Gas Compression and Expansion. How can you calculate the energy used or made available when the volume of a gas is changed?

Size: px
Start display at page:

Download "Gas Compression and Expansion. How can you calculate the energy used or made available when the volume of a gas is changed?"

Transcription

1 Gas Compression and Expansion How can you calculate the energy used or made available when the volume of a gas is changed? Gas Compression and Expansion page: 1 of 16 Contents Initial Problem Statement 2 Narrative 3-8 Solutions 9-14 Appendices 15-16

2 Gas Compression and Expansion Initial Problem Statement Many machines compress or expand a gas or fluid as part of their working design Examples include a simple bicycle pump, a refrigerator and an internal combustion engine To compress a gas you need to expend energy to reduce its volume When a gas is allowed to expand energy is released How can you calculate the energy used or made available when the volume of a gas is changed? Gas Compression and Expansion page: 2 of 16

3 Narrative 1 Isothermal change An isothermal change of volume of a gas is one where the temperature of the gas remains constant To achieve this, the change in volume must be slow and there must be good thermal contact with the surroundings In this case, for an ideal gas, the pressure, p, and volume,, are related through the equation p = k, This is Boyle s law where k is a constant The energy transfer, w, involved in changing the volume is given by w= p d Hint Activity 1 k The expression p = k can be re-written as p = Substitute this into w p = d and find the integral This is an indefinite integral; make sure you have a constant of integration Discussion 1 Hint How do you determine the constant of integration? Activity 2 Don t forget the minus sign One cylinder of an engine has a volume available to an air/fuel mix of 500 cm 3 when the piston is in its lowest position Convert this volume to m 3 olume available: 500 cm 3 Gas Compression and Expansion page: 3 of 16 Figure 1

4 The initial pressure at this volume is 101 kilopascals Find the constant, k, in p = k and the constant of integration in your expression for the energy transfer when the volume is changed Hint Don t forget the minus sign Discussion 2 What are the units of k? Activity 3 The gas is isothermally compressed to a volume of 50 cm 3 Figure 2 Find the energy transfer in joules Give your answer to 1 dp Hint Don t forget to convert the volume to m 3 Multimedia Compressed volume: 50 cm 3 Hint Don t forget the minus sign The activity Gas Compression and Expansion Interactive is available to demonstrate the change of volume that occurs as a pistol moves in a cylinder Gas Compression and Expansion page: 4 of 16

5 2 Isothermal change, definite integral The previous section used an indefinite integral to evaluate the energy change when a gas is compressed or expanded When changes in values are considered in problems involving integration, eg the change in energy when there is a change in volume, the result can be obtained by using limits to give a definite integral This avoids having to determine the constant of integration For the previous example where a volume of m 3 is compressed to a volume of m 3, the change in energy is written as a definite integral where k = 505 w = k 510 Discussion 3 1 d Since the variable in the integral is, the limits, and are values of Which of the limits, or is the larger? What does this tell you about what is happening? Activity 4 Find w using the definite integral above Give your answer to 1 dp A graph of how the pressure, p, varies with the volume,, in the isothermal system is shown below Pressure (Pa) 600E E E E E E+06 Final volume Initial volume 000E+00 00E+00 50E-05 10E-04 15E-04 20E-04 25E-04 30E-04 35E-04 40E-04 45E-04 50E-04 55E-04 60E-04 65E-04 Figure 3 olume (m 3 ) Discussion 4 What does the definite integral you have evaluated represent on the graph? Gas Compression and Expansion page: 5 of 16

6 Discussion 5 These calculations assume a slow change in volume so that the gas remains at the same temperature as its surroundings This is done by transferring energy between the gas and its surroundings Is this likely to be the case for an internal combustion engine? Gas Compression and Expansion page: 6 of 16

