a smooth, compact, oriente manifol with imension n. A Morse function is a smooth function f : M R such that all of its critical points

More information

Discrete Ricci curvature via convexity of the entropy

Discrete Ricci curvature via convexity of the entropy Discrete Ricci curvature via convexity of the entropy Jan Maas University of Bonn Joint work with Matthias Erbar Simons Institute for the Theory of Computing UC Berkeley 2 October 2013 Starting point McCann

More information

Introduction to optimal transport

Introduction to optimal transport Introduction to optimal transport Nicola Gigli May 20, 2011 Content Formulation of the transport problem The notions of c-convexity and c-cyclical monotonicity The dual problem Optimal maps: Brenier s

More information

arxiv: v2 [math.ap] 23 Apr 2014

arxiv: v2 [math.ap] 23 Apr 2014 Multi-marginal Monge-Kantorovich transport problems: A characterization of solutions arxiv:1403.3389v2 [math.ap] 23 Apr 2014 Abbas Moameni Department of Mathematics and Computer Science, University of

More information

Some Notes on The Geometry of Dissipative Evolution Equations: The Porous Medium Equation by Felix Otto

Some Notes on The Geometry of Dissipative Evolution Equations: The Porous Medium Equation by Felix Otto Some Notes on The Geometry of Dissipative Evolution Equations: The Porous Meium Equation by Felix Otto Helen K. Lei 1 Introuction an Graient Flows We think of ρ 0 as a ensity on R N an stuy the equation

More information

Tree-adjoined spaces and the Hawaiian earring

Tree-adjoined spaces and the Hawaiian earring Tree-adjoined spaces and the Hawaiian earring W. Hojka (TU Wien) Workshop on Fractals and Tilings 2009 July 6-10, 2009, Strobl (Austria) W. Hojka (TU Wien) () Tree-adjoined spaces and the Hawaiian earring

More information

164 Final Solutions 1

164 Final Solutions 1 164 Final Solutions 1 1. Question 1 True/False a) Let f : R R be a C 3 function such that fx) for all x R. Then the graient escent algorithm starte at the point will fin the global minimum of f. FALSE.

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

Ordinary Differential Equations: Homework 2

Ordinary Differential Equations: Homework 2 Orinary Differential Equations: Homework 2 M. Gameiro, J.-P. Lessar, J.D. Mireles James, K. Mischaikow January 30, 2017 2 0.1 Eercises Eercise 0.1.1. Let (X, ) be a metric space. function (in the metric

More information

Calculus and optimization

Calculus and optimization Calculus an optimization These notes essentially correspon to mathematical appenix 2 in the text. 1 Functions of a single variable Now that we have e ne functions we turn our attention to calculus. A function

More information

Lecture 3: Hamilton-Jacobi-Bellman Equations. Distributional Macroeconomics. Benjamin Moll. Part II of ECON Harvard University, Spring

Lecture 3: Hamilton-Jacobi-Bellman Equations. Distributional Macroeconomics. Benjamin Moll. Part II of ECON Harvard University, Spring Lecture 3: Hamilton-Jacobi-Bellman Equations Distributional Macroeconomics Part II of ECON 2149 Benjamin Moll Harvard University, Spring 2018 1 Outline 1. Hamilton-Jacobi-Bellman equations in deterministic

More information

Geometry of functionally generated portfolios

Geometry of functionally generated portfolios Geometry of functionally generated portfolios Soumik Pal University of Washington Rutgers MF-PDE May 18, 2017 Multiplicative Cyclical Monotonicity Portfolio as a function on the unit simplex -unitsimplexindimensionn

More information

arxiv: v4 [math.pr] 21 Jun 2018

arxiv: v4 [math.pr] 21 Jun 2018 A SECOND ORDER EQUATION FOR SCHRÖDINGER BRIDGES WITH APPLICATIONS TO THE HOT GAS EXPERIENT AND ENTROPIC TRANSPORTATION COST GIOVANNI CONFORTI arxiv:1704.04821v4 [math.pr] 21 Jun 2018 ABSTRACT. The Schrödinger

More information

Entropic curvature-dimension condition and Bochner s inequality

Entropic curvature-dimension condition and Bochner s inequality Entropic curvature-dimension condition and Bochner s inequality Kazumasa Kuwada (Ochanomizu University) joint work with M. Erbar and K.-Th. Sturm (Univ. Bonn) German-Japanese conference on stochastic analysis

More information

Inverse Function Theorem

Inverse Function Theorem Inverse Function Theorem Ethan Y. Jaffe 1 Motivation When as an undergraduate I first learned the inverse function theorem, I was using a textbook of Munkres [1]. The proof presented there was quite complicated

More information

THE EXPONENTIAL FORMULA FOR THE WASSERSTEIN METRIC

THE EXPONENTIAL FORMULA FOR THE WASSERSTEIN METRIC THE EXPONENTIAL FORMULA FOR THE WASSERSTEIN METRIC BY KATY CRAIG A dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the

