Modification of Non-Linear Constrained Optimization. Ban A. Metras Dep. of Statistics College of Computer Sciences and Mathematics

Size: px
Start display at page:

Download "Modification of Non-Linear Constrained Optimization. Ban A. Metras Dep. of Statistics College of Computer Sciences and Mathematics"

Transcription

1 Raf. J. Of Comp. & Math s., Vol., No., 004 Modification of Non-Linear Constrained Optimization Ban A. Metras Dep. of Statistics College of Computer Sciences and Mathematics Received: 3/5/00 Accepted: /0/00 الملخص في هذا البحث تم استحداث معلم ابتداي ي جديد يربط بين الطريقتين الخارجية المناسبة لقيود غير المساواة) والطريقة الداخلية المناسبة لقيود المساواة وغير المساواة في مجال ا لا مثلية غير الخطية المشروطة. و ا ن التقنية الجديدة تمت برمجتها لحل بعض مساي ل ا لا مثلية القياسية المعروفة وتوصلنا ا لى ا ن نتاي جها اكثر كفاءة من طريقة.Barriar -Penalty ABSRAC In this paper we have investigated a new initial parameter, the new parameter is to mae balance between interior suitable for inequality constrained eterior method suitable for equality and inequality constrained) for non-linear constrained optimization. he new algorithm is programmed to solve some standard problems in non-linear optimization method. he results are too effective when compared with Barriar Penalty algorithm. 67

2 B. A. Metras.Introduction: We shall first state the most general from of the problem we are addressing, namely Minimize f n, R ) Subject to the general possibly nonlinear) inequality constraints c j 0 j L ) and possibly nonlinear) equality constraints c j with the simple bounds 0 L j m 3) L u, i n 4) i i i Where f and c j are all assumed to be twice continuously differentiable and defined on E n, is a subset of E n, and is a vector of n components,,,, n. he above problem must be solved for the values of the variables,,, n that satisfy the restrictions and meanwhile minimize the function f. he function f is called the objective function and any of the bounded in eq.4) may be infinite. See Conn et al, 994). he eterior-point method is suitable for equality and inequality constraints. he new objective function φ, ) is defined by: φ, ) f α 5) Where is a positive scalar and the remainder of the second term is the penalty function. Interior-point method is suitable for inequality constraints. he new objective function φ, ) is defined by φ, ) f B 6) Where is a positive scalar and the reminder of the second term is the Barrier function. see Gottefred, 973). 68

3 Modification of Non-Linear Although both eterior and interior-point methods have many points of similarly, they represent two different points of view. In an eterior-point procedure, we start from an infeasible point and gradually approach feasibility, while doing so, we move away from the unconstrained optimum of the objective function. In an interior-point procedure we start at a feasible point and gradually improve our objective function, while maintaining feasibility. he requirement that we begin at a feasible point and remain within the interior of the feasible inequality constrained region is the chief difficulty with interiorpoint methods. In many problems we have no easy way to determine a feasible starting point, and a separate initial computation may be needed. Also, if equality constraints are present, we do not have a feasible inequality constrained region in which to maneuver freely. hus interior-point methods cannot handle equalities. We may readily handle equalities by using a mied method in which we use interior-point penalty functions for inequality constraints only. hus, if the first m constraints are inequalities and constraints m) to n are equalities, our problem becomes: Minimize φ, ) f g ) B α 7) g ) he function φ, ) is then minimized for a sequence of monotonically decreasing > 0.. Mied Eterior-Interior Methods: We can solve the constrained problem given in eq.) to eq.3) construct a new objective function φ, ) which is defined in eq.7). Now our aim is to minimize the function φ, ) by starting form a feasible point 0 and with initial value 0 and the method reducing is simple iterative method such that: 69

