A Riemannian Framework for Denoising Diffusion Tensor Images

Size: px
Start display at page:

Download "A Riemannian Framework for Denoising Diffusion Tensor Images"

Transcription

1 A Riemannian Framework for Denoising Diffusion Tensor Images Manasi Datar No Institute Given Abstract. Diffusion Tensor Imaging (DTI) is a relatively new imaging modality that has been extensively used to study diffusion processes in the brain and has applications ranging from diagnostic to surgical planning. However, DTI imaging systems are highly sensitive to noise, leading to reconstructed images with low SNR. Thus, there is a need for image denoising algorithms specifically designed to regularize tensor structures. Most commonly used denoising algorithms operate in the image space, with results prone to loss of tensor properties. This report presents an adaptation of scalar image denoising algorithms using H 1 regularization and Total Variation (TV) regularization, to the tensor space via a Riemannian framework. The mathematical framework translating these algorithms to the Riemannian space is presented, followed by results on DTI images of the brain. 1 Introduction and Related Work DTI is a magnetic resonance imaging (MRI) technique that records diffusion of water molecules in the brain tissue to create tractography images that provide structural information about the underlying tissue. Each voxel of the DTI image consists of a tensor composed from six or more different MRI acquisitions, each produced by orienting the imaging gradient to simulate diffusion along different directions. More precisely, tensor values at each voxel characterize the underlying local microstructure by quantifying diffusion of water molecules. While the information contained in a DTI image enables detection of pathology at various scales, the acquisition process is extremely sensitive to noise, leading to low SNR. There have been various efforts to denoise DTI images by extending traditional scalar image denoising algorithms to operate on tensor data. One such method is given by Christiansen, et. al. [1], which looks at an orthogonal decomposition of each tensor D = LL T and extends the total variation regularization scheme to matrix valued data. A novel class of anisotropic regularization methods that preserve positive semi-definiteness of a matrix field without any additional constraints is presented in [2]. In [3], the authors consider tensors belonging to matrix Lie groups and use minimization of the principal chiral model (PCM) action to regularize matrix valued data. While this method preserves the Lie group structure, it regularizes the tensors isotropically and does not preserve discontinuities. Another approach uses parameterization schemes

2 2 such as the Iwasawa coordinates [4] to propose a GL(n) invariant regularization algorithm. Most of the methods described above preserve tensor structure to some extent, but may not be able to preserve the positive definiteness of individual tensors. This report motivates the application of regularization algorithms to constrain the denoised tensor to lie on the manifold of positive definite (P D) matrices. We introduce the H 1 and Total Variation (TV) regularization schemes and derive equivalent solutions in the Riemannian space of PD matrices. Further, we describe an implementation using gradient descent and comment on the practical difficulties encountered in the process. Finally, we present results on DTI images of the human brain. 2 Background This section provides the mathematical premise of image denoising algorithms that attempt to minimize the total variation in an image. We also list the concepts of the exponential and logarithmic maps from Riemannian geometry to help develop an extension of traditional denoising algorithms to the tensor domain. 2.1 Image Denoising Mathematically, the general problem can be stated as the following minimization: min u such that u f u Ω 2 2 Ω σ 2 (1) where u is the resultant denoised image, f is the original image (ground truth, without any noise), Ω is the domain and σ 2 is the estimate of the variance of the noise in the image. Eq. 1 can be transformed into an unconstrained minimization problem using the Lagrange multiplier λ, as follows: min u + u f u Ω 2 2 (2) In this paper, we discuss H 1 regularization and T V regularization schemes as applied to tensor data. The reader is referred to class notes by Younes [5] for a thorough description of the algorithms discussed in subsequent sections. 2.2 Concepts from Riemannian Geometry By design, diffusion tensors have a structure synonymous to that of P D(n) (n = 3 in our case) of symmetric positive definite matrices and can be considered to form a Riemannian manifold [6]. This implies that the inner product is defined in the tangent space at each point, and this varies smoothly across the manifold. Thus, we have a Riemannian symmetric metric space in which each point is an

