Lokálne chyby numerických schém

Size: px
Start display at page:

Download "Lokálne chyby numerických schém"

Transcription

1 Slovenská geofyzikálna konferencia 211 Lokálne chyby numerických schém Peter Moczo Jozef Kristek Martin Galis Emmanuel Chaljub, Vincent Etienne FMFI UK Bratislava GFÚ SAV Bratislava ISTerre Université Joseph Fourier Grenoble, France

2 3D numerical schemes method equation formulation grid add. specif. order FD D CG 2 FD DS PSG 2 partly FE L8 Lobatto 2 FE G1 finiteelement 1-point integr. FE G8 DG CF discontinuous Galerkin centered flux FD D CG 4a 4 SE 4 cn, vn spectralelement GLL integr.

3 3D numerical schemes method equation formulation grid add. specif. order FD D CG 2 FD DS PSG 2 partly FE L8 Lobatto 2 FE G1 finiteelement 1-point integr. FE G8 DG CF discontinuous Galerkin centered flux FD D CG 4a 4 SE 4 cn, vn spectralelement GLL integr.

4 3D numerical schemes method equation formulation grid add. specif. order FD D CG 2 FD DS PSG 2 partly FE L8 Lobatto 2 FE G1 finiteelement 1-point integr. FE G8 DG CF 2 discontinuous Galerkin centered flux FD D CG 4a 4 SE 4 cn, vn spectralelement GLL integr.

5 3D numerical schemes method equation formulation grid add. specif. order FD D CG 2 FD DS PSG 2 partly FE L8 Lobatto 2 FE G1 finiteelement 1-point integr. FE G8 DG CF 2 discontinuous Galerkin centered flux FD D CG 4a 4 SE 4 cn, vn spectralelement GLL integr.

6 3D numerical schemes method equation formulation grid add. specif. order FD D CG 2 FD DS PSG 2 partly FE L8 Lobatto 2 FE G1 finiteelement 1-point integr. FE G8 DG CF 2 discontinuous Galerkin centered flux FD D CG 4a 4 SE 4 cn, vn spectralelement GLL integr.

7 3D numerical schemes method equation formulation grid add. specif. order FD D CG 2 = FE L8 FD DS PSG 2 partly FE L8 Lobatto 2 FE G1 finiteelement 1-point integr. FE G8 DG CF 2 discontinuous Galerkin centered flux FD D CG 4a 4 SE 4 cn, vn spectralelement GLL integr.

8 method 3D numerical schemes equation formulation grid add. specif. order FD D CG 2 = FE L8 FD DS PSG 2 = FE G1 partly FE L8 Lobatto 2 FE G1 finiteelement 1-point integr. FE G8 DG CF 2 discontinuous Galerkin centered flux FD D CG 4a 4 SE 4 cn, vn spectralelement GLL integr.

9 method 3D numerical schemes equation formulation grid add. specif. order FD D CG 2 = FE L8 FD DS PSG 2 = FE G1 partly FE L8 Lobatto 2 FE G1 finiteelement 1-point integr. FE G8 = DG CF 2 DG CF 2 discontinuous Galerkin centered flux FD D CG 4a 4 SE 4 cn, vn spectralelement GLL integr.

10 an unbounded homogeneous isotropic elastic medium and a uniform cubic grid all schemes in a unified form: { } (,, ; +Δ ) = numerical_scheme ( Δ ), ( ) U x y z t t U t t U t

11 numerical solution in one time step { } (,, ; +Δ ) = numerical_scheme ( Δ ), ( ) N E E U x y z t t U t t U t exact values for plane S wave

12 a relative local error in amplitude in onetimestep N A = numerical amplitude at t+ Δt E A = exact amplitude at t+ Δt ε Rel ampl 2 N E Δt ref A A = E Δt A Δt ref = Δt for p=.9 s= 1 6 V V = 1.42 P S

13 a relative local error in the vector difference in onetimestep N i U = numerical component at t+ Δt E U i = exact component at t+ Δt ε Rel Δtref 1 N E N E N E vdiff = E ( Ux Ux ) + ( Uy Uy ) + ( Uz Uz ) Δt A Δt ref = Δt for p=.9 s= 1 6 V V = 1.42 P S