4 B. A. Metras, 8) 0 where is a constant equal to 0 and the search direction d in this case can be defined d g, 9) where is a positive definite symmetric approimation matri to the inverse essian matri G - and g is the gradient vector of the function φ, ). he net iteration is set to a further point λd, 0) where λ is a scalar chosen in such that f < f, we thus test c i ) to see that it is positive for all i. We find a feasible and we can then proceed with the interpolation. hen the matri is updated by a correction matri to get φ ) where φ is a correction matri which satisfies quasi-newton condition namely y ρv) where v and y are difference vector between two successive points and gradients respectively and ρ is any positive scalar. he initial matri 0 chosen to be identity matri I. is updated through the formula of BFGS update. see Bazarra et al, 000). Given some approimation to the inverse essian matri, we compute the search direction d g, and we define v and g g G ) Gv. y We now want to construct a matri ) ) ) ) where is some symmetric correction matri that ensures that v,v,,v are eigenvectors of G with unit eigenvalues. ence 70

5 Modification of Non-Linear y v his condition translates to the requirement that y v y his therefore, leads to the ran-two DFP Fletcher and Powell, 963) update via the correction term vv y y DFP 3) v y y y he Broyden updates suggest the use of the correction matri given by B where B θτ p p 4) DFP p ) v y v y and where τ Newton condition holds by virtue of τ is chosen so that the quasi- p y being zero. hen BFGS B v v y y yv v y θ ) 5) v y v y v y and terminate the method if where ε < ε 6) 3. Combined Barrier-Penalty Algorithm: Step ): Find an initial approimation 0 in the interior of the feasible region for the inequality constraints i.e. g i 0 )<0. Step ): Set and 0 is the initial value of. Step 3): Set φ, ) f B α. Step 4): Set d - g Step 5): Set λd, where λ is a scalar. 7

6 B. A. Metras Step 6): Chec for convergence i.e. if eq.6) is satisfied then stop. Step 7): Otherwise, set and tae * and set 0 and go to Step he Initial Value of the Parameter: he initial value can be important in reducing the number of iterations and the number of function calls to minimize φ, ), since the unconstrained minimization of φ, ) is to be carried out for a decreasing sequence of, it might appear that by choosing a very small value of, we can avoid an ecessive number of minimization of the function φ, ). Also as φ, ) is close to f, the method should converge more quicly. owever, such a choice can cause serious computational problems. Also if is small, the function φ, ) will be changed rapidly in the vicinity of its minimum. his rapid change in the function can cause difficulties for a gradient based on methods. see Bazaraa, 000). Al-Bayati and amed in 997) suggested a new parameter of the Barrier function. Al-Assady and amed in 00) proposed a new initial parameter of Barrier-Penalty method. 5. Development of the New Algorithm: Consider the problem stated in eq.) to eq.4). he new objective function φ, ) defined in eq.7) with a starting feasible point 0 and with an initial value 0 which is derived as φ, ) f B α 7) f [ h ]. 8) c 7

7 Modification of Non-Linear hen the gradient of φ, ) is c φ, ) f h h 9) [ c ] such that φ, ) 0 we have c f h h 0 0) [ c ] Now, since > 0, then we have c f h h 0 ) [ c ] Arranging eq.) and multiplying it by -), we have c f h h 0 ) [ c ] he optimum value of is then given by one of the following roots to eq.): c f m f ) 8h h c ) min 3) c c ) In the above suggestion corresponding to the assumption for deriving a new parameter to mae balance between the eteriorinterior point method, we have suggested the following new algorithm. 6. he Outline of the New Algorithm: Step ): Find an initial approimation 0 in the interior of the feasible region for the inequality constraints i.e. g i 0 )<0. Step ): Set and 0 is the initial value of. Step 3): Find the initial value of by using eq.3), and compute φ, ) f B α. 73

8 B. A. Metras Step 4): Set d - g Step 5): Set λd, where λ is a scalar. Step 6): Chec for convergence i.e. if eq.6) is satisfied then stop. Otherwise go to step 7. Step 7): Set 0 Step 8): Set * and set and go to step Results and Calculation: In order to test the effectiveness of the new algorithm that has been used to Barrier-Penalty function method, the comparative tests involving several well-nown test function see Appendi have been chosen and solved numerically by utilizing the new and established method. So the new algorithm has been compared with Barriar -Penalty algorithm. In table ) we have compared the new algorithm with standard Barrier-Penalty algorithm for n 3 and c i 7 using 5) nonlinear test functions. From table ) it is clear that, taing the standard Barrier- Penalty algorithm as 00%, and the new algorithm has 75%, 76.8%, and 8.9% improvements on the standard Barrier-Penalty algorithm in bout number of iterations NOI and number of function evaluations NOF. 74