3 3 element of P D(n). As described in [6], the locally shortest distance between two points (x, y) on the Reimannian manifold is given by the geodesic. This is also equivalent to the length of the tangent vector from one point x to the other y and can be measured using the logarithmic map log x (y), given as: log x (y) = x 1/2 log(x 1/2 yx 1/2 )x 1/2 (3) Conversely, the exponential map takes a starting point x and a tangent direction W to return the target point y along that direction. The exponential map on a Riemannian manifold can be defined as: exp x ( W ) = x 1/2 exp(x 1/2 W x 1/2 )x 1/2 (4) Thus, in the Riemannian framework, we can find the distance between two points using Eq. 3. On the other hand, given a point and a search direction we can find the target point in that direction using Eq Methods and Implementation This section provides an overview of the theory and implementation for both the denoising methods in tensor space. For further details, the reader is referred to the explanation given in the class notes [5] and the paper by Pennec [7]. 3.1 H 1 Regularization This algorithm aims to minimize the L 2 norm of the image gradient. The final minimization function can be given as, E = Ω u u f 2 2 (5) Discretizing Eq. 5 leads to a simple gradient descent (GD) scheme approximating the solution. With an assumption of zero-gradient at the image boundaries, and given a step size ɛ, the k th iteration of this scheme at each pixel location is given as: u k u k 1 + ɛ( u k 1 λ(u k 1 f)) (6) Considering that elements of u are elements of P D(n) and thus lie on a Riemannian manifold, the fidelity term describing the distance of the current estimate of the image to the input image can be given as (u k 1 f) log f (u k 1 )

4 4 and for each location (x, y), the Laplacian can be given as u k 1 = (uk 1 top u k 1 ) + (uk 1 bottom uk 1 ) + (u k 1 right uk 1 ) + (uk 1 left uk 1 ) log u top ) + log u bottom ) + N log u right ) + log u (u k 1 k 1 left ) log u N ) where N is the set of Manhattan neighbors of location (x, y). Note that all of the four tangent vectors computed above lie in the tangent space of the location (x, y) and thus can be added as above to obtain a valid tangent vector. From Eq. 6, we can see that the Laplacian and the weighted fidelity term together give the direction for gradient descent, along which we move one step-size ɛ to obtain the update for the current iteration. In the Riemannian framework, this can be translated as u k exp u k 1( W ) where W is the direction for gradient descent. Thus, the H 1 regularization update for tensor valued data can be given using the Riemannian framework as ( ) u k exp u k 1 ɛ N log u N ) λ log f (u k 1 ) This update was implemented successfully and the results are reported in Sec. 4. (7) 3.2 Total Variation (TV) Regularization H 1 regularization is an L 2 minimization algorithm and results in significant smoothing of edges in the resulting image. TV regularization avoids this problem by aiming to minimize the total variation in the image, making it an L 1 minimization scheme. The minimization function for TV regularization can be written as follows: E = u + u f 2 2 (8) Ω A gradient descent solution to Eq. 8 results in the following update at the k th iteration: ( ( ) ) u u k u k 1 + δt u k 1 k 1 div u k 1 2λ(u k 1 f) (9) Applying an analysis similar to the H 1 regularization discussed above, we can see that the fidelity term in Eq. 9 is easily translated into the Riemannian framework

5 5 as log f (u k 1 ). The computation of the regularization term in the Riemannian space presents a technical problem. We can compute the normalized gradient using logarithmic maps to represent central differences. This will result in two spatial components ( u x, u y ). Now, the divergence is given as div( u) = u x x + u y y For any given voxel, the tangent spaces defined by the two components of the derivative are not the same. Hence, the above addition is invalid and the divergence cannot be computed this way. One possible solution could be to use parallel transport [8] to transport the tangent vectors of neighbors to the tangent space of the current voxel, and then perform addition to get a valid divergence entry. Another way to get around this problem would be to assume that the tangent spaces of neighboring voxels are not very different, and approximate the divergence term as shown in [5], which is: ( ) I div = I xxiy 2 2I x I y I xy + I yy Ix 2 I ( I 2 x + Iy) 2 3/2 An implementation was attempted with this approximation, but none of the configurations tried gave valid results. Hence, results of the TV regularization algorithm in the Riemannian framework are not reported. 4 Results and Discussion (a) (b) Fig. 1. Input DTI images: (a) tensorimg1 and (b) tensorimg2 This section describes the results of the H 1 regularization update described by Eq. 7 on DTI brain images provided by Gopal. Each of the two input images,

6 6 shown in Fig. 1 is a slice, with 9 imaging directions. We consider the measurements at each voxel to be in P D(3) for all of the results below. Fractional Anisotropy (FA) maps [9] were used to visualize the tensor data and provide a qualitative analysis of the denoising results. Fig. 2 shows the FA maps tensorimg1 tensorimg2 iter=10 iter=20 iter=10 iter=20 Fig. 2. Results of H 1 regularization on both input images over 10 and 20 iterations for two different settings of the step size (ɛ) and weight for the fidelity term (λ). top row: (ɛ = 0.01, λ = 0.05), bottom row:(ɛ = 0.1, λ = 0.5) for both input images after denoising with various settings. As with the scalar implementation, the tensor H 1 algorithm performs satisfactory denoising, but also results in blurred edges. This algorithm was also found to be sensitive to the step-size ɛ and fidelity term weight λ, though small changes in these values did not change the results drastically. 5 Discussion This paper motivates the algorithms for denoising DTI images using H 1 regularization and TV regularization in the Riemannian space. An advantage of such a scheme to preserve the positive definite structure of tensors at all voxels. This is a desirable characteristic and better allows further processing of DTI images. While H 1 regularization adapted to the Riemannian space was successfully implemented, TV regularization implementation has been left as future work due to the various technical difficulties inherent in the computation. As with scalar images, H 1 regularization provides good denoising, but also blurs the edges, while TV regularization was not tried due to difficulties in implementation.