14 solid circle corresponds to zero error x z

15 FD DS PSG 2 = FE G FE G8 = DG CF relative error in amplitude x FD D CG 4a SE 4 cn 18 SE 4 vn FD D CG 2 = FE L z spatial sampling : 2 nd -order schemes: 12 4 th -order schemes: 6 = 1.42 = 5 = 1

16 FD DS PSG 2 = FE G FE G8 = DG CF relative error in amplitude body diag FD D CG 4a SE 4 cn 18 SE 4 vn FD D CG 2 = FE L z spatial sampling : 2 nd -order schemes: 12 4 th -order schemes: 6 = 1.42 = 5 = 1

17 FD DS PSG 2 = FE G FE G8 = DG CF relative error in vector difference x FD D CG 4a SE 4 cn 18 SE 4 vn FD D CG 2 = FE L z spatial sampling : 2 nd -order schemes: 12 4 th -order schemes: 6 = 1.42 = 5 = 1

18 FD DS PSG 2 = FE G FE G8 = DG CF relative error in vector difference body diag FD D CG 4a SE 4 cn 18 SE 4 vn FD D CG 2 = FE L z spatial sampling : 2 nd -order schemes: 12 4 th -order schemes: 6 = 1.42 = 5 = 1

19 equivalent sampling equivalent sampling 1 FD D CG 2 = FE L p = p =.9 FE G8 = DG CF 2 FD DS PSG 2 = FEG1 SE 4 vn SE 4 cn equivalent spatial sampling based on FD D CG 4a relative error in amplitude FD DS PSG 2 = FEG1 FE G8 = DG CF 2 SE 4 vn SE 4 cn FD D CG 4a equivalent spatial sampling based on relative error in vector difference

20 results and conclusions the numerical amplitude is almost independent on the /V S ratio, if the discrete approximations to the 2 nd mixed and non-mixed spatial derivatives have the same coefficients of the leading terms of truncation errors this is the case of, FD D CG 4a, and FD DS PSG 2 = FE G1 otherwise the error in amplitude increases with increasing /V S ratio

21 results and conclusions for all schemes the error in the vector difference between the numerical and exact s increases with increasing /V S ratio this has to be accounted for by a proper spatial sampling

22 results and conclusions FD D CG 2 = FE L8 is the most sensitive to the increasing /V S ratio and for /V S > 2 requires considerably denser spatial sampling than any other scheme in order to achieve the same accuracy the maximum error of, FD DS PSG 2 = FE G1 and FE G8 = DG CF 2 increases in the same way FD DS PSG 2 = FE G1 and FE G8 = DG CF 2 require denser spatial sampling than in order to achieve the same accuracy

23 results and conclusions the maximum error of the 4th-order schemes increases in the same way FD D CG 4a,, SE 4 cn and SE 4 vn require denser spatial sampling than in order to achieve the same accuracy the 4 th -order schemes are for /V S > 3 less sensitive to the increasing /V S ratio than the 2 nd -order schemes

Numerical modeling of dynamic rupture propagation

Numerical modeling of dynamic rupture propagation IX. Slovenská geofyzikálna konferencia, 22. - 23. jún 2011 Fakulta matematiky, fyziky a informatiky UK, Bratislava Numerical modeling of dynamic rupture propagation Martin Galis Peter Moczo Jozef Kristek

More information

Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons

Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons Martin Costabel, Monique Dauge, Daniel Martin and Gregory Vial IRMAR, Université de Rennes, Campus de Beaulieu, Rennes,

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara RELEVANCE OF GROUND MOTION NUMERICAL SIMULATIONS: WHAT

More information

Measurement of the electron drift velocity for directional Dark Matter detectors

Measurement of the electron drift velocity for directional Dark Matter detectors Measurement of the electron drift velocity for directional Dark Matter detectors F. Mayet LPSC Université Joseph Fourier Grenoble, France based on and J. Billard PhD Thesis 2 Drift velocity: introduction

More information

Electromagnetic Field Analysis

Electromagnetic Field Analysis Spectral Integral Method and Spectral Element Method Domain Decomposition Method for Electromagnetic Field Analysis by Yun Lin Department of Electrical and Computer Engineering Duke University Date: Approved:

More information

Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals

Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals The definitive version is available at www.blackwell-synergy.com http://www3.interscience.wiley.com/journal/122443865/abstract Geophys. J. Int. (2009) 178, 813 825 doi: 10.1111/j.1365-246X.2009.04177.x

More information

JOINT ACCURATE TIME-FREQUENCY AND HIGH-RESOLUTION ARRAY ANALYSIS, A TOOL FOR SITE EFFECTS ESTIMATION?