9 Modification of Non-Linear able ) Comparison between Barrier-Penalty and new algorithms est Barrier-Penalty algorithm New algorithm function NOI NOF) NOI NOF). 7 6) 7). 8 4) 9 99) ) 5 7) ) 5 6) ) 9 955) ) 9 596) otal ) ) able ) Barrier-Penalty algorithm New algorithm NOI 00% 75 NOF 00% Appendi: est functions:. min f ) ) s.p7,9) 0 4. min f 8,6) min f s.p.0.9,) 75

10 B. A. Metras i 4. ) 3 ) ) min f,7) ) ) min f s.p4,3,3,3) i 6. ) 3) ) min f s.p0.,) 0 3 i

11 Modification of Non-Linear REFERECES [] Al-Assady, N.. and amed, E.. 00), Investigation A New Initial Parameter of Mied Interior-Eterior Method for Nonlinear Optimization Al-Rafideen J. No.5, Vol.4. [] Al-Bayati, A.Y. and amed, E.. 997), Some Modifications in Non-Linear Constrained Optimization Algorithms, Ms.c. hesis, Dep. of Math. College of Science, Univ. of Mosul. [3] Bazaraa, S. and Shetty, C.M. 000), Nonlinear Programming: heory and Algorithms, New Yor, Chichester, Brisbane, oronto. [4] Biggs, M.C. 989), alfield Polytechnic Numerical Optimization, he Optima Pacage, Special Communication. [5] Conn, A.R., Gould, N. and oint, Ph.L., 994), Large scale Nonlinear Constrained Optimization, A current Survey, Report 94/ IBM.J. Watson Research Center, USA. [6] Fiacco, A.V. and McCormic, G.P. 968), Etension of Sum for Non-Linear Programming Equality Constraints and Etrapolation, Management Science, Vol., No., pp [7] Fletcher, R. and Powell, M.J.D., 963), A Rapidly Convergent Descent Method for Minimization, Computer Journal, 6, pp [8] Gottefred, B.S. and Weisman, J., 973), Introduction to Optimization heory, Prentice-all, Englewood Cliffs, N.J. 77

Using "Filter" Approach to Solve the Constrained Optimization Problems Baan A. Metras College of Computer Sciences and Mathematics University of Mosul

Using Filter Approach to Solve the Constrained Optimization Problems Baan A. Metras College of Computer Sciences and Mathematics University of Mosul Raf. J. of Comp. & Math s., Vol. 7, No., 00 Using "Filter" Approach to Solve the Constrained Optimization Problems College of Computer Sciences and Mathematics University of Mosul Received on:/3/009 Accepted

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Unconstrained Multivariate Optimization

Unconstrained Multivariate Optimization Unconstrained Multivariate Optimization Multivariate optimization means optimization of a scalar function of a several variables: and has the general form: y = () min ( ) where () is a nonlinear scalar-valued

More information

The Methods of Solution for Constrained Nonlinear Programming

The Methods of Solution for Constrained Nonlinear Programming Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 01-06 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.co The Methods of Solution for Constrained

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Quasi Newton Methods Barnabás Póczos & Ryan Tibshirani Quasi Newton Methods 2 Outline Modified Newton Method Rank one correction of the inverse Rank two correction of the

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

ENSIEEHT-IRIT, 2, rue Camichel, Toulouse (France) LMS SAMTECH, A Siemens Business,15-16, Lower Park Row, BS1 5BN Bristol (UK)

ENSIEEHT-IRIT, 2, rue Camichel, Toulouse (France) LMS SAMTECH, A Siemens Business,15-16, Lower Park Row, BS1 5BN Bristol (UK) Quasi-Newton updates with weighted secant equations by. Gratton, V. Malmedy and Ph. L. oint Report NAXY-09-203 6 October 203 0.5 0 0.5 0.5 0 0.5 ENIEEH-IRI, 2, rue Camichel, 3000 oulouse France LM AMECH,