7 7 References 1. Christiansen, O., Lee, T., Lie, J., Sinha, U., Chan, T.: Total variation regularization of matrix-valued images. International Journal Biomedical Imaging (2007) 2. Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images (2002) 3. Gur, Y., Sochen, N.: Regularizing flows over lie groups. Journal of Mathematical Imaging and Vision 33(2) (2009) Gur, Y., Sochen, N.: Fast invariant riemannian dt-mri regularization. In: ICCV. (2007) Younes, L.: Mathematical image analysis lecture notes. Johns Hopkins University 6. Fletcher, P.T., Joshi, S.C.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing 87(2) (2007) Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. International Journal of Computer Vision 66(1) (2006) Wikipedia: Parallel transport wikipedia, the free encyclopedia (2011) 9. Wikipedia: Diffusion mri wikipedia, the free encyclopedia (2011)

Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008

Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008 Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008 Jean Gallier Department of Computer and Information Science University

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

Robust Tensor Splines for Approximation of Diffusion Tensor MRI Data

Robust Tensor Splines for Approximation of Diffusion Tensor MRI Data Robust Tensor Splines for Approximation of Diffusion Tensor MRI Data Angelos Barmpoutis, Baba C. Vemuri, John R. Forder University of Florida Gainesville, FL 32611, USA {abarmpou, vemuri}@cise.ufl.edu,

More information

Riemannian Metric Learning for Symmetric Positive Definite Matrices

Riemannian Metric Learning for Symmetric Positive Definite Matrices CMSC 88J: Linear Subspaces and Manifolds for Computer Vision and Machine Learning Riemannian Metric Learning for Symmetric Positive Definite Matrices Raviteja Vemulapalli Guide: Professor David W. Jacobs

More information

Rician Noise Removal in Diffusion Tensor MRI

Rician Noise Removal in Diffusion Tensor MRI Rician Noise Removal in Diffusion Tensor MRI Saurav Basu, Thomas Fletcher, and Ross Whitaker University of Utah, School of Computing, Salt Lake City, UT 84112, USA Abstract. Rician noise introduces a bias

More information

Research Trajectory. Alexey A. Koloydenko. 25th January Department of Mathematics Royal Holloway, University of London

Research Trajectory. Alexey A. Koloydenko. 25th January Department of Mathematics Royal Holloway, University of London Research Trajectory Alexey A. Koloydenko Department of Mathematics Royal Holloway, University of London 25th January 2016 Alexey A. Koloydenko Non-Euclidean analysis of SPD-valued data Voronezh State University

More information

Riemannian Geometry for the Statistical Analysis of Diffusion Tensor Data

Riemannian Geometry for the Statistical Analysis of Diffusion Tensor Data Riemannian Geometry for the Statistical Analysis of Diffusion Tensor Data P. Thomas Fletcher Scientific Computing and Imaging Institute University of Utah 50 S Central Campus Drive Room 3490 Salt Lake

More information

Variational methods for restoration of phase or orientation data

Variational methods for restoration of phase or orientation data Variational methods for restoration of phase or orientation data Martin Storath joint works with Laurent Demaret, Michael Unser, Andreas Weinmann Image Analysis and Learning Group Universität Heidelberg

More information

CN780 Final Lecture. Low-Level Vision, Scale-Space, and Polyakov Action. Neil I. Weisenfeld

CN780 Final Lecture. Low-Level Vision, Scale-Space, and Polyakov Action. Neil I. Weisenfeld CN780 Final Lecture Low-Level Vision, Scale-Space, and Polyakov Action Neil I. Weisenfeld Department of Cognitive and Neural Systems Boston University chapter 14.2-14.3 May 9, 2005 p.1/25 Introduction

More information

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou 1 / 41 Journal Club Presentation Xiaowei Zhou Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology 2009-12-11 2 / 41 Outline 1 Motivation Diffusion process

More information

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn Medical Visualization - Tensor Visualization J.-Prof. Dr. Kai Lawonn Lecture is partially based on the lecture by Prof. Thomas Schultz 2 What is a Tensor? A tensor is a multilinear transformation that

