Ordinary Differential Equations: Homework 2

Size: px
Start display at page:

Download "Ordinary Differential Equations: Homework 2"

Transcription

1 Orinary Differential Equations: Homework 2 M. Gameiro, J.-P. Lessar, J.D. Mireles James, K. Mischaikow January 30, 2017

2 2 0.1 Eercises Eercise Let (X, ) be a metric space. function (in the metric space topology). Prove that the metric is a continuous Eercise Use the contraction mapping theorem to prove that the function f() = cos() has a positive real fie point. Eercise Suppose that f : R R is a continuously ifferentiable function (i.e. that f is continuous on R). Suppose that there is an 0 R so that f( 0 ) = 0, an that f ( 0 ) < 1. Prove that f is a contraction mapping in some neighborhoo of 0. Eercise Suppose that f : R R is a continuously ifferentiable mapping (i.e. that the function f is continuous on R). Assume that there is an 0 R an positive constants Y 0 an Z 0 so that f( 0 ) 0 Y 0, an f ( 0 ) Z 0 < 1. Prove that there eists an ɛ > 0 so that for all [ 0 ɛ, 0 + ɛ]. Prove that if f () 1 Z 0, 2 2Y 0 1 Z 0 < ɛ, then there eists a unique fie point for f in [ 0 ɛ, 0 + ɛ]. Eercise Use the contraction mapping theorem to prove that the function ( ) 2 + y 2 + y f(, y) = y 2 y 30 + y4 100 has a fie point near = 1, y = 1. Write a MatLab program which computes the fie point to 8 ecimal places. Eercise In Chapter 1 you worke with the following ifferential equations: t (t) = k(t) k K (t)2, (Logistic Equation)

3 0.1. EXERCISES 3 ( ) ( = y cy ω sin() ( ) ( ( µ 1 = 3 3 y ) ) 1 µ w z z = = σ(y ) (ρ z) y y βz w (w 2 +y 2 ) 3/2 z y (w 2 +y 2 ) 3/2 ) (The penulum) (van er Pol oscillator) (Lorenz Equation) (The one boy problem ) In each case, etermine the largest open set U R n on which the vector fiel is locally Lipschitz. Repeat this problem for some of the vector fiels from the scavenger hunt. Eercise Give an eample of a metric space X an a contraction mapping T : X X so that T oes not have any fie points. Eercise Consier the metric space X = { R : 1 < }, with the metric inherite from R, an let T : X X be the map Prove that T () = + 1. T () T (y) < y for all, y X with y, an the T has no fie points. Eercise Consier the ifferential equation f(t) = 3f(t), t with the initial conition (0) = 1. Compute the Piccar iteration for this ifferential equation starting with the initial function 0 (t) = 1. (Compute at least 5 iterates of the operator).

4 4 Eercise Consier the ifferential equation ( ) ( ) ( (t) 0 1 (t) = (t) 1 0 y(t) with the initial conition (0) = 1, y(0) = 1. Compute the Piccar iteration for this ifferential equation starting with the initial function ( ) ( ) 0 (t) 1 = y 0 (t) 1 (Compute at least 5 iterates of the operator). Eercise Consier the ifferential equation f(t) = 2f(t) + f(t)2 t with the initial conition (0) = 1/2. Compute the Piccar iteration for this ifferential equation starting with the initial function 0 (t) = 1/2. (Compute at least 3 iterates of the operator). Eercise (Eistence an uniqueness for linear ifferential equations). Consier J R an open interval. Suppose that g : J R n an a i,j : J R, 1 i, j n, are continuous functions. Set A(t) = a 1,1 (t)... a 1,n (t)..... a n,1 (t)... a n,n (t) Prove that for any t 0 J the initial value problem has a unique solution : J R n. ). ẋ(t) = A(t) + g(t), (t 0 ) = 0, (1) Hint: Define an integrating factor C(t) by writing own a solution of the equation C (t) = C(t)A(t), that is write own an eplicit formula for such a C(t). Show irectly that C(t) is well efine, continuous, an ifferentiable on J.

5 0.1. EXERCISES 5 C(t 0 ) = I. C(t) is invertible for every t J. Now multiply both sies of Equation (1) by C(t), apply the prouct rule on the left, integrate both sies from t 0 to t with t J, an solve for (t). This provies an eplicit formula for the solution (t). Show that the formula gives a well efine, continuous, ifferentiable function for each t J. Eercise (Differentiability of the flow with respect to initial conitions). Let ϕ: R R n R n be the flow generate by ẋ = f(), where f : R n R n is C 1 an boune on R n. Proposition?? guarantees that ϕ(t, ) is continuous with respect to initial conitions. The following approach shows that ϕ is actually ifferentiable with respect to. Observe that ifferentiability of ϕ with respect to is equivalent to the statement that for any t R, 0 R n, there eists a unique n n matri Dϕ(t, 0 ) satisfying ϕ(t, 0 + h) ϕ(t, 0 ) Dϕ(t, 0 )h lim = 0. (2) h 0 h Let 0 R n an γ(t) ϕ(t, 0 ) enote the orbit segment through 0. matri Dϕ(t, 0 ) to be the solution of the first variation equation, Define the t Dϕ(t, 0) = Df(γ(t))Dϕ(t, 0 ), Dϕ(0, 0 ) = I. Use the results of problem to establish that the matri solving this equation eists assuming only that φ(t, 0 ) γ(t) eists an is continuous. Now show that Dϕ(t, 0 ) satisfies (2).