More information

Operations Research Lecture 4: Linear Programming Interior Point Method

Operations Research Lecture 4: Linear Programming Interior Point Method Operations Research Lecture 4: Linear Programg Interior Point Method Notes taen by Kaiquan Xu@Business School, Nanjing University April 14th 2016 1 The affine scaling algorithm one of the most efficient

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Quasi-Newton Methods

Quasi-Newton Methods Quasi-Newton Methods Werner C. Rheinboldt These are excerpts of material relating to the boos [OR00 and [Rhe98 and of write-ups prepared for courses held at the University of Pittsburgh. Some further references

More information

A new ane scaling interior point algorithm for nonlinear optimization subject to linear equality and inequality constraints

A new ane scaling interior point algorithm for nonlinear optimization subject to linear equality and inequality constraints Journal of Computational and Applied Mathematics 161 (003) 1 5 www.elsevier.com/locate/cam A new ane scaling interior point algorithm for nonlinear optimization subject to linear equality and inequality

More information

STATIONARITY RESULTS FOR GENERATING SET SEARCH FOR LINEARLY CONSTRAINED OPTIMIZATION

STATIONARITY RESULTS FOR GENERATING SET SEARCH FOR LINEARLY CONSTRAINED OPTIMIZATION STATIONARITY RESULTS FOR GENERATING SET SEARCH FOR LINEARLY CONSTRAINED OPTIMIZATION TAMARA G. KOLDA, ROBERT MICHAEL LEWIS, AND VIRGINIA TORCZON Abstract. We present a new generating set search (GSS) approach

More information

New hybrid conjugate gradient algorithms for unconstrained optimization

New hybrid conjugate gradient algorithms for unconstrained optimization ew hybrid conjugate gradient algorithms for unconstrained optimization eculai Andrei Research Institute for Informatics, Center for Advanced Modeling and Optimization, 8-0, Averescu Avenue, Bucharest,

More information

CONSTRAINED NONLINEAR PROGRAMMING

CONSTRAINED NONLINEAR PROGRAMMING 149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach

More information

SECTION: CONTINUOUS OPTIMISATION LECTURE 4: QUASI-NEWTON METHODS

SECTION: CONTINUOUS OPTIMISATION LECTURE 4: QUASI-NEWTON METHODS SECTION: CONTINUOUS OPTIMISATION LECTURE 4: QUASI-NEWTON METHODS HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY HILARY TERM 2005, DR RAPHAEL HAUSER 1. The Quasi-Newton Idea. In this lecture we will discuss

More information

Part 2: NLP Constrained Optimization

Part 2: NLP Constrained Optimization Part 2: NLP Constrained Optimization James G. Shanahan 2 Independent Consultant and Lecturer UC Santa Cruz EMAIL: James_DOT_Shanahan_AT_gmail_DOT_com WIFI: SSID Student USERname ucsc-guest Password EnrollNow!

More information

Introduction to Nonlinear Optimization Paul J. Atzberger

Introduction to Nonlinear Optimization Paul J. Atzberger Introduction to Nonlinear Optimization Paul J. Atzberger Comments should be sent to: atzberg@math.ucsb.edu Introduction We shall discuss in these notes a brief introduction to nonlinear optimization concepts,

More information

CONSTRAINED OPTIMALITY CRITERIA

CONSTRAINED OPTIMALITY CRITERIA 5 CONSTRAINED OPTIMALITY CRITERIA In Chapters 2 and 3, we discussed the necessary and sufficient optimality criteria for unconstrained optimization problems. But most engineering problems involve optimization

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Improved Damped Quasi-Newton Methods for Unconstrained Optimization

Improved Damped Quasi-Newton Methods for Unconstrained Optimization Improved Damped Quasi-Newton Methods for Unconstrained Optimization Mehiddin Al-Baali and Lucio Grandinetti August 2015 Abstract Recently, Al-Baali (2014) has extended the damped-technique in the modified

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming Problems

Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming Problems International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 013 1 ISSN 50-3153 Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming

More information

On fast trust region methods for quadratic models with linear constraints. M.J.D. Powell

On fast trust region methods for quadratic models with linear constraints. M.J.D. Powell DAMTP 2014/NA02 On fast trust region methods for quadratic models with linear constraints M.J.D. Powell Abstract: Quadratic models Q k (x), x R n, of the objective function F (x), x R n, are used by many