JOINT ACCURATE TIME-FREQUENCY AND HIGH-RESOLUTION ARRAY ANALYSIS, A TOOL FOR SITE EFFECTS ESTIMATION? Third International Symposium on the Effects of Surface Geology on Seismic Motion Grenoble, France, 30 August - 1 September 2006 Paper Number: 152 JOINT ACCURATE TIME-FREQUENCY AND HIGH-RESOLUTION ARRAY

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 6 Overview This problem is aimed at testing the accuracy and the performance of high-order methods on the direct numerical simulation

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

Finite Difference Method for Solving Acoustic Wave Equation Using Locally Adjustable Time-steps

Finite Difference Method for Solving Acoustic Wave Equation Using Locally Adjustable Time-steps Procedia Computer Science Volume 29, 214, Pages 627 636 ICCS 214. 14th International Conference on Computational Science Finite Difference Method for Solving Acoustic Wave Equation Using Locally Adjustable

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Partial Differential Equations (Lecture 1, Week 1) Markus Schmuck Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

More information

Workshop on Geophysical Data Analysis and Assimilation

Workshop on Geophysical Data Analysis and Assimilation 2373-11 Workshop on Geophysical Data Analysis and Assimilation 29 October - 3 November, 2012 Full seismic waveform modelling and inversion Andreas Fichtner Department of Earth Sciences, Swiss Federal Institute

More information

Courant and all that. Consistency, Convergence Stability Numerical Dispersion Computational grids and numerical anisotropy

Courant and all that. Consistency, Convergence Stability Numerical Dispersion Computational grids and numerical anisotropy Consistency, Convergence Stability Numerical Dispersion Computational grids and numerical anisotropy c dx ε 1 he goal of this lecture is to understand how to find suitable parameters (i.e., grid spacing

More information

Pseudospectral and High-Order Time-Domain Forward Solvers

Pseudospectral and High-Order Time-Domain Forward Solvers Pseudospectral and High-Order Time-Domain Forward Solvers Qing H. Liu G. Zhao, T. Xiao, Y. Zeng Department of Electrical and Computer Engineering Duke University DARPA/ARO MURI Review, August 15, 2003

More information

The Spectral-Element Method: Introduction

The Spectral-Element Method: Introduction The Spectral-Element Method: Introduction Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Computational Seismology 1 / 59 Outline 1 Introduction 2 Lagrange

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

Computing the effective diffusivity using a spectral method

Computing the effective diffusivity using a spectral method Materials Science and Engineering A311 (2001) 135 141 www.elsevier.com/locate/msea Computing the effective diffusivity using a spectral method Jingzhi Zhu a, *, Long-Qing Chen a, Jie Shen b, Veena Tikare

More information

Outline. Math Partial Differential Equations. Fourier Transforms for PDEs. Joseph M. Mahaffy,

Outline. Math Partial Differential Equations. Fourier Transforms for PDEs. Joseph M. Mahaffy, Outline Math 53 - Partial Differential Equations s for PDEs Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

We briefly discuss two examples for solving wave propagation type problems with finite differences, the acoustic and the seismic problem.

We briefly discuss two examples for solving wave propagation type problems with finite differences, the acoustic and the seismic problem. Excerpt from GEOL557 Numerical Modeling of Earth Systems by Becker and Kaus 2016 1 Wave propagation Figure 1: Finite difference discretization of the 2D acoustic problem. We briefly discuss two examples

More information

A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation

A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation Geophys. J. Int. (3) 15, 1 153 A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation Dimitri Komatitsch and Jeroen Tromp Seismological Laboratory, California

More information

Aspects of a Discontinuous Galerkin Approach for 3D Dynamic Rupture Modeling in the Case of a Complex Fault System

Aspects of a Discontinuous Galerkin Approach for 3D Dynamic Rupture Modeling in the Case of a Complex Fault System AGU Fall Meeting 2011 S54C-08 Aspects of a Discontinuous Galerkin Approach for 3D Dynamic Rupture Modeling in the Case of a Complex Fault System Christian Pelties Josep de la Puente (BSC), Jean Paul Ampuero