More information

1 M3-4-5A16 Assessed Problems # 1: Do 4 out of 5 problems

1 M3-4-5A16 Assessed Problems # 1: Do 4 out of 5 problems D. D. Holm M3-4-5A16 Assesse Problems # 1 Due 1 Nov 2012 1 1 M3-4-5A16 Assesse Problems # 1: Do 4 out of 5 problems Exercise 1.1 (Poisson brackets for the Hopf map) Figure 1: The Hopf map. In coorinates

More information

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1)

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1) 1.4. CONSTRUCTION OF LEBESGUE-STIELTJES MEASURES In this section we shall put to use the Carathéodory-Hahn theory, in order to construct measures with certain desirable properties first on the real line

More information

MEAN VALUE THEOREMS ON MANIFOLDS. Lei Ni. Abstract. 1. Introduction

MEAN VALUE THEOREMS ON MANIFOLDS. Lei Ni. Abstract. 1. Introduction MEAN VALUE THEOREMS ON MANIFOLDS Lei Ni Abstract We erive several mean value formulae on manifols, generalizing the classical one for harmonic functions on Eucliean spaces as well as the results of Schoen-Yau,

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

Outline Today s Lecture

Outline Today s Lecture Outline Today s Lecture finish Euler Equations and Transversality Condition Principle of Optimality: Bellman s Equation Study of Bellman equation with bounded F contraction mapping and theorem of the maximum

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

An extension of Alexandrov s theorem on second derivatives of convex functions

An extension of Alexandrov s theorem on second derivatives of convex functions Avances in Mathematics 228 (211 2258 2267 www.elsevier.com/locate/aim An extension of Alexanrov s theorem on secon erivatives of convex functions Joseph H.G. Fu 1 Department of Mathematics, University

More information

Ricci Curvature and Bochner Formula on Alexandrov Spaces

Ricci Curvature and Bochner Formula on Alexandrov Spaces Ricci Curvature and Bochner Formula on Alexandrov Spaces Sun Yat-sen University March 18, 2013 (work with Prof. Xi-Ping Zhu) Contents Alexandrov Spaces Generalized Ricci Curvature Geometric and Analytic

More information

NONLOCAL INTERACTION EQUATIONS IN ENVIRONMENTS WITH HETEROGENEITIES AND BOUNDARIES

NONLOCAL INTERACTION EQUATIONS IN ENVIRONMENTS WITH HETEROGENEITIES AND BOUNDARIES NONLOCAL INTERACTION EQUATIONS IN ENVIRONENTS WITH HETEROGENEITIES AND BOUNDARIES LIJIANG WU AND DEJAN SLEPČEV Abstract. We study well-posedness of a class of nonlocal interaction equations with spatially

More information

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. Uniqueness for solutions of ifferential equations. We consier the system of ifferential equations given by x = v( x), () t with a given initial conition

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Social Welfare Functions for Sustainable Development

Social Welfare Functions for Sustainable Development Social Welfare Functions for Sustainable Development Thai Ha-Huy, Cuong Le Van September 9, 2015 Abstract Keywords: criterion. anonymity; sustainable development, welfare function, Rawls JEL Classification:

More information

Metric measure spaces with Ricci lower bounds, Lecture 1

Metric measure spaces with Ricci lower bounds, Lecture 1 Metric measure spaces with Ricci lower bounds, Lecture 1 Andrea Mondino (Zurich University) MSRI-Berkeley 20 th January 2016 Motivation-Smooth setting:comparison geometry Question: (M, g) smooth Riemannian

More information

Applications of the time derivative of the L 2 -Wasserstein distance and the free entropy dissipation

Applications of the time derivative of the L 2 -Wasserstein distance and the free entropy dissipation Applications of the time derivative of the L 2 -Wasserstein distance and the free entropy dissipation Hiroaki YOSHIDA Ochanomizu University Tokyo, Japan at Fields Institute 23 July, 2013 Plan of talk 1.

More information

Almost everywhere well-posedness of continuity equations with measure initial data

Almost everywhere well-posedness of continuity equations with measure initial data Almost everywhere well-poseness of continuity equations with measure initial ata Luigi Ambrosio Alessio Figalli Abstract The aim of this note is to present some new results concerning almost everywhere

More information

Exercise Solutions to Functional Analysis

Exercise Solutions to Functional Analysis Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n

More information

On dissipation distances for reaction-diffusion equations the Hellinger-Kantorovich distance

On dissipation distances for reaction-diffusion equations the Hellinger-Kantorovich distance Weierstrass Institute for! Applied Analysis and Stochastics On dissipation distances for reaction-diffusion equations the Matthias Liero, joint work with Alexander Mielke, Giuseppe Savaré Mohrenstr. 39

More information

LECTURES ON MEAN FIELD GAMES: II. CALCULUS OVER WASSERSTEIN SPACE, CONTROL OF MCKEAN-VLASOV DYNAMICS, AND THE MASTER EQUATION