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 3 Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 2 3.1. Gradient method Classical gradient method: to minimize a differentiable convex

More information

On nonlinear optimization since M.J.D. Powell

On nonlinear optimization since M.J.D. Powell On nonlinear optimization since 1959 1 M.J.D. Powell Abstract: This view of the development of algorithms for nonlinear optimization is based on the research that has been of particular interest to the

More information

A COMBINED CLASS OF SELF-SCALING AND MODIFIED QUASI-NEWTON METHODS

A COMBINED CLASS OF SELF-SCALING AND MODIFIED QUASI-NEWTON METHODS A COMBINED CLASS OF SELF-SCALING AND MODIFIED QUASI-NEWTON METHODS MEHIDDIN AL-BAALI AND HUMAID KHALFAN Abstract. Techniques for obtaining safely positive definite Hessian approximations with selfscaling

More information

NONLINEAR OPTIMIZATION WITH CONVEX CONSTRAINTS. The Goldstein-Levitin-Polyak algorithm

NONLINEAR OPTIMIZATION WITH CONVEX CONSTRAINTS. The Goldstein-Levitin-Polyak algorithm - (23) NLP - NONLINEAR OPTIMIZATION WITH CONVEX CONSTRAINTS The Goldstein-Levitin-Polya algorithm We consider an algorithm for solving the otimization roblem under convex constraints. Although the convexity

More information

Matrix Secant Methods

Matrix Secant Methods Equation Solving g(x) = 0 Newton-Lie Iterations: x +1 := x J g(x ), where J g (x ). Newton-Lie Iterations: x +1 := x J g(x ), where J g (x ). 3700 years ago the Babylonians used the secant method in 1D:

More information

MULTI VARIABLE OPTIMIZATION

MULTI VARIABLE OPTIMIZATION MULI VARIABLE OPIMIZAION Min f(x 1, x 2, x 3,----- x n ) UNIDIRECIONAL SEARCH - CONSIDER A DIRECION S r r x( α ) = x +α s - REDUCE O Min f (α) - SOLVE AS A SINGLE VARIABLE PROBLEM Min Point s r Uni directional

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization II: Unconstrained

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

First Published on: 11 October 2006 To link to this article: DOI: / URL:

First Published on: 11 October 2006 To link to this article: DOI: / URL: his article was downloaded by:[universitetsbiblioteet i Bergen] [Universitetsbiblioteet i Bergen] On: 12 March 2007 Access Details: [subscription number 768372013] Publisher: aylor & Francis Informa Ltd

More information

Global convergence of a regularized factorized quasi-newton method for nonlinear least squares problems

Global convergence of a regularized factorized quasi-newton method for nonlinear least squares problems Volume 29, N. 2, pp. 195 214, 2010 Copyright 2010 SBMAC ISSN 0101-8205 www.scielo.br/cam Global convergence of a regularized factorized quasi-newton method for nonlinear least squares problems WEIJUN ZHOU

More information

Search Directions for Unconstrained Optimization

Search Directions for Unconstrained Optimization 8 CHAPTER 8 Search Directions for Unconstrained Optimization In this chapter we study the choice of search directions used in our basic updating scheme x +1 = x + t d. for solving P min f(x). x R n All

More information

2.3 Linear Programming

2.3 Linear Programming 2.3 Linear Programming Linear Programming (LP) is the term used to define a wide range of optimization problems in which the objective function is linear in the unknown variables and the constraints are

More information

Seminal papers in nonlinear optimization

Seminal papers in nonlinear optimization Seminal papers in nonlinear optimization Nick Gould, CSED, RAL, Chilton, OX11 0QX, England (n.gould@rl.ac.uk) December 7, 2006 The following papers are classics in the field. Although many of them cover

More information

Survey of NLP Algorithms. L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA

Survey of NLP Algorithms. L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA Survey of NLP Algorithms L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA NLP Algorithms - Outline Problem and Goals KKT Conditions and Variable Classification Handling

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Chapter 4. Unconstrained optimization

Chapter 4. Unconstrained optimization Chapter 4. Unconstrained optimization Version: 28-10-2012 Material: (for details see) Chapter 11 in [FKS] (pp.251-276) A reference e.g. L.11.2 refers to the corresponding Lemma in the book [FKS] PDF-file