More information

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Martin Eigel C. Carstensen, C. Löbhard, R.H.W. Hoppe Humboldt-Universität zu Berlin 19.05.2010 1 we know of Guidelines for Applicants

More information

Evolution equations with spectral methods: the case of the wave equation

Evolution equations with spectral methods: the case of the wave equation Evolution equations with spectral methods: the case of the wave equation Jerome.Novak@obspm.fr Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris, France in collaboration with

More information

Spatial and Modal Superconvergence of the Discontinuous Galerkin Method for Linear Equations

Spatial and Modal Superconvergence of the Discontinuous Galerkin Method for Linear Equations Spatial and Modal Superconvergence of the Discontinuous Galerkin Method for Linear Equations N. Chalmers and L. Krivodonova March 5, 014 Abstract We apply the discontinuous Galerkin finite element method

More information

A non-standard Finite Element Method based on boundary integral operators

A non-standard Finite Element Method based on boundary integral operators A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by Outline 1 Method description Motivation Variational

More information

Palindromic Discontinuous Galerkin Method

Palindromic Discontinuous Galerkin Method Palindromic Discontinuous Galerkin Method David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret To cite this version: David Coulette, Emmanuel Franck, Philippe Helluy,

More information

Final abstract for ONERA Taylor-Green DG participation

Final abstract for ONERA Taylor-Green DG participation 1st International Workshop On High-Order CFD Methods January 7-8, 2012 at the 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee Final abstract for ONERA Taylor-Green DG participation JB Chapelier,

More information

Spectral element schemes for the. Korteweg-de Vries and Saint-Venant equations

Spectral element schemes for the. Korteweg-de Vries and Saint-Venant equations Spectral element schemes for the Korteweg-de Vries and Saint-Venant equations R. PASQUETTI a a. Université Côte d Azur, CNRS, Inria, LJAD, France, richard.pasquetti@unice.fr... Résumé : Les sytèmes hyperboliques

More information

Approximation SEM-DG pour les problèmes d ondes elasto-acoustiques

Approximation SEM-DG pour les problèmes d ondes elasto-acoustiques Approximation SEM-DG pour les problèmes d ondes elasto-acoustiques Helene Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian Gout To cite this version: Helene Barucq, Henri Calandra, Aurélien

More information

LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL

LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL 09/11/2017 Paolo Casco Stephie Edwige Philippe Gilotte Iraj Mortazavi LES and flow control over a 25 ramp model : context 2 Context Validation

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations Numerical Analysis of Differential Equations 215 6 Numerical Solution of Parabolic Equations 6 Numerical Solution of Parabolic Equations TU Bergakademie Freiberg, SS 2012 Numerical Analysis of Differential

More information

Generalised Summation-by-Parts Operators and Variable Coefficients

Generalised Summation-by-Parts Operators and Variable Coefficients Institute Computational Mathematics Generalised Summation-by-Parts Operators and Variable Coefficients arxiv:1705.10541v [math.na] 16 Feb 018 Hendrik Ranocha 14th November 017 High-order methods for conservation

More information

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Oberseminar, May 2008 Maxwell equations Or: X-ray wave fields X-rays are electromagnetic waves with wave length from 10 nm to 1 pm, i.e., 10

More information

Enhanced resolution in structured media

Enhanced resolution in structured media Enhanced resolution in structured media Eric Bonnetier w/ H. Ammari (Ecole Polytechnique), and Yves Capdeboscq (Oxford) Outline : 1. An experiment of super resolution 2. Small volume asymptotics 3. Periodicity

More information

NONLINEAR DIFFUSION PDES

NONLINEAR DIFFUSION PDES NONLINEAR DIFFUSION PDES Erkut Erdem Hacettepe University March 5 th, 0 CONTENTS Perona-Malik Type Nonlinear Diffusion Edge Enhancing Diffusion 5 References 7 PERONA-MALIK TYPE NONLINEAR DIFFUSION The

More information

An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation

An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation Masayuki Yano and David Darmofal Aerospace Computational Design Laboratory Massachusetts Institute

More information

Chapter 3 Variational Formulation & the Galerkin Method

Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 1 Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 2 Today s Lecture Contents: Introduction Differential formulation