7 3 Adiabatic change This is a more challenging extension The previous sections have assumed a slow change in volume so that the gas remains at the same temperature as its surroundings This is done by transferring energy between the gas and its surroundings In many cases, however, this will not be the case For example, the compression of the air/fuel mixture in an internal combustion engine is very fast, typically taking only a few tens of milliseconds Under these circumstances energy does not have sufficient time to leave the system and instead heats the gas, changing its temperature In a diesel engine this effect is used to ignite the fuel by compression alone In the ideal case where no energy is lost the relationship between pressure and volumes is given for an ideal gas by p γ = k, where k is a constant (not equal to the constant used in the previous sections) The volume is raised to the power of γ which is a property of the gas being compressed For air γ may be taken as having a constant value of 14 The energy transfer involved in changing the volume, w, is still given by w= p d k The expression p γ = k can be re-written as p = γ, so that k w = γ d 1 = k d γ Activity 5 Find the above integral using γ = 14 Activity 6 One cylinder of an engine has a volume available to an air/fuel mix of 500 cm 3 when the piston is in its lowest position Convert this volume to m 3 The initial pressure at this volume is 101 kilopascals Find the constant, k, in p γ = k where γ = 14, and the constant of integration in your expression for the energy transfer when the volume is changed Hint Don t forget the minus sign Gas Compression and Expansion page: 7 of 16 Activity 7 The gas is adiabatically compressed to a volume of 50 cm 3 Find the energy transfer in joules Give your answer to 1 dp

8 Hint Don t forget to convert the volume to m 3 Activity 8 Introduce limits to the integral w= k 1 d and find the energy transfer using a γ definite integral Discussion 6 Do you think it is possible to compress a gas without a loss of energy? Gas Compression and Expansion page: 8 of 16

9 Solutions 1 Isothermal change Activity 1 solution For an isothermal system pressure and volume are related through p = k k where k is a constant This implies that p = The energy transfer involved in changing the volume, w, is given by w= p d Substituting for p, Finding the integral w = k d 1 = k d w= k 1 d = kln + c where c is a constant of integration Discussion 1 solution As k is a constant As 1 x dx = ln x + c To find the constant of integration you need to have a known value of w for a known value of For a change of volume of gas the most obvious volume to use is the starting volume As you haven t changed the volume of the gas yet the energy exchanged when the gas has this volume is zero (ie you haven t done anything to the gas yet!) Activity 2 solution For the specific case where the initial volume is 500 cm 3 you have an initial volume in m 3 of = m 3 The initial pressure is 101 kilopascals = pascals Using p = k, k = = 50 5 You have stated above that when is equal to the initial volume, the energy transfer, w, is zero, so that w= kln + c 0= 505 ln c Rearranging to make c the subject, c = 50 5ln 5 10 = Gas Compression and Expansion page: 9 of 16

10 ie k has the unit of energy, joules Discussion 2 solution The units of pressure are pascals = [N][m] -2 and the units of volume are [m] 3 The units of k in the expression p= k are therefore given by 2 3 [ ][ ] [ ] = [ ][ ]= N m m N m [] J Activity 3 solution Compressing the gas isothermally to a volume of 50 cm -3 = m 3 requires a transfer of energy equal to w= kln + c = 50 5ln = ie, the energy transfer is 1163 J (1 dp) Gas Compression and Expansion page: 10 of 16

11 2 Isothermal change, definite integral Evaluating, Discussion 3 solution The limits of the integration are or , of which, is the larger Notice how the lower limit gives the value of the variable at the starting point of the problem while the upper limit gives its value and the end-point of the problem As the lower limit is numerically larger than the upper limit, this tells you that the integral is evaluating an effect due to a reduction in volume Activity 4 solution The energy transfer is given by the definite integral w = d The energy transfer is 1163 J (1 dp) w= 50 5[ ln] = 50 5 ln5 10 ln 5 10 = ( ) Notice how using limits avoids having to calculate a constant of integration Pressure (Pa) 600E E E E E+06 Discussion 4 solution The absolute value of the result of the integration gives the area on the p- curve between the initial volume and the final volume 100E+06 Final volume 000E+00 00E+00 50E-05 10E-04 15E-04 20E-04 25E-04 30E-04 35E-04 40E-04 45E-04 50E-04 55E-04 60E-04 65E-04 Figure 4 Initial volume olume (m 3 ) Gas Compression and Expansion page: 11 of 16

12 Discussion 5 solution These calculations assume a slow change in volume so that the gas remains at the same temperature as its surroundings This is done by transferring energy between the gas and its surroundings In many practical cases, however, this will not be the case For example, the compression of the air/fuel mixture in an internal combustion engine is very fast, typically taking only a few tens of milliseconds Under these circumstances energy does not have sufficient time to leave the system and instead heats the gas, changing its temperature In a diesel engine this effect is used to ignite the fuel by compression alone Under these circumstances a different calculation must be made This is the topic of the next section Gas Compression and Expansion page: 12 of 16