More information

Bracketing an Optima in Univariate Optimization

Bracketing an Optima in Univariate Optimization Bracketing an Optima in Univariate Optimization Pritibhushan Sinha Quantitative Methods & Operations Management Area Indian Institute of Management Kozhikode Kozhikode 673570 Kerala India Email: pritibhushan.sinha@iimk.ac.in

More information

Statistics 580 Optimization Methods

Statistics 580 Optimization Methods Statistics 580 Optimization Methods Introduction Let fx be a given real-valued function on R p. The general optimization problem is to find an x ɛ R p at which fx attain a maximum or a minimum. It is of

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one

More information

2. Quasi-Newton methods

2. Quasi-Newton methods L. Vandenberghe EE236C (Spring 2016) 2. Quasi-Newton methods variable metric methods quasi-newton methods BFGS update limited-memory quasi-newton methods 2-1 Newton method for unconstrained minimization

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

On Lagrange multipliers of trust-region subproblems

On Lagrange multipliers of trust-region subproblems On Lagrange multipliers of trust-region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Programy a algoritmy numerické matematiky 14 1.- 6. června 2008

More information

NonlinearOptimization

NonlinearOptimization 1/35 NonlinearOptimization Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Jiří Kašpar, Pavel Tvrdík, 2011 Unconstrained nonlinear optimization,

More information

Preconditioned conjugate gradient algorithms with column scaling

Preconditioned conjugate gradient algorithms with column scaling Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 28 Preconditioned conjugate gradient algorithms with column scaling R. Pytla Institute of Automatic Control and

More information

On Lagrange multipliers of trust region subproblems

On Lagrange multipliers of trust region subproblems On Lagrange multipliers of trust region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Applied Linear Algebra April 28-30, 2008 Novi Sad, Serbia Outline

More information

HT14 A COMPARISON OF DIFFERENT PARAMETER ESTIMATION TECHNIQUES FOR THE IDENTIFICATION OF THERMAL CONDUCTIVITY COMPONENTS OF ORTHOTROPIC SOLIDS

HT14 A COMPARISON OF DIFFERENT PARAMETER ESTIMATION TECHNIQUES FOR THE IDENTIFICATION OF THERMAL CONDUCTIVITY COMPONENTS OF ORTHOTROPIC SOLIDS Inverse Problems in Engineering: heory and Practice rd Int. Conference on Inverse Problems in Engineering June -8, 999, Port Ludlow, WA, USA H4 A COMPARISON OF DIFFEREN PARAMEER ESIMAION ECHNIQUES FOR

More information

1 Numerical optimization

1 Numerical optimization Contents Numerical optimization 5. Optimization of single-variable functions.............................. 5.. Golden Section Search..................................... 6.. Fibonacci Search........................................

More information

Numerical Optimization: Basic Concepts and Algorithms

Numerical Optimization: Basic Concepts and Algorithms May 27th 2015 Numerical Optimization: Basic Concepts and Algorithms R. Duvigneau R. Duvigneau - Numerical Optimization: Basic Concepts and Algorithms 1 Outline Some basic concepts in optimization Some

More information

MATH 4211/6211 Optimization Basics of Optimization Problems

MATH 4211/6211 Optimization Basics of Optimization Problems MATH 4211/6211 Optimization Basics of Optimization Problems Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 A standard minimization

More information

MATH 4211/6211 Optimization Quasi-Newton Method

MATH 4211/6211 Optimization Quasi-Newton Method MATH 4211/6211 Optimization Quasi-Newton Method Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 Quasi-Newton Method Motivation:

More information

A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization

A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization Noname manuscript No. (will be inserted by the editor) A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization Fran E. Curtis February, 22 Abstract Penalty and interior-point methods

More information

A Nonlinear Conjugate Gradient Algorithm with An Optimal Property and An Improved Wolfe Line Search

A Nonlinear Conjugate Gradient Algorithm with An Optimal Property and An Improved Wolfe Line Search A Nonlinear Conjugate Gradient Algorithm with An Optimal Property and An Improved Wolfe Line Search Yu-Hong Dai and Cai-Xia Kou State Key Laboratory of Scientific and Engineering Computing, Institute of