More information

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Casey Goodlett 1, Brad Davis 1,2, Remi Jean 3, John Gilmore 3, and Guido Gerig 1,3 1 Department of Computer Science, University

More information

Diffusion Tensor Imaging I: The basics. Jennifer Campbell

Diffusion Tensor Imaging I: The basics. Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Imaging MRI: many different sources of contrast T1W T2W PDW Perfusion BOLD DW

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

Statistical Analysis of Tensor Fields

Statistical Analysis of Tensor Fields Statistical Analysis of Tensor Fields Yuchen Xie Baba C. Vemuri Jeffrey Ho Department of Computer and Information Sciences and Engineering University of Florida Abstract. In this paper, we propose a Riemannian

More information

Bayesian multi-tensor diffusion MRI and tractography

Bayesian multi-tensor diffusion MRI and tractography Bayesian multi-tensor diffusion MRI and tractography Diwei Zhou 1, Ian L. Dryden 1, Alexey Koloydenko 1, & Li Bai 2 1 School of Mathematical Sciences, Univ. of Nottingham 2 School of Computer Science and

More information

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion Nonlinear Diffusion These notes summarize the way I present this material, for my benefit. But everything in here is said in more detail, and better, in Weickert s paper. 1 Introduction: Motivation for

More information

Fast and Accurate HARDI and its Application to Neurological Diagnosis

Fast and Accurate HARDI and its Application to Neurological Diagnosis Fast and Accurate HARDI and its Application to Neurological Diagnosis Dr. Oleg Michailovich Department of Electrical and Computer Engineering University of Waterloo June 21, 2011 Outline 1 Diffusion imaging

More information

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Songyuan Tang a, Yong Fan a, Hongtu Zhu b, Pew-Thian Yap a Wei Gao a, Weili Lin a, and Dinggang Shen a a Department

More information

Manifolds, Lie Groups, Lie Algebras, with Applications. Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005

Manifolds, Lie Groups, Lie Algebras, with Applications. Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005 Manifolds, Lie Groups, Lie Algebras, with Applications Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005 1 Motivations and Goals 1. Motivations Observation: Often, the set of all objects

More information

DWI acquisition schemes and Diffusion Tensor estimation

DWI acquisition schemes and Diffusion Tensor estimation DWI acquisition schemes and Diffusion Tensor estimation A simulation based study Santiago Aja-Fernández, Antonio Tristán-Vega, Pablo Casaseca-de-la-Higuera Laboratory of Image Processing L A B O R A T

More information

Segmenting Images on the Tensor Manifold

Segmenting Images on the Tensor Manifold Segmenting Images on the Tensor Manifold Yogesh Rathi, Allen Tannenbaum Georgia Institute of Technology, Atlanta, GA yogesh.rathi@gatech.edu, tannenba@ece.gatech.edu Oleg Michailovich University of Waterloo,

More information

MEDINRIA : DT-MRI PROCESSING AND VISUALIZATION SOFTWARE. Pierre Fillard, Nicolas Toussaint and Xavier Pennec

MEDINRIA : DT-MRI PROCESSING AND VISUALIZATION SOFTWARE. Pierre Fillard, Nicolas Toussaint and Xavier Pennec MEDINRIA : DT-MRI PROCESSING AND VISUALIZATION SOFTWARE Pierre Fillard, Nicolas Toussaint and Xavier Pennec Asclepios Research Team, INRIA Sophia Antipolis, France. Pierre.Fillard@sophia.inria.fr ABSTRACT

More information

Shape Anisotropy: Tensor Distance to Anisotropy Measure

Shape Anisotropy: Tensor Distance to Anisotropy Measure Shape Anisotropy: Tensor Distance to Anisotropy Measure Yonas T. Weldeselassie, Saba El-Hilo and M. Stella Atkins Medical Image Analysis Lab, School of Computing Science, Simon Fraser University ABSTRACT

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES II. DIFFERENTIABLE MANIFOLDS Washington Mio Anuj Srivastava and Xiuwen Liu (Illustrations by D. Badlyans) CENTER FOR APPLIED VISION AND IMAGING SCIENCES Florida State University WHY MANIFOLDS? Non-linearity

More information

Multi-class DTI Segmentation: A Convex Approach

Multi-class DTI Segmentation: A Convex Approach Multi-class DTI Segmentation: A Convex Approach Yuchen Xie 1 Ting Chen 2 Jeffrey Ho 1 Baba C. Vemuri 1 1 Department of CISE, University of Florida, Gainesville, FL 2 IBM Almaden Research Center, San Jose,

More information

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics.