More information

Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation

Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation Numerical Analysis and Scientific Computing Preprint Seria Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation W. Guo J. Qiu Preprint #21 Department of Mathematics University

More information

Spectral Element simulation of rupture dynamics

Spectral Element simulation of rupture dynamics Spectral Element simulation of rupture dynamics J.-P. Vilotte & G. Festa Department of Seismology, Institut de Physique du Globe de Paris, 75252 France ABSTRACT Numerical modeling is an important tool,

More information

H r# W im FR ID A Y, :Q q ro B E R 1 7,.,1 0 1 S. NEPTUNE TH RHE. Chancelor-Sherlll Act. on Ballot at ^yisii/

H r# W im FR ID A Y, :Q q ro B E R 1 7,.,1 0 1 S. NEPTUNE TH RHE. Chancelor-Sherlll Act. on Ballot at ^yisii/ ( # Y Q q 7 G Y G K G Q ( ) _ ( ) x z \ G 9 [ 895 G $ K K G x U Y 6 / q Y x 7 K 3 G? K x z x Y Y G U UY ( x G 26 $ q QUY K X Y 92 G& j x x ]( ] q ] x 2 ] 22 (? ] Y Y $ G x j 88 89 $5 Y ] x U $ 852 $ ((

More information

Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves

Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves GEOPHYSICS, VOL. 76, NO. 3 (MAY-JUNE 2011); P. T43 T52, 12 FIGS., 2 TABLES. 10.1190/1.3560019 Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh

More information

GG303 Lecture 15 10/6/09 1 FINITE STRAIN AND INFINITESIMAL STRAIN

GG303 Lecture 15 10/6/09 1 FINITE STRAIN AND INFINITESIMAL STRAIN GG303 Lecture 5 0609 FINITE STRAIN AND INFINITESIMAL STRAIN I Main Topics on infinitesimal strain A The finite strain tensor [E] B Deformation paths for finite strain C Infinitesimal strain and the infinitesimal

More information

26. Parallel Implementation of Collocation Methods

26. Parallel Implementation of Collocation Methods Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 2003 DDM.org 26. Parallel Implementation of Collocation Methods

More information

Finite element exterior calculus framework for geophysical fluid dynamics

Finite element exterior calculus framework for geophysical fluid dynamics Finite element exterior calculus framework for geophysical fluid dynamics Colin Cotter Department of Aeronautics Imperial College London Part of ongoing work on UK Gung-Ho Dynamical Core Project funded

More information

MODAL METHOD BASED ON SPLINE EXPANSION FOR THE ELECTROMAGNETIC ANALYSIS OF THE LAMELLAR GRATING

MODAL METHOD BASED ON SPLINE EXPANSION FOR THE ELECTROMAGNETIC ANALYSIS OF THE LAMELLAR GRATING Progress In Electromagnetics Research, Vol. 106, 243 261, 2010 MODAL METHOD BASED O SPLIE EXPASIO FOR THE ELECTROMAGETIC AALYSIS OF THE LAMELLAR GRATIG A. M. Armeanu Laboratoire des Technologies de la

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

The Fast Sweeping Method. Hongkai Zhao. Department of Mathematics University of California, Irvine

The Fast Sweeping Method. Hongkai Zhao. Department of Mathematics University of California, Irvine The Fast Sweeping Method Hongkai Zhao Department of Mathematics University of California, Irvine Highlights of fast sweeping mehtod Simple (A Gauss-Seidel type of iterative method). Optimal complexity.

More information

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.2,pp.11-140 B-splines Collocation Algorithms for Solving Numerically the MRLW Equation Saleh M. Hassan,

More information

On the Comparison of the Finite Volume and Discontinuous Galerkin Methods

On the Comparison of the Finite Volume and Discontinuous Galerkin Methods Diploma Thesis Institute for Numerical Simulation, TUHH On the Comparison of the Finite Volume and Discontinuous Galerkin Methods Corrected version Katja Baumbach August 17, 2006 Supervisor: Prof. Dr.