More information

Spectral gradient projection method for solving nonlinear monotone equations

Spectral gradient projection method for solving nonlinear monotone equations Journal of Computational and Applied Mathematics 196 (2006) 478 484 www.elsevier.com/locate/cam Spectral gradient projection method for solving nonlinear monotone equations Li Zhang, Weijun Zhou Department

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm

A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm Journal name manuscript No. (will be inserted by the editor) A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm Rene Kuhlmann Christof Büsens Received: date / Accepted:

More information

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k Maria Cameron Nonlinear Least Squares Problem The nonlinear least squares problem arises when one needs to find optimal set of parameters for a nonlinear model given a large set of data The variables x,,

More information

1 Numerical optimization

1 Numerical optimization Contents 1 Numerical optimization 5 1.1 Optimization of single-variable functions............ 5 1.1.1 Golden Section Search................... 6 1.1. Fibonacci Search...................... 8 1. Algorithms

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

Implementation of an Interior Point Multidimensional Filter Line Search Method for Constrained Optimization

Implementation of an Interior Point Multidimensional Filter Line Search Method for Constrained Optimization Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 391 Implementation of an Interior Point Multidimensional Filter

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

DENSE INITIALIZATIONS FOR LIMITED-MEMORY QUASI-NEWTON METHODS

DENSE INITIALIZATIONS FOR LIMITED-MEMORY QUASI-NEWTON METHODS DENSE INITIALIZATIONS FOR LIMITED-MEMORY QUASI-NEWTON METHODS by Johannes Brust, Oleg Burdaov, Jennifer B. Erway, and Roummel F. Marcia Technical Report 07-, Department of Mathematics and Statistics, Wae

More information

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method Optimization Methods and Software Vol. 00, No. 00, Month 200x, 1 11 On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method ROMAN A. POLYAK Department of SEOR and Mathematical

More information

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems Outline Scientific Computing: An Introductory Survey Chapter 6 Optimization 1 Prof. Michael. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

CONVERGENCE PROPERTIES OF COMBINED RELAXATION METHODS

CONVERGENCE PROPERTIES OF COMBINED RELAXATION METHODS CONVERGENCE PROPERTIES OF COMBINED RELAXATION METHODS Igor V. Konnov Department of Applied Mathematics, Kazan University Kazan 420008, Russia Preprint, March 2002 ISBN 951-42-6687-0 AMS classification:

More information

Lecture 16: October 22

Lecture 16: October 22 0-725/36-725: Conve Optimization Fall 208 Lecturer: Ryan Tibshirani Lecture 6: October 22 Scribes: Nic Dalmasso, Alan Mishler, Benja LeRoy Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Convex Optimization Prof. Nati Srebro Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Equality Constrained Optimization f 0 (x) s. t. A R p n, b R p Using access to: 2 nd order oracle

More information

On the acceleration of augmented Lagrangian method for linearly constrained optimization

On the acceleration of augmented Lagrangian method for linearly constrained optimization On the acceleration of augmented Lagrangian method for linearly constrained optimization Bingsheng He and Xiaoming Yuan October, 2 Abstract. The classical augmented Lagrangian method (ALM plays a fundamental

More information

Research Article A Two-Step Matrix-Free Secant Method for Solving Large-Scale Systems of Nonlinear Equations

Research Article A Two-Step Matrix-Free Secant Method for Solving Large-Scale Systems of Nonlinear Equations Applied Mathematics Volume 2012, Article ID 348654, 9 pages doi:10.1155/2012/348654 Research Article A Two-Step Matrix-Free Secant Method for Solving Large-Scale Systems of Nonlinear Equations M. Y. Waziri,

More information

Limited Memory Bundle Algorithm for Large Bound Constrained Nonsmooth Minimization Problems

Limited Memory Bundle Algorithm for Large Bound Constrained Nonsmooth Minimization Problems Reports of the Department of Mathematical Information Technology Series B. Scientific Computing No. B. 1/2006 Limited Memory Bundle Algorithm for Large Bound Constrained Nonsmooth Minimization Problems