Ordinary Differential Equations: Homework 1

Ordinary Differential Equations: Homework 1 Orinary Differential Equations: Homework 1 M. Gameiro, J.-P. Lessar, J.D. Mireles James, K. Mischaikow January 12, 2017 2 Chapter 1 Motivation 1.1 Exercises Exercise 1.1.1. (Frictionless spring) Consier

More information

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold CHAPTER 1 : DIFFERENTIABLE MANIFOLDS 1.1 The efinition of a ifferentiable manifol Let M be a topological space. This means that we have a family Ω of open sets efine on M. These satisfy (1), M Ω (2) the

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Tensors, Fields Pt. 1 and the Lie Bracket Pt. 1

Tensors, Fields Pt. 1 and the Lie Bracket Pt. 1 Tensors, Fiels Pt. 1 an the Lie Bracket Pt. 1 PHYS 500 - Southern Illinois University September 8, 2016 PHYS 500 - Southern Illinois University Tensors, Fiels Pt. 1 an the Lie Bracket Pt. 1 September 8,

More information

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. Uniqueness for solutions of ifferential equations. We consier the system of ifferential equations given by x = v( x), () t with a given initial conition

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

II. First variation of functionals

II. First variation of functionals II. First variation of functionals The erivative of a function being zero is a necessary conition for the etremum of that function in orinary calculus. Let us now tackle the question of the equivalent

More information

Nonlinear Systems Theory

Nonlinear Systems Theory Nonlinear Systems Theory Matthew M. Peet Arizona State University Lecture 2: Nonlinear Systems Theory Overview Our next goal is to extend LMI s and optimization to nonlinear systems analysis. Today we

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

model considered before, but the prey obey logistic growth in the absence of predators. In

model considered before, but the prey obey logistic growth in the absence of predators. In 5.2. First Orer Systems of Differential Equations. Phase Portraits an Linearity. Section Objective(s): Moifie Preator-Prey Moel. Graphical Representations of Solutions. Phase Portraits. Vector Fiels an

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Recapitulation of Mathematics

Recapitulation of Mathematics Unit I Recapitulation of Mathematics Basics of Differentiation Rolle s an Lagrange s Theorem Tangent an Normal Inefinite an Definite Integral Engineering Mathematics I Basics of Differentiation CHAPTER

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Darboux s theorem and symplectic geometry

Darboux s theorem and symplectic geometry Darboux s theorem an symplectic geometry Liang, Feng May 9, 2014 Abstract Symplectic geometry is a very important branch of ifferential geometry, it is a special case of poisson geometry, an coul also

More information

ON THE RIEMANN EXTENSION OF THE SCHWARZSCHILD METRICS

ON THE RIEMANN EXTENSION OF THE SCHWARZSCHILD METRICS ON THE RIEANN EXTENSION OF THE SCHWARZSCHILD ETRICS Valerii Dryuma arxiv:gr-qc/040415v1 30 Apr 004 Institute of athematics an Informatics, AS R, 5 Acaemiei Street, 08 Chisinau, olova, e-mail: valery@ryuma.com;

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

1. Aufgabenblatt zur Vorlesung Probability Theory

1. Aufgabenblatt zur Vorlesung Probability Theory 24.10.17 1. Aufgabenblatt zur Vorlesung By (Ω, A, P ) we always enote the unerlying probability space, unless state otherwise. 1. Let r > 0, an efine f(x) = 1 [0, [ (x) exp( r x), x R. a) Show that p f

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv University, 2014/15 Analysis-III,IV 71 4 Inverse function theorem 4a What is the problem................ 71 4b Simple observations before the theorem..... 72 4c The theorem.....................

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Lecture 1b. Differential operators and orthogonal coordinates. Partial derivatives. Divergence and divergence theorem. Gradient. A y. + A y y dy. 1b.