13 3 Adiabatic change Activity 5 solution The energy transfer is given by the integral Re-write this in the form w= k 1 d γ w= k γ d and use the standard rules for integration (recall γ = 14) w= k γ d = k 14 d k = + c k = + c 04 Activity 6 solution n+ 1 n x x dx= + c n + 1 For the specific case where the initial volume is 500 cm 3 you have an initial volume in m 3 of = m 3 The initial pressure is 101 kilopascals = pascals Using p γ = k, where γ = 14, ( ) k = = You have stated above that when is equal to the initial volume, the energy transfer, w, is zero, so that k 0 = + c 04 Making c the subject and evaluating k c = ( ) = exactly = ( ) Gas Compression and Expansion page: 13 of 16

14 Activity 7 solution Compressing the gas adiabatically to a volume of 50 cm -3 = m 3 requires a transfer of energy equal to w = k + c 04 ( ) = 04 = ie, the energy transfer is 1909 J (1 dp) Activity 8 solution The calculation can be carried out using a definite integral The initial volume is m 3 and the final volume is m 3 This gives the energy transfer as the following definite integral w= k γ d = ie, the energy transfer is 1909 J (1 dp) 14 d = = ( 5 10 ) = Discussion 6 solution 04 ( ( ) ) U n+1 n x x dx= n + L 1 In real systems it is not possible for the change in volume to be adiabatic; some energy will be lost In these cases the change is said to be polytropic and the relationship between pressure and volume is given by where 1 < n < 14 p n = k, U L Gas Compression and Expansion page: 14 of 16

15 Appendix 1 using the interactives Gas Compression and Expansion Interactive The activity Gas Compression and Expansion Interactive is available to demonstrate the change of volume that occurs as a pistol moves in a cylinder Figure 5 The speed of the animation is controlled using the slider at the bottom of the screen In particular, if you stop the motion when the piston as at the very bottom of its motion and compare the volume available with that which available when the piston is at the very top of its motion, you will see that there is a volume ratio of 10:1 This is the compression ratio of the engine Figure 6 Figure 7 Gas Compression and Expansion page: 15 of 16

16 Appendix 2 mathematical coverage Use calculus to solve engineering problems Be able to interpret area Distinguish between definite and indefinite integrals and interpret a definite integral as an area Gas Compression and Expansion page: 16 of 16

Laws of Thermodynamics

Laws of Thermodynamics Laws of Thermodynamics The Three Laws of Thermodynamics - The first lawof thermodynamics, also called conservation of energy. We can use this knowledge to determine the amount of energy in a system, the

More information

Lecture 7, 8 and 9 : Thermodynamic process by: Asst. lect. Karrar Al-Mansoori CONTENTS. 7) Thermodynamic process, path and cycle 2

Lecture 7, 8 and 9 : Thermodynamic process by: Asst. lect. Karrar Al-Mansoori CONTENTS. 7) Thermodynamic process, path and cycle 2 CONTENTS Topics pages 7) Thermodynamic process, path and cycle 8) Reversibility and irreversibility 4 9) Thermodynamic processes and calculation of work 5 9.: Constant pressure process or isobaric process

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Introduction to Vapour Power Cycle Today, we will continue

More information

CHAPTER - 12 THERMODYNAMICS

CHAPTER - 12 THERMODYNAMICS CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

More information

The laws of Thermodynamics. Work in thermodynamic processes

The laws of Thermodynamics. Work in thermodynamic processes The laws of Thermodynamics ork in thermodynamic processes The work done on a gas in a cylinder is directly proportional to the force and the displacement. = F y = PA y It can be also expressed in terms

More information

Thermodynamics: The First Law and Heat Transfer

Thermodynamics: The First Law and Heat Transfer Thermodynamics: The First Law and Heat Transfer From Warmup I would love to work problems in class. I think a synthesis problem might be useful. I try to make the best use of our very limited class time.