More information

Handout on Newton s Method for Systems

Handout on Newton s Method for Systems Handout on Newton s Method for Systems The following summarizes the main points of our class discussion of Newton s method for approximately solving a system of nonlinear equations F (x) = 0, F : IR n

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Introduction to unconstrained optimization - direct search methods

Introduction to unconstrained optimization - direct search methods Introduction to unconstrained optimization - direct search methods Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Structure of optimization methods Typically Constraint handling converts the

More information

Convergence of a Positive-Definite Scaled Symmetric Rank One Method

Convergence of a Positive-Definite Scaled Symmetric Rank One Method Matematia, 2002, Jilid 18, bil. 2, hlm. 117 127 c Jabatan Matemati, UTM. Convergence of a Positive-Definite Scaled Symmetric Ran One Method Mali b. Hj. Abu Hassan, Mansor b. Monsi & Leong Wah June Department

More information

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions International Journal of Control Vol. 00, No. 00, January 2007, 1 10 Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions I-JENG WANG and JAMES C.

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Gradient method based on epsilon algorithm for large-scale nonlinearoptimization

Gradient method based on epsilon algorithm for large-scale nonlinearoptimization ISSN 1746-7233, England, UK World Journal of Modelling and Simulation Vol. 4 (2008) No. 1, pp. 64-68 Gradient method based on epsilon algorithm for large-scale nonlinearoptimization Jianliang Li, Lian

More information

A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION

A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-19-3 March

More information

Pacific Journal of Optimization (Vol. 2, No. 3, September 2006) ABSTRACT

Pacific Journal of Optimization (Vol. 2, No. 3, September 2006) ABSTRACT Pacific Journal of Optimization Vol., No. 3, September 006) PRIMAL ERROR BOUNDS BASED ON THE AUGMENTED LAGRANGIAN AND LAGRANGIAN RELAXATION ALGORITHMS A. F. Izmailov and M. V. Solodov ABSTRACT For a given

More information

AN EIGENVALUE STUDY ON THE SUFFICIENT DESCENT PROPERTY OF A MODIFIED POLAK-RIBIÈRE-POLYAK CONJUGATE GRADIENT METHOD S.

AN EIGENVALUE STUDY ON THE SUFFICIENT DESCENT PROPERTY OF A MODIFIED POLAK-RIBIÈRE-POLYAK CONJUGATE GRADIENT METHOD S. Bull. Iranian Math. Soc. Vol. 40 (2014), No. 1, pp. 235 242 Online ISSN: 1735-8515 AN EIGENVALUE STUDY ON THE SUFFICIENT DESCENT PROPERTY OF A MODIFIED POLAK-RIBIÈRE-POLYAK CONJUGATE GRADIENT METHOD S.

More information

An artificial neural networks (ANNs) model is a functional abstraction of the

An artificial neural networks (ANNs) model is a functional abstraction of the CHAPER 3 3. Introduction An artificial neural networs (ANNs) model is a functional abstraction of the biological neural structures of the central nervous system. hey are composed of many simple and highly

More information

On the use of quadratic models in unconstrained minimization without derivatives 1. M.J.D. Powell

On the use of quadratic models in unconstrained minimization without derivatives 1. M.J.D. Powell On the use of quadratic models in unconstrained minimization without derivatives 1 M.J.D. Powell Abstract: Quadratic approximations to the objective function provide a way of estimating first and second

More information

Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method. 1 Introduction

Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method. 1 Introduction ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.11(2011) No.2,pp.153-158 Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method Yigui Ou, Jun Zhang

More information

A SHIFTED PRIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OPTIMIZATION

A SHIFTED PRIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OPTIMIZATION A SHIFTED RIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OTIMIZATION hilip E. Gill Vyacheslav Kungurtsev Daniel. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-18-1 February 1, 2018

More information

A DECOMPOSITION PROCEDURE BASED ON APPROXIMATE NEWTON DIRECTIONS

A DECOMPOSITION PROCEDURE BASED ON APPROXIMATE NEWTON DIRECTIONS Working Paper 01 09 Departamento de Estadística y Econometría Statistics and Econometrics Series 06 Universidad Carlos III de Madrid January 2001 Calle Madrid, 126 28903 Getafe (Spain) Fax (34) 91 624

More information