Lecture 1b. Differential operators and orthogonal coordinates. Partial derivatives. Divergence and divergence theorem. Gradient. A y. + A y y dy. 1b. b. Partial erivatives Lecture b Differential operators an orthogonal coorinates Recall from our calculus courses that the erivative of a function can be efine as f ()=lim 0 or using the central ifference

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 54, No. 2, 213, Pages 59 65 Publishe online: December 8, 213 ON TAUBERIAN CONDITIONS FOR C, 1 SUMMABILITY OF INTEGRALS Abstract. We investigate some Tauberian

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Ordinary Differential Equations

Ordinary Differential Equations Orinary Differential Equations Example: Harmonic Oscillator For a perfect Hooke s-law spring,force as a function of isplacement is F = kx Combine with Newton s Secon Law: F = ma with v = a = v = 2 x 2

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Switching Time Optimization in Discretized Hybrid Dynamical Systems

Switching Time Optimization in Discretized Hybrid Dynamical Systems Switching Time Optimization in Discretize Hybri Dynamical Systems Kathrin Flaßkamp, To Murphey, an Sina Ober-Blöbaum Abstract Switching time optimization (STO) arises in systems that have a finite set

More information

Problem set 2: Solutions Math 207B, Winter 2016

Problem set 2: Solutions Math 207B, Winter 2016 Problem set : Solutions Math 07B, Winter 016 1. A particle of mass m with position x(t) at time t has potential energy V ( x) an kinetic energy T = 1 m x t. The action of the particle over times t t 1

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

Short Review of Basic Mathematics

Short Review of Basic Mathematics Short Review of Basic Mathematics Tomas Co January 1, 1 c 8 Tomas Co, all rights reserve Contents 1 Review of Functions 5 11 Mathematical Ientities 5 1 Drills 7 1 Answers to Drills 8 Review of ODE Solutions

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

(a 1 m. a n m = < a 1/N n

(a 1 m. a n m = < a 1/N n Notes on a an log a Mat 9 Fall 2004 Here is an approac to te eponential an logaritmic functions wic avois any use of integral calculus We use witout proof te eistence of certain limits an assume tat certain

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

Math 211A Homework. Edward Burkard. = tan (2x + z)

Math 211A Homework. Edward Burkard. = tan (2x + z) Mth A Homework Ewr Burkr Eercises 5-C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =

More information

. ISSN (print), (online) International Journal of Nonlinear Science Vol.6(2008) No.3,pp

. ISSN (print), (online) International Journal of Nonlinear Science Vol.6(2008) No.3,pp . ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.6(8) No.3,pp.195-1 A Bouneness Criterion for Fourth Orer Nonlinear Orinary Differential Equations with Delay

More information

12.5. Differentiation of vectors. Introduction. Prerequisites. Learning Outcomes

12.5. Differentiation of vectors. Introduction. Prerequisites. Learning Outcomes Differentiation of vectors 12.5 Introuction The area known as vector calculus is use to moel mathematically a vast range of engineering phenomena incluing electrostatics, electromagnetic fiels, air flow

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Dynamical Systems and a Brief Introduction to Ergodic Theory

Dynamical Systems and a Brief Introduction to Ergodic Theory Dynamical Systems an a Brief Introuction to Ergoic Theory Leo Baran Spring 2014 Abstract This paper explores ynamical systems of ifferent types an orers, culminating in an examination of the properties

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

An algebraic expression of stable inversion for nonminimum phase systems and its applications

An algebraic expression of stable inversion for nonminimum phase systems and its applications Proceeings of the 17th Worl Congress The International Feeration of Automatic Control An algebraic expression of stable inversion for nonminimum phase systems an its applications Takuya Sogo Chubu University,

More information

lim Prime notation can either be directly applied to a function as previously seen with f x 4.1 Basic Techniques for Finding Derivatives

lim Prime notation can either be directly applied to a function as previously seen with f x 4.1 Basic Techniques for Finding Derivatives MATH 040 Notes: Unit Page 4. Basic Techniques for Fining Derivatives In the previous unit we introuce the mathematical concept of the erivative: f f ( h) f ( ) lim h0 h (assuming the limit eists) In this

More information

MATH 220 solution to homework 1

MATH 220 solution to homework 1 MATH solution to homework Problem. Define z(s = u( + s, y + s, then z (s = u u ( + s, y + s + y ( + s, y + s = e y, z( y = u( y, = f( y, u(, y = z( = z( y + y If we prescribe the data u(, = f(, then z

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs

Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs First Order DE 2.4 Linear vs. Nonlinear DE We recall the general form of the First Oreder DEs (FODE): dy = f(t, y) (1) dt where f(t, y) is a function

More information

1 Math 285 Homework Problem List for S2016

1 Math 285 Homework Problem List for S2016 1 Math 85 Homework Problem List for S016 Note: solutions to Lawler Problems will appear after all of the Lecture Note Solutions. 1.1 Homework 1. Due Friay, April 8, 016 Look at from lecture note exercises:

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Balance laws on domains with moving interfaces. The enthalpy method for the ice melting problem.