More information

The Nonhydrostatic Unified Model of the Atmosphere (NUMA): CG Dynamical Core

The Nonhydrostatic Unified Model of the Atmosphere (NUMA): CG Dynamical Core The Nonhydrostatic Unified Model of the Atmosphere (NUMA): CG Dynamical Core Frank Giraldo Department of Applied Mathematics Naval Postgraduate School Monterey CA 93943 http://faculty.nps.edu/projects/numa

More information

Overview of FFT-based homogenization techniques from the Galerkin point of view (slides)

Overview of FFT-based homogenization techniques from the Galerkin point of view (slides) Overview of FFT-based homogenization techniques from the Galerkin point of view (slides) Sébastien Brisard To cite this version: Sébastien Brisard. Overview of FFT-based homogenization techniques from

More information

A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations

A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations Institute for Mathematics Applied to the Geosciences (IMAGe) National Center for Atmospheric Research (NCAR) Boulder CO

More information

seismic wave propagation through spherical sections including anisotropy and visco-elastic dissipation 3D heterogeneities of all Earth model

seismic wave propagation through spherical sections including anisotropy and visco-elastic dissipation 3D heterogeneities of all Earth model seismic wave propagation through spherical sections including anisotropy and visco-elastic dissipation 3D heterogeneities of all Earth model properties inversion of seismic observables for 3D Earth structure

More information

FFT-based Galerkin method for homogenization of periodic media

FFT-based Galerkin method for homogenization of periodic media FFT-based Galerkin method for homogenization of periodic media Jaroslav Vondřejc 1,2 Jan Zeman 2,3 Ivo Marek 2 Nachiketa Mishra 4 1 University of West Bohemia in Pilsen, Faculty of Applied Sciences Czech

More information

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials Acoustics and Vibrations Group Université de Sherbrooke, QC CANADA Département génie mécanique Université de Sherbrooke Sherbrooke, QC CANADA Tel.: (819) 821-7157 Fax: (819) 821-7163 A 3 D finite element

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2015) 200, 888 907 GJI Seismology doi: 10.1093/gji/ggu436 On the initiation of sustained slip-weakening ruptures by localized stresses M. Galis, 1 C.

More information

Galerkin method for the numerical solution of the RLW equation using quintic B-splines

Galerkin method for the numerical solution of the RLW equation using quintic B-splines Journal of Computational and Applied Mathematics 19 (26) 532 547 www.elsevier.com/locate/cam Galerkin method for the numerical solution of the RLW equation using quintic B-splines İdris Dağ a,, Bülent

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator

The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator Martin J. Gander and Achim Schädle Mathematics Section, University of Geneva, CH-, Geneva, Switzerland, Martin.gander@unige.ch

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

Discontinuous Galerkin methods for fractional diffusion problems

Discontinuous Galerkin methods for fractional diffusion problems Discontinuous Galerkin methods for fractional diffusion problems Bill McLean Kassem Mustapha School of Maths and Stats, University of NSW KFUPM, Dhahran Leipzig, 7 October, 2010 Outline Sub-diffusion Equation

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

A Basis for Discretizations

A Basis for Discretizations A Basis for Discretizations Robert Struijs 6 January Abstract. We discuss approximations of a given order of accuracy to first and higher derivatives on a structured grid in N dimensions using a basis

More information

INELASTIC BUCKLING ANALYSIS OF AXIALLY COMPRESSED THIN CCCC PLATES USING TAYLOR-MACLAURIN DISPLACEMENT FUNCTION

INELASTIC BUCKLING ANALYSIS OF AXIALLY COMPRESSED THIN CCCC PLATES USING TAYLOR-MACLAURIN DISPLACEMENT FUNCTION ISSN-L: 2223-553, ISSN: 2223-44 Vol 4 No 6 November 2013 INELASTIC BUCKLING ANALYSIS OF AXIALLY COMPRESSED THIN CCCC PLATES USING TAYLOR-MACLAURIN DISPLACEMENT FUNCTION O M Ibearugbulem 1, D O Onwuka 2,

More information

Spectral Elements. Introduction recalling the elastic wave equation

Spectral Elements. Introduction recalling the elastic wave equation Spectral Elements Introduction recalling the elastic wave equation The spectral-element method: General concept domain mapping from space-continuous to space-discrete time extrapolation Gauss-Lobatto-Legendre

More information

Fourier analysis for discontinuous Galerkin and related methods. Abstract

Fourier analysis for discontinuous Galerkin and related methods. Abstract Fourier analysis for discontinuous Galerkin and related methods Mengping Zhang and Chi-Wang Shu Abstract In this paper we review a series of recent work on using a Fourier analysis technique to study the