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

EF 152 Exam 3 - Spring 2017 Page 1 Copy 515

EF 152 Exam 3 - Spring 2017 Page 1 Copy 515 EF 152 Exam 3 - Spring 2017 Page 1 Copy 515 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

October 18, 2011 Carnot cycle - 1

October 18, 2011 Carnot cycle - 1 Carnot Cycle In 1824, Sadi Carnot (1796-1832) published a short book, eflections on the Motive Power of Fire (The book is now free online You should try it out) To construct an engine, Carnot noted, at

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of THERMODYNAMICS NQF LEVEL 3 OUTCOME 2 -ENERGY TRANSFER

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of THERMODYNAMICS NQF LEVEL 3 OUTCOME 2 -ENERGY TRANSFER EDEXCEL NATIONAL CERTIFICATE/DIPLOMA PRINCIPLES AND APPLICATIONS of THERMODYNAMICS NQF LEEL OUTCOME -ENERGY TRANSFER TUTORIAL - CLOSED THERMODYNAMIC SYSTEMS CONTENT Be able to quantify energy transfer

More information

Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications

Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications The study of the laws that govern the conversion of energy from one form to the other Energy Conversion Concerned

More information

Heat Machines (Chapters 18.6, 19)

Heat Machines (Chapters 18.6, 19) eat Machines (hapters 8.6, 9) eat machines eat engines eat pumps The Second Law of thermodynamics Entropy Ideal heat engines arnot cycle Other cycles: Brayton, Otto, Diesel eat Machines Description The

More information

Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator?

Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing page: 1 of 22 Contents Initial Problem Statement 2 Narrative

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations. Internal Energy he total energy of the system. Contribution from translation + rotation + vibrations. Equipartition theorem for the translation and rotational degrees of freedom. 1/ k B Work Path function,

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings. 1 P a g e The branch of physics which deals with the study of transformation of heat energy into other forms of energy and vice-versa. A thermodynamical system is said to be in thermal equilibrium when

More information

Power Demand Planning

Power Demand Planning Power Demand Planning Power Demand Planning page: 1 of 14 How can you predict future power requirements? Contents Initial Problem Statement 2 Narrative 3-5 Notes 6 Solutions 7-1 Appendices 11-14 MEI 211

More information

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm 12 THERMODYNAMICS Zeroth law of thermodynamics Two systems separately in thermal equilibrium with a third system are in thermal equilibrium with each other. Isotherm It is the graph connecting pressure

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Availability and Irreversibility

Availability and Irreversibility Availability and Irreversibility 1.0 Overview A critical application of thermodynamics is finding the maximum amount of work that can be extracted from a given energy resource. This calculation forms the

More information

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium. THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

More information

Introduction to Aerospace Propulsion. Prof. Bhaskar Roy. Prof. A. M. Pradeep. Department of Aerospace Engineering

Introduction to Aerospace Propulsion. Prof. Bhaskar Roy. Prof. A. M. Pradeep. Department of Aerospace Engineering Introduction to Aerospace Propulsion Prof. Bhaskar Roy Prof. A. M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 11 Reversible and irreversible

More information

w = -nrt hot ln(v 2 /V 1 ) nrt cold ln(v 1 /V 2 )[sincev/v 4 3 = V 1 /V 2 ]

w = -nrt hot ln(v 2 /V 1 ) nrt cold ln(v 1 /V 2 )[sincev/v 4 3 = V 1 /V 2 ] Chemistry 433 Lecture 9 Entropy and the Second Law NC State University Spontaneity of Chemical Reactions One might be tempted based on the results of thermochemistry to predict that all exothermic reactions

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 06 Ideal and Real Brayton Cycles Hello

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Lecture 5. PHYC 161 Fall 2016

Lecture 5. PHYC 161 Fall 2016 Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Conservation of Energy

Conservation of Energy Conservation of Energy Energy can neither by created nor destroyed, but only transferred from one system to another and transformed from one form to another. Conservation of Energy Consider at a gas in

More information

CARNOT CYCLE = T = S ( U,V )

CARNOT CYCLE = T = S ( U,V ) hermodynamics CANO CYCE Do not trouble students with history In 1824, Sadi Carnot (1796-1832) published a short book, eflections on the Motive Power of Fire (he book is now free online You should try it

More information

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams AME 46 Energy and ropulsion Lecture 7 Unsteady-flow (reciprocating) engines : Using - and -s diagrams Outline! Air cycles! What are they?! Why use - and -s diagrams?! Using - and -s diagrams for air cycles!!!!!!