Balance laws on domains with moving interfaces. The enthalpy method for the ice melting problem. Balance laws on omains with moving interfaces. The enthalpy metho for the ice melting problem. Gowin Kakuba 12th March 2008 Outline 1 Balance equations on omains with moving bounaries Introuction Rankine-Hugoniot

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

Linear ODEs. Types of systems. Linear ODEs. Definition (Linear ODE) Linear ODEs. Existence of solutions to linear IVPs.

Linear ODEs. Types of systems. Linear ODEs. Definition (Linear ODE) Linear ODEs. Existence of solutions to linear IVPs. Linear ODEs Linear ODEs Existence of solutions to linear IVPs Resolvent matrix Autonomous linear systems p. 1 Linear ODEs Types of systems Definition (Linear ODE) A linear ODE is a ifferential equation

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

Approximate Reduction of Dynamical Systems

Approximate Reduction of Dynamical Systems Proceeings of the 4th IEEE Conference on Decision & Control Manchester Gran Hyatt Hotel San Diego, CA, USA, December 3-, 6 FrIP.7 Approximate Reuction of Dynamical Systems Paulo Tabuaa, Aaron D. Ames,

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

IB Math High Level Year 2 Calc Differentiation Practice IB Practice - Calculus - Differentiation (V2 Legacy)

IB Math High Level Year 2 Calc Differentiation Practice IB Practice - Calculus - Differentiation (V2 Legacy) IB Math High Level Year Calc Differentiation Practice IB Practice - Calculus - Differentiation (V Legac). If =, fin the two values of when = 5. Answer:.. (Total marks). Differentiate = arccos ( ) with

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Linear Algebra- Review And Beyond. Lecture 3

Linear Algebra- Review And Beyond. Lecture 3 Linear Algebra- Review An Beyon Lecture 3 This lecture gives a wie range of materials relate to matrix. Matrix is the core of linear algebra, an it s useful in many other fiels. 1 Matrix Matrix is the

More information

Calculus and optimization

Calculus and optimization Calculus an optimization These notes essentially correspon to mathematical appenix 2 in the text. 1 Functions of a single variable Now that we have e ne functions we turn our attention to calculus. A function

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1 Physics 5153 Classical Mechanics The Virial Theorem an The Poisson Bracket 1 Introuction In this lecture we will consier two applications of the Hamiltonian. The first, the Virial Theorem, applies to systems

More information

THE DIVERGENCE. 1. Interpretation of the divergence 1 2. The divergence theorem Gauss law 6

THE DIVERGENCE. 1. Interpretation of the divergence 1 2. The divergence theorem Gauss law 6 THE DIVERGENCE CRISTIAN E. GUTIÉRREZ SEPTEMBER 16, 2008 CONTENTS 1. Interpretation of the ivergence 1 2. The ivergence theorem 4 2.1. Gauss law 6 1. INTERPRETATION OF THE DIVERGENCE Let F(, t) : R n R

More information

Lecture 5. Symmetric Shearer s Lemma

Lecture 5. Symmetric Shearer s Lemma Stanfor University Spring 208 Math 233: Non-constructive methos in combinatorics Instructor: Jan Vonrák Lecture ate: January 23, 208 Original scribe: Erik Bates Lecture 5 Symmetric Shearer s Lemma Here

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Chapter 9 Method of Weighted Residuals

Chapter 9 Method of Weighted Residuals Chapter 9 Metho of Weighte Resiuals 9- Introuction Metho of Weighte Resiuals (MWR) is an approimate technique for solving bounary value problems. It utilizes a trial functions satisfying the prescribe

More information

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim .1 DERIVATIVES OF POLYNOIALS AND EXPONENTIAL FUNCTIONS c =c slope=0 0 FIGURE 1 Te grap of ƒ=c is te line =c, so fª()=0. In tis section we learn ow to ifferentiate constant functions, power functions, polnomials,

More information

f(x + h) f(x) f (x) = lim

f(x + h) f(x) f (x) = lim Introuction 4.3 Some Very Basic Differentiation Formulas If a ifferentiable function f is quite simple, ten it is possible to fin f by using te efinition of erivative irectly: f () 0 f( + ) f() However,

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

SOLUTIONS OF SELECTED EXERCISES IN T. TAO S NONLINEAR DISPERSIVE EQUATIONS

SOLUTIONS OF SELECTED EXERCISES IN T. TAO S NONLINEAR DISPERSIVE EQUATIONS SOLUTIONS OF SELECTED EXECISES IN T. TAO S NONLINEA DISPESIVE EQUATIONS AICK SHAO This is a list of solutions to some of the eercises in the book Nonlinear Dispersive Equations: Local an Global Analysis,

More information

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE ELECTRIC CHARGE Introuction: Orinary matter consists of atoms. Each atom consists of a nucleus, consisting of protons an neutrons, surroune by a number of electrons. In electricity, the electric charge

More information