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics. A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Kalai Arasu Muthusamy, D.Phil(Oxon) Senior Lecturer & Consultant Neurosurgeon. Division of Neurosurgery. University Malaya Medical Centre.

More information

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar Diffusion Tensor Imaging quality control : artifacts assessment and correction A. Coste, S. Gouttard, C. Vachet, G. Gerig Medical Imaging Seminar Overview Introduction DWI DTI Artifact Assessment Artifact

More information

Diffusion Tensor Imaging: Reconstruction Using Deterministic Error Bounds

Diffusion Tensor Imaging: Reconstruction Using Deterministic Error Bounds Diffusion Tensor Imaging: Reconstruction Using Deterministic Error Bounds Yury Korolev 1, Tuomo Valkonen 2 and Artur Gorokh 3 1 Queen Mary University of London, UK 2 University of Cambridge, UK 3 Cornell

More information

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITK Filters Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITCS 6010:Biomedical Imaging and Visualization 1 ITK Filters:

More information

CIND Pre-Processing Pipeline For Diffusion Tensor Imaging. Overview

CIND Pre-Processing Pipeline For Diffusion Tensor Imaging. Overview CIND Pre-Processing Pipeline For Diffusion Tensor Imaging Overview The preprocessing pipeline of the Center for Imaging of Neurodegenerative Diseases (CIND) prepares diffusion weighted images (DWI) and

More information

Image enhancement. Why image enhancement? Why image enhancement? Why image enhancement? Example of artifacts caused by image encoding

Image enhancement. Why image enhancement? Why image enhancement? Why image enhancement? Example of artifacts caused by image encoding 13 Why image enhancement? Image enhancement Example of artifacts caused by image encoding Computer Vision, Lecture 14 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering 12

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

NIH Public Access Author Manuscript Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 December 10.

NIH Public Access Author Manuscript Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 December 10. NIH Public Access Author Manuscript Published in final edited form as: Conf Proc IEEE Eng Med Biol Soc. 2006 ; 1: 2622 2625. doi:10.1109/iembs.2006.259826. On Diffusion Tensor Estimation Marc Niethammer,

More information

A Localized Linearized ROF Model for Surface Denoising

A Localized Linearized ROF Model for Surface Denoising 1 2 3 4 A Localized Linearized ROF Model for Surface Denoising Shingyu Leung August 7, 2008 5 Abstract 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 Introduction CT/MRI scan becomes a very

More information

DIFFUSION MAGNETIC RESONANCE IMAGING

DIFFUSION MAGNETIC RESONANCE IMAGING DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion

More information

A Recursive Filter For Linear Systems on Riemannian Manifolds

A Recursive Filter For Linear Systems on Riemannian Manifolds A Recursive Filter For Linear Systems on Riemannian Manifolds Ambrish Tyagi James W. Davis Dept. of Computer Science and Engineering The Ohio State University Columbus OH 43210 {tyagia,jwdavis}@cse.ohio-state.edu

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

Total Variation Theory and Its Applications

Total Variation Theory and Its Applications Total Variation Theory and Its Applications 2nd UCC Annual Research Conference, Kingston, Jamaica Peter Ndajah University of the Commonwealth Caribbean, Kingston, Jamaica September 27, 2018 Peter Ndajah

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

NEURONAL FIBER TRACKING IN DT-MRI

NEURONAL FIBER TRACKING IN DT-MRI NEURONAL FIBER TRACKING IN DT-MRI By TIM E. MCGRAW A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

More information

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Philipp Landgraf 1, Dorit Merhof 1, Mirco Richter 1 1 Institute of Computer Science, Visual Computing Group, University of Konstanz philipp.landgraf@uni-konstanz.de

More information

NON-LINEAR DIFFUSION FILTERING

NON-LINEAR DIFFUSION FILTERING NON-LINEAR DIFFUSION FILTERING Chalmers University of Technology Page 1 Summary Introduction Linear vs Nonlinear Diffusion Non-Linear Diffusion Theory Applications Implementation References Page 2 Introduction

More information

Lie Groups for 2D and 3D Transformations

Lie Groups for 2D and 3D Transformations Lie Groups for 2D and 3D Transformations Ethan Eade Updated May 20, 2017 * 1 Introduction This document derives useful formulae for working with the Lie groups that represent transformations in 2D and

More information

Tensor fields. Tensor fields: Outline. Chantal Oberson Ausoni

Tensor fields. Tensor fields: Outline. Chantal Oberson Ausoni Tensor fields Chantal Oberson Ausoni 7.8.2014 ICS Summer school Roscoff - Visualization at the interfaces 28.7-8.8, 2014 1 Tensor fields: Outline 1. TENSOR FIELDS: DEFINITION 2. PROPERTIES OF SECOND-ORDER