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

This Week. 6/2/2015 Physics 214 Summer

This Week. 6/2/2015 Physics 214 Summer This Week Heat and Temperature Water and Ice Our world would be different if water didn t expand Engines We can t use all the energy! Why is a diesel engine more efficient? Geysers: You have to be faithful

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

Trial version. Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator?

Trial version. Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing page: 1 of 13 Contents Initial Problem Statement 2 Narrative

More information

Content 10 Thermodynamics of gases Objectives Objectives 10.1 Heat capacity

Content 10 Thermodynamics of gases Objectives Objectives 10.1 Heat capacity hermodynamics of gases ontent. Heat capacities. ork done by a gas.3 irst law of thermodynamics.4 Isothermal adiabatic changes Objectives (a) define heat capacity, specific heat capacity molar heat capacity

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. Energy is neither created

More information

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05 Chapter 19 First Law of Thermodynamics Dr. Armen Kocharian, 04/04/05 Heat and Work Work during volume change Work in Thermodynamics Work can be done on a deformable system, such as a gas Consider a cylinder

More information

Introduction to thermodynamics

Introduction to thermodynamics Chapter 6 Introduction to thermodynamics Topics First law of thermodynamics Definitions of internal energy and work done, leading to du = dq + dw Heat capacities, C p = C V + R Reversible and irreversible

More information

Chapter 16 Thermodynamics

Chapter 16 Thermodynamics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 16 Thermodynamics Thermodynamics Introduction Another area of physics is thermodynamics Continues with the principle of conservation of energy

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

7.2 Applications of Euler s and Fermat s Theorem.

7.2 Applications of Euler s and Fermat s Theorem. 7.2 Applications of Euler s and Fermat s Theorem. i) Finding and using inverses. From Fermat s Little Theorem we see that if p is prime and p a then a p 1 1 mod p, or equivalently a p 2 a 1 mod p. This

More information

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory

11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory 11/9/017 AP PHYSICS UNIT Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory CHAPTER 13 SECOND LAW OF THERMODYNAMICS IRREVERSIBLE PROCESSES The U G of the water-earth system at the

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

- Apply closed system energy balances, observe sign convention for work and heat transfer.

- Apply closed system energy balances, observe sign convention for work and heat transfer. CHAPTER : ENERGY AND THE FIRST LAW OF THERMODYNAMICS Objectives: - In this chapter we discuss energy and develop equations for applying the principle of conservation of energy. Learning Outcomes: - Demonstrate

More information

Lecture 40: Air standard cycle, internal combustion engines, Otto cycle

Lecture 40: Air standard cycle, internal combustion engines, Otto cycle ME 200 Thermodynamics I Spring 206 Lecture 40: Air standard cycle, internal combustion engines, Otto cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. 2. State the first law

More information

Thermodynamic Systems

Thermodynamic Systems Thermodynamic Systems For purposes of analysis we consider two types of Thermodynamic Systems: Closed System - usually referred to as a System or a Control Mass. This type of system is separated from its

More information

NOTE: Only CHANGE in internal energy matters

NOTE: Only CHANGE in internal energy matters The First Law of Thermodynamics The First Law of Thermodynamics is a special case of the Law of Conservation of Energy It takes into account changes in internal energy and energy transfers by heat and

More information

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles by James Doane, PhD, PE Contents 1.0 Course Oeriew... 4.0 Basic Concepts of Thermodynamics... 4.1 Temperature

More information

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13 Physics 115 General Physics II Session 13 Specific heats revisited Entropy R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 4/22/14 Physics 115 1 Lecture Schedule

More information

Downloaded from

Downloaded from Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

2/18/2019. Ideal-Gas Processes. Thermodynamics systems. Thermodynamics systems

2/18/2019. Ideal-Gas Processes. Thermodynamics systems. Thermodynamics systems Thermodynamics systems A thermodynamic system is any collection of objects that may exchange energy with its surroundings. The popcorn in the pot is a thermodynamic system. In the thermodynamic process

More information

Thermodynamics systems

Thermodynamics systems Thermodynamics systems A thermodynamic system is any collection of objects that may exchange energy with its surroundings. The popcorn in the pot is a thermodynamic system. In the thermodynamic process