LECTURES ON MEAN FIELD GAMES: II. CALCULUS OVER WASSERSTEIN SPACE, CONTROL OF MCKEAN-VLASOV DYNAMICS, AND THE MASTER EQUATION LECTURES ON MEAN FIELD GAMES: II. CALCULUS OVER WASSERSTEIN SPACE, CONTROL OF MCKEAN-VLASOV DYNAMICS, AND THE MASTER EQUATION René Carmona Department of Operations Research & Financial Engineering PACM

More information

= (, ) V λ (1) λ λ ( + + ) P = [ ( ), (1)] ( ) ( ) = ( ) ( ) ( 0 ) ( 0 ) = ( 0 ) ( 0 ) 0 ( 0 ) ( ( 0 )) ( ( 0 )) = ( ( 0 )) ( ( 0 )) ( + ( 0 )) ( + ( 0 )) = ( + ( 0 )) ( ( 0 )) P V V V V V P V P V V V

More information

A REPRESENTATION FOR THE KANTOROVICH RUBINSTEIN DISTANCE DEFINED BY THE CAMERON MARTIN NORM OF A GAUSSIAN MEASURE ON A BANACH SPACE

A REPRESENTATION FOR THE KANTOROVICH RUBINSTEIN DISTANCE DEFINED BY THE CAMERON MARTIN NORM OF A GAUSSIAN MEASURE ON A BANACH SPACE Theory of Stochastic Processes Vol. 21 (37), no. 2, 2016, pp. 84 90 G. V. RIABOV A REPRESENTATION FOR THE KANTOROVICH RUBINSTEIN DISTANCE DEFINED BY THE CAMERON MARTIN NORM OF A GAUSSIAN MEASURE ON A BANACH

More information

Lecture 1: Main Models & Basics of Wasserstein Distance

Lecture 1: Main Models & Basics of Wasserstein Distance Lecture 1: Main Models & Basics of Wasserstein Distance J. A. Carrillo ICREA - Universitat Autònoma de Barcelona Methods and Models of Kinetic Theory Outline 1 Presentation of models Nonlinear diffusions

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

Information Geometry

Information Geometry 2015 Workshop on High-Dimensional Statistical Analysis Dec.11 (Friday) ~15 (Tuesday) Humanities and Social Sciences Center, Academia Sinica, Taiwan Information Geometry and Spontaneous Data Learning Shinto

More information

Local semiconvexity of Kantorovich potentials on non-compact manifolds

Local semiconvexity of Kantorovich potentials on non-compact manifolds Local semiconvexity of Kantorovich potentials on non-compact manifolds Alessio Figalli, Nicola Gigli Abstract We prove that any Kantorovich potential for the cost function c = d / on a Riemannian manifold

More information

Evolution of hypersurfaces in central force fields

Evolution of hypersurfaces in central force fields Evolution of hypersurfaces in central force fiels Oliver C. Schnürer an Knut Smoczyk November 000, revise June 00 Abstract We consier flows of hypersurfaces in R n+1 ecreasing the energy inuce by raially

More information

Heat Flows, Geometric and Functional Inequalities

Heat Flows, Geometric and Functional Inequalities Heat Flows, Geometric and Functional Inequalities M. Ledoux Institut de Mathématiques de Toulouse, France heat flow and semigroup interpolations Duhamel formula (19th century) pde, probability, dynamics

More information

y. ( sincos ) (sin ) (cos ) + (cos ) (sin ) sin + cos cos. 5. 6.. y + ( )( ) ( + )( ) ( ) ( ) s [( t )( t + )] t t [ t ] t t s t + t t t ( t )( t) ( t + )( t) ( t ) t ( t ) y + + / / ( + + ) / / /....

More information

An Analysis of Katsuura s Continuous Nowhere Differentiable Function

An Analysis of Katsuura s Continuous Nowhere Differentiable Function An Analysis of Katsuura s Continuous Nowhere Differentiable Function Thomas M. Lewis Department of Mathematics Furman University tom.lewis@furman.edu Copyright c 2005 by Thomas M. Lewis October 14, 2005

More information

12.5. Differentiation of vectors. Introduction. Prerequisites. Learning Outcomes

12.5. Differentiation of vectors. Introduction. Prerequisites. Learning Outcomes Differentiation of vectors 12.5 Introuction The area known as vector calculus is use to moel mathematically a vast range of engineering phenomena incluing electrostatics, electromagnetic fiels, air flow

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EECS 227A Fall 2009 Midterm Tuesday, Ocotober 20, 11:10-12:30pm DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 80 minutes to complete the midterm. The midterm consists

More information

3 Compact Operators, Generalized Inverse, Best- Approximate Solution

3 Compact Operators, Generalized Inverse, Best- Approximate Solution 3 Compact Operators, Generalized Inverse, Best- Approximate Solution As we have already heard in the lecture a mathematical problem is well - posed in the sense of Hadamard if the following properties

More information