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

Basics of Diffusion Tensor Imaging and DtiStudio

Basics of Diffusion Tensor Imaging and DtiStudio Basics of Diffusion Tensor Imaging and DtiStudio DTI Basics 1 DTI reveals White matter anatomy Gray matter White matter DTI uses water diffusion as a probe for white matter anatomy Isotropic diffusion

More information

DIFFUSION is a process of intermingling molecules as

DIFFUSION is a process of intermingling molecules as 930 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 8, AUGUST 2004 A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field From Complex DWI Zhizhou Wang,

More information

Linear Diffusion. E9 242 STIP- R. Venkatesh Babu IISc

Linear Diffusion. E9 242 STIP- R. Venkatesh Babu IISc Linear Diffusion Derivation of Heat equation Consider a 2D hot plate with Initial temperature profile I 0 (x, y) Uniform (isotropic) conduction coefficient c Unit thickness (along z) Problem: What is temperature

More information

Statistical Models for Diffusion Weighted MRI Data

Statistical Models for Diffusion Weighted MRI Data Team Background Diffusion Anisotropy and White Matter Connectivity Interpolation and Smoothing of Diffusion Tensors Non-Euclidean metrics on Ω (SPDMs) Models for raw data and DT estimation References Statistical

More information

Directional Field. Xiao-Ming Fu

Directional Field. Xiao-Ming Fu Directional Field Xiao-Ming Fu Outlines Introduction Discretization Representation Objectives and Constraints Outlines Introduction Discretization Representation Objectives and Constraints Definition Spatially-varying

More information

ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT

ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT PRASHANT ATHAVALE Abstract. Digital images are can be realized as L 2 (R 2 objects. Noise is introduced in a digital image due to various reasons.

More information

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Tractography in the CST using an Intrinsic Unscented Kalman Filter H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Outline Introduction Method Pre-processing Fiber

More information

Improved Correspondence for DTI Population Studies Via Unbiased Atlas Building

Improved Correspondence for DTI Population Studies Via Unbiased Atlas Building Improved Correspondence for DTI Population Studies Via Unbiased Atlas Building Casey Goodlett 1,BradDavis 1,2,RemiJean 3, John Gilmore 3, and Guido Gerig 1,3 1 Department of Computer Science, University

More information

Supplemental Figures: Results for Various Color-image Completion

Supplemental Figures: Results for Various Color-image Completion ANONYMOUS AUTHORS: SUPPLEMENTAL MATERIAL (NOVEMBER 7, 2017) 1 Supplemental Figures: Results for Various Color-image Completion Anonymous authors COMPARISON WITH VARIOUS METHODS IN COLOR-IMAGE COMPLETION

More information

Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures

Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures Nikhil Singh, Tom Fletcher, Sam Preston, Linh Ha, J. Stephen Marron, Michael Wiener, and

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 May 19.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 May 19. NIH Public Access Author Manuscript Published in final edited form as: Med Image Comput Comput Assist Interv. 2009 ; 12(0 1): 919 926. Bias of Least Squares Approaches for Diffusion Tensor Estimation from

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

Fast Geodesic Regression for Population-Based Image Analysis

Fast Geodesic Regression for Population-Based Image Analysis Fast Geodesic Regression for Population-Based Image Analysis Yi Hong 1, Polina Golland 2, and Miaomiao Zhang 2 1 Computer Science Department, University of Georgia 2 Computer Science and Artificial Intelligence

More information

Mumford Shah and Potts Regularization for Manifold-Valued Data

Mumford Shah and Potts Regularization for Manifold-Valued Data J Math Imaging Vis (2016) 55:428 445 DOI 10.1007/s10851-015-0628-2 Mumford Shah and Potts Regularization for Manifold-Valued Data Andreas Weinmann 1,2,4 Laurent Demaret 1 Martin Storath 3 Received: 15

More information

Shape of Gaussians as Feature Descriptors

Shape of Gaussians as Feature Descriptors Shape of Gaussians as Feature Descriptors Liyu Gong, Tianjiang Wang and Fang Liu Intelligent and Distributed Computing Lab, School of Computer Science and Technology Huazhong University of Science and

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Motion Estimation (I) Ce Liu Microsoft Research New England

Motion Estimation (I) Ce Liu Microsoft Research New England Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration Miaomiao Zhang and P. Thomas Fletcher School of Computing, University of Utah, Salt Lake City, USA Abstract. Computing a concise

More information

DT-MRI Segmentation Using Graph Cuts

DT-MRI Segmentation Using Graph Cuts DT-MRI Segmentation Using Graph Cuts Yonas T. Weldeselassie and Ghassan Hamarneh Medical Image Analysis Lab, School of Computing Science Simon Fraser University, Burnaby, BC V5A 1S6, Canada ABSTRACT An