More information

Thermodynamics: The Laws

Thermodynamics: The Laws Thermodynamics: The Laws Resources: Serway The Laws of Thermodynamics: 12 AP Physics B Videos Physics B Lesson 29: Laws of Thermodynamics Thermodynamics Thermodynamics is the study of heat and thermal

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

Thermodynamics of Fluid Phase Equilibria Dr. Jayant K. Singh Department of Chemical Engineering Indian Institute of Technology, Kanpur

Thermodynamics of Fluid Phase Equilibria Dr. Jayant K. Singh Department of Chemical Engineering Indian Institute of Technology, Kanpur Thermodynamics of Fluid Phase Equilibria Dr. Jayant K. Singh Department of Chemical Engineering Indian Institute of Technology, Kanpur Lecture - 01 Review of basic concepts of thermodynamics Welcome to

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 32: Heat and Work II Slide 32-1 Recap: the first law of thermodynamics Two ways to raise temperature: Thermally: flow of heat Energy

More information

Chapter One Reviews of Thermodynamics Update on 2013/9/13

Chapter One Reviews of Thermodynamics Update on 2013/9/13 Chapter One Reviews of Thermodynamics Update on 2013/9/13 (1.1). Thermodynamic system An isolated system is a system that exchanges neither mass nor energy with its environment. An insulated rigid tank

More information

BIT 1002 Thermodynamics. First Law Heat engines Second Law Entropy. What is heat?

BIT 1002 Thermodynamics. First Law Heat engines Second Law Entropy. What is heat? BIT 1002 Thermodynamics Thermodynamics: this will introduce you to Rubber Band heat engine (Haverford college) 1. First Law 2. Heat engines 3. Second Law 4. Entropy What is heat? We can understand a number

More information

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system:

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system: There are two ways to change the internal energy of a system: Thermodynamics Work 1. By flow of heat, q Heat is the transfer of thermal energy between and the surroundings 2. By doing work, w Work can

More information

UNIT D: MECHANICAL SYSTEMS

UNIT D: MECHANICAL SYSTEMS 1 UNIT D: MECHANICAL SYSTEMS Science 8 2 Section 2.0 AN UNDERSTANDING OF MECHANICAL ADVANTAGE AND WORK HELPS IN DETERMINING THE EFFICIENCY OF MACHINES. 1 3 MACHINES MAKE WORK EASIER Topic 2.1 4 WHAT WOULD

More information

SECOND ENGINEER REG. III/2 APPLIED HEAT

SECOND ENGINEER REG. III/2 APPLIED HEAT SECOND ENGINEER REG. III/2 APPLIED HEAT LIST OF TOPICS A B C D E F G H I J K Pressure, Temperature, Energy Heat Transfer Internal Energy, Thermodynamic systems. First Law of Thermodynamics Gas Laws, Displacement

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

7. Development of the 2nd Law

7. Development of the 2nd Law 7-1 7. Development of the 2nd Law 7.1 1st Law Limitations The 1 st Law describes energy accounting. Once we have a process (or string of processes) we can calculate the relevant energy interactions. The

More information

Thermodynamics Second Law Heat Engines

Thermodynamics Second Law Heat Engines Thermodynamics Second Law Heat Engines Lana Sheridan De Anza College May 10, 2018 Last time entropy (microscopic perspective) Overview heat engines heat pumps Carnot engines Heat Engines Steam engines

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Motivation for a Second Law!! First law allows us to calculate the energy

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Unified Quiz: Thermodynamics

Unified Quiz: Thermodynamics Fall 004 Unified Quiz: Thermodynamics November 1, 004 Calculators allowed. No books allowed. A list of equations is provided. Put your name on each page of the exam. Read all questions carefully. Do all

More information

Lecture 10: Heat Engines and Reversible Processes

Lecture 10: Heat Engines and Reversible Processes Lecture 10: Heat Engines and Reversible Processes Last time we started discussing cyclic heat engines these are devices that convert heat energy into mechanical work We found that in general, heat engines

More information

12.1 Work in Thermodynamic Processes

12.1 Work in Thermodynamic Processes Name APPH7_Notes3key Page 1 of 6 AP Physics Date Notes: Thermodynamics 12.1 Work in Thermodynamic Processes First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy

More information

MATTER AND HEAT. Chapter 4 OUTLINE GOALS

MATTER AND HEAT. Chapter 4 OUTLINE GOALS Chapter 4 MATTER AND HEAT OUTLINE Temperature and Heat 4.1 Temperature 4.2 Heat 4.3 Metabolic Energy Fluids 4.4 Density 4.5 Pressure 4.6 Buoyancy 4.7 The Gas Laws Kinetic Theory of Matter 4.8 Kinetic Theory

More information

Chapter 2 Carnot Principle

Chapter 2 Carnot Principle Chapter 2 Carnot Principle 2.1 Temperature 2.1.1 Isothermal Process When two bodies are placed in thermal contact, the hotter body gives off heat to the colder body. As long as the temperatures are different,

More information

Physics 111. Thursday, Dec. 9, 3-5pm and 7-9pm. Announcements. Thursday, December 9, 2004

Physics 111. Thursday, Dec. 9, 3-5pm and 7-9pm. Announcements. Thursday, December 9, 2004 ics day, ember 9, 2004 Ch 18: diagrams isobaric process isochoric process isothermal process adiabatic process 2nd Law of Thermodynamics Class Reviews/Evaluations For the rest of the semester day,. 9,

More information

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Module No. #05 Lecture No. #29 Non Isothermal Reactor Operation Let us continue

More information

SPH 302 THERMODYNAMICS

SPH 302 THERMODYNAMICS THERMODYNAMICS Nyongesa F. W., PhD. e-mail: fnyongesa@uonbi.ac.ke 1 Objectives Explain the Laws of thermodynamics & their significance Apply laws of thermodynamics to solve problems relating to energy

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

CH 15. Zeroth and First Law of Thermodynamics

CH 15. Zeroth and First Law of Thermodynamics CH 15 Zeroth and First Law of Thermodynamics THERMODYNAMICS Thermodynamics Branch of Physics that is built upon the fundamental laws that heat and work obey. Central Heating Objectives: After finishing

More information

Engineering Thermodynamics. Chapter 5. The Second Law of Thermodynamics

Engineering Thermodynamics. Chapter 5. The Second Law of Thermodynamics 5.1 Introduction Chapter 5 The Second aw of Thermodynamics The second law of thermodynamics states that processes occur in a certain direction, not in just any direction. Physical processes in nature can

More information

LESSON No. 9 WORK TRANSFER: In thermodynamics the work can be defined as follows:

LESSON No. 9 WORK TRANSFER: In thermodynamics the work can be defined as follows: LESSON No. 9 WORK TRANSFER: In thermodynamics the work can be defined as follows: Work shall be done by the system if the total effect outside the system is equivalent to the raising of weight and this

More information

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples Outline Property ealuation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids s A piston-cylinder deice initially contains 0.5m of saturated water apor at 00kPa.

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

Procedural Animation. D.A. Forsyth

Procedural Animation. D.A. Forsyth Procedural Animation D.A. Forsyth Big points Two important types of procedural animation slice and dice data, like texture synthesis build (approximate) physical simulation Extremely powerful issues how

More information

Why do we need to study thermodynamics? Examples of practical thermodynamic devices:

Why do we need to study thermodynamics? Examples of practical thermodynamic devices: Why do we need to study thermodynamics? Knowledge of thermodynamics is required to design any device involving the interchange between heat and work, or the conversion of material to produce heat (combustion).

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Reversibility, Irreversibility and Carnot cycle. Irreversible Processes. Reversible Processes. Carnot Cycle

Reversibility, Irreversibility and Carnot cycle. Irreversible Processes. Reversible Processes. Carnot Cycle Reversibility, Irreversibility and Carnot cycle The second law of thermodynamics distinguishes between reversible and irreversible processes. If a process can proceed in either direction without violating

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

Thermodynamics. AP Physics B

Thermodynamics. AP Physics B Thermodynamics AP Physics B Important Distinctions Thermodynamics study of processes in which energy is transferred as heat and work. There is a difference between heat and work: Heat is energy transferred

More information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester

Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

More information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

More information

The need for something else: Entropy

The need for something else: Entropy Lecture 27 Goals: Ch. 18 ualitatively understand 2 nd Law of Thermodynamics Ch. 19 Understand the relationship between work and heat in a cycling process Follow the physics of basic heat engines and refrigerators.

More information