More information

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice 1 Lecture Notes, HCI, 4.1.211 Chapter 2 Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice Bastian Goldlücke Computer Vision Group Technical University of Munich 2 Bastian

More information

A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field

A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field from DWI Z. Wang, B.C. Vemuri, Y. Chen and T. Mareci Department of Computer & Information Sciences

More information

Riemannian Metrics on the Space of Solid Shapes

Riemannian Metrics on the Space of Solid Shapes Riemannian Metrics on the Space of Solid Shapes P. Thomas Fletcher and Ross T. Whitaker School of Computing University of Utah fletcher@sci.utah.edu, whitaker@cs.utah.edu Abstract. We present a new framework

More information

Registration of anatomical images using geodesic paths of diffeomorphisms parameterized with stationary vector fields

Registration of anatomical images using geodesic paths of diffeomorphisms parameterized with stationary vector fields Registration of anatomical images using geodesic paths of diffeomorphisms parameterized with stationary vector fields Monica Hernandez, Matias N. Bossa, and Salvador Olmos Communication Technologies Group

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Unsupervised learning: beyond simple clustering and PCA

Unsupervised learning: beyond simple clustering and PCA Unsupervised learning: beyond simple clustering and PCA Liza Rebrova Self organizing maps (SOM) Goal: approximate data points in R p by a low-dimensional manifold Unlike PCA, the manifold does not have

More information

GEOMETRIC MEANS IN A NOVEL VECTOR SPACE STRUCTURE ON SYMMETRIC POSITIVE-DEFINITE MATRICES

GEOMETRIC MEANS IN A NOVEL VECTOR SPACE STRUCTURE ON SYMMETRIC POSITIVE-DEFINITE MATRICES SIAM J. MATRIX ANAL. APPL. Vol. 0, No. 0, pp. 000 000 c XXXX Society for Industrial and Applied Mathematics GEOMETRIC MEANS IN A NOVEL VECTOR SPACE STRUCTURE ON SYMMETRIC POSITIVE-DEFINITE MATRICES VINCENT

More information

Terse Notes on Riemannian Geometry

Terse Notes on Riemannian Geometry Terse Notes on Riemannian Geometry Tom Fletcher January 26, 2010 These notes cover the basics of Riemannian geometry, Lie groups, and symmetric spaces. This is just a listing of the basic definitions and

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Topics in Representation Theory: Lie Groups, Lie Algebras and the Exponential Map

Topics in Representation Theory: Lie Groups, Lie Algebras and the Exponential Map Topics in Representation Theory: Lie Groups, Lie Algebras and the Exponential Map Most of the groups we will be considering this semester will be matrix groups, i.e. subgroups of G = Aut(V ), the group

More information

From Diffusion Data to Bundle Analysis

From Diffusion Data to Bundle Analysis From Diffusion Data to Bundle Analysis Gabriel Girard gabriel.girard@epfl.ch Computational Brain Connectivity Mapping Juan-les-Pins, France 20 November 2017 Gabriel Girard gabriel.girard@epfl.ch CoBCoM2017

More information

NIH Public Access Author Manuscript Med Image Anal. Author manuscript; available in PMC 2014 July 16.

NIH Public Access Author Manuscript Med Image Anal. Author manuscript; available in PMC 2014 July 16. NIH Public Access Author Manuscript Published in final edited form as: Med Image Anal. 2009 February ; 13(1): 19 35. doi:10.1016/j.media.2008.05.004. Sequential Anisotropic Multichannel Wiener Filtering

More information

The Symmetric Space for SL n (R)

The Symmetric Space for SL n (R) The Symmetric Space for SL n (R) Rich Schwartz November 27, 2013 The purpose of these notes is to discuss the symmetric space X on which SL n (R) acts. Here, as usual, SL n (R) denotes the group of n n

More information

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

TENSOR BASED REPRESENTATION AND ANALYSIS OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGES

TENSOR BASED REPRESENTATION AND ANALYSIS OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGES TENSOR BASED REPRESENTATION AND ANALYSIS OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGES By ANGELOS BARMPOUTIS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

A Physical Model for MR-DTI Based Connectivity Map Computation

A Physical Model for MR-DTI Based Connectivity Map Computation A Physical Model for MR-DTI Based Connectivity Map Computation Erdem Yörük 1, Burak Acar 1, and Roland Bammer 1 Department of Electrical-Electronic Engineering, Bogazici University, TURKEY, erdem.yoruk@boun.edu.tr,

More information

Using Eigenvalue Derivatives for Edge Detection in DT-MRI Data

Using Eigenvalue Derivatives for Edge Detection in DT-MRI Data Using Eigenvalue Derivatives for Edge Detection in DT-MRI Data Thomas Schultz and Hans-Peter Seidel MPI Informatik, Campus E 1.4, 66123 Saarbrücken, Germany, Email: schultz@mpi-inf.mpg.de Abstract. This

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 00 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

Symmetric Positive 4 th Order Tensors & Their Estimation from Diffusion Weighted MRI

Symmetric Positive 4 th Order Tensors & Their Estimation from Diffusion Weighted MRI Symmetric Positive 4 th Order Tensors & Their Estimation from Diffusion Weighted MRI Angelos Barmpoutis 1, Bing Jian 1,BabaC.Vemuri 1, and Timothy M. Shepherd 2 1 Computer and Information Science and Engineering,

More information

0.1 Tangent Spaces and Lagrange Multipliers

0.1 Tangent Spaces and Lagrange Multipliers 01 TANGENT SPACES AND LAGRANGE MULTIPLIERS 1 01 Tangent Spaces and Lagrange Multipliers If a differentiable function G = (G 1,, G k ) : E n+k E k then the surface S defined by S = { x G( x) = v} is called

More information

The Log-Euclidean Framework Applied to SPD Matrices and Polyaffine Transformations

The Log-Euclidean Framework Applied to SPD Matrices and Polyaffine Transformations Chapter 8 The Log-Euclidean Framework Applied to SPD Matrices and Polyaffine Transformations 8.1 Introduction In this Chapter, we use what we have learned in previous chapters to describe an approach due

More information

Differential Geometry for Image Processing

Differential Geometry for Image Processing MSc TU/e Course: Differential Geometry for Image Processing Teachers: R. Duits MF 7.072 (responsible teacher, lecturer) E.J. Bekkers MF 7.074 (teacher, instructor) Course Description: This MSc course aims

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

A new algorithm for the computation of the group logarithm of diffeomorphisms

A new algorithm for the computation of the group logarithm of diffeomorphisms A new algorithm for the computation of the group logarithm of diffeomorphisms Matias Bossa and Salvador Olmos GTC, I3A, University of Zaragoza, Spain, {bossa,olmos}@unizar.es Abstract. There is an increasing

More information

How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)?

How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? Liang Zhan 1, Ming-Chang Chiang 1, Alex D. Leow 1, Siwei Zhu 2, Marina Barysheva 1, Arthur W. Toga 1, Katie L. McMahon

More information

Compressive Imaging by Generalized Total Variation Minimization

Compressive Imaging by Generalized Total Variation Minimization 1 / 23 Compressive Imaging by Generalized Total Variation Minimization Jie Yan and Wu-Sheng Lu Department of Electrical and Computer Engineering University of Victoria, Victoria, BC, Canada APCCAS 2014,

More information

Partial Differential Equations and Image Processing. Eshed Ohn-Bar

Partial Differential Equations and Image Processing. Eshed Ohn-Bar Partial Differential Equations and Image Processing Eshed Ohn-Bar OBJECTIVES In this presentation you will 1) Learn what partial differential equations are and where do they arise 2) Learn how to discretize

More information

Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, Darmstadt, Germany

Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, Darmstadt, Germany Scale Space and PDE methods in image analysis and processing Arjan Kuijper Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, 64283

More information

Welcome to Copenhagen!

Welcome to Copenhagen! Welcome to Copenhagen! Schedule: Monday Tuesday Wednesday Thursday Friday 8 Registration and welcome 9 Crash course on Crash course on Introduction to Differential and Differential and Information Geometry

More information

Principal Component Analysis (PCA) CSC411/2515 Tutorial

Principal Component Analysis (PCA) CSC411/2515 Tutorial Principal Component Analysis (PCA) CSC411/2515 Tutorial Harris Chan Based on previous tutorial slides by Wenjie Luo, Ladislav Rampasek University of Toronto hchan@cs.toronto.edu October 19th, 2017 (UofT)

More information

Tensor-based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals

Tensor-based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals Generalizations of the Total Variation and Beltrami Functionals 29 September 2010 International Conference on Image Processing 2010, Hong Kong Anastasios Roussos and Petros Maragos Computer Vision, Speech

More information

Paper E An Operator Algebraic Inverse Scale Space Method for Matrix Images

Paper E An Operator Algebraic Inverse Scale Space Method for Matrix Images Paper E An Operator Algebraic Inverse Scale Space Method for Matrix Images Preprint, submitted to proceedings of the 2nd Dagstuhl workshop on Visualization and Processing of Tensor Fields. An Operator

More information