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Numerical explorations of a forward-backward diffusion equation

Numerical explorations of a forward-backward diffusion equation Numerical explorations of a forward-backward diffusion equation Newton Institute KIT Programme Pauline Lafitte 1 C. Mascia 2 1 SIMPAF - INRIA & U. Lille 1, France 2 Univ. La Sapienza, Roma, Italy September

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Emerging Numerical Methods for Atmospheric Modeling

Emerging Numerical Methods for Atmospheric Modeling Chapter 9 Emerging Numerical Methods for Atmospheric Modeling Ramachandran D. Nair, Michael N. Levy and Peter H. Lauritzen Abstract This chapter discusses the development of discontinuous Galerkin (DG)

More information

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution Technical collection One dimensional hybrid Maxwell-Boltzmann model of shearth evolution 27 - Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin

More information

Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect

Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect Paolo Corti joint work with Siddhartha Mishra ETH Zurich, Seminar for Applied Mathematics 17-19th August 2011, Pro*Doc Retreat,

More information

The Pseudospectral Method

The Pseudospectral Method The Pseudospectral Method Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Heiner Igel Computational Seismology 1 / 34 Outline 1 Infinite Order Finite Differences

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media

Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-014 Numerical Methods and Algorithms for High Frequency Wave Scattering Problems

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Spline Interpolation Based PMOR

Spline Interpolation Based PMOR Universitaet Bremen Zentrum fuer Technomathematik December 14, 2009 Outline 1 Statement of the problem: Parametric Model Order Reduction Interpolation with B-Splines 2 3 Statement of the problem Statement

More information

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems Institute for Mathematics and Scientific Computing, Austria DISC Summerschool 5 Outline of the talk POD and singular value decomposition

More information

Fixed point iteration and root finding

Fixed point iteration and root finding Fixed point iteration and root finding The sign function is defined as x > 0 sign(x) = 0 x = 0 x < 0. It can be evaluated via an iteration which is useful for some problems. One such iteration is given

More information

( ) C) y = sinx D) y =

( ) C) y = sinx D) y = PART A CALCULATOR INACTIVE Questions # 1-12 are MULTIPLE CHOICE. Write the CAPITAL LETTER of the correct response on the answer sheet. Each correct answer is worth 2 points. (24) 1. The symmetry of f (

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

Nodal Discontinuous Galerkin Methods:

Nodal Discontinuous Galerkin Methods: Jan S Hesthaven and Tim Warburton Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications LIST OF CORRECTIONS AND CLARIFICATIONS September 6, 2010 Springer List of corrections and

More information

arxiv:physics/ v2 [physics.class-ph] 14 Oct 2005

arxiv:physics/ v2 [physics.class-ph] 14 Oct 2005 NUMERICAL MODELING OF ELASTIC WAVES ACROSS IMPERFECT CONTACTS. arxiv:physics/588v2 [physics.class-ph] 4 Oct 25 BRUNO LOMBARD AND JOËL PIRAUX Abstract. A numerical method is described for studying how elastic

More information

are harmonic functions so by superposition

are harmonic functions so by superposition J. Rauch Applied Complex Analysis The Dirichlet Problem Abstract. We solve, by simple formula, the Dirichlet Problem in a half space with step function boundary data. Uniqueness is proved by complex variable

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

The Campi Flegrei caldera, Italy:

The Campi Flegrei caldera, Italy: The Campi Flegrei caldera, Italy: 3-D structural model from seismic reflection data, and lithology characterization N. Maercklin 1, M. Vassallo 1, G. Festa2, A. Zollo2, D. Dello Iacono 2 & J. Virieux3

More information

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures):

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures): Elastic Scattering In this section we will consider a problem of scattering of two particles obeying Newtonian mechanics. The problem of scattering can be viewed as a truncated version of dynamic problem

More information

Numerical Analysis and Computer Science DN2255 Spring 2009 p. 1(8)

Numerical Analysis and Computer Science DN2255 Spring 2009 p. 1(8) Numerical Analysis and Computer Science DN2255 Spring 2009 p. 1(8) Contents Important concepts, definitions, etc...2 Exact solutions of some differential equations...3 Estimates of solutions to differential

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

Code_Aster. HSNV129 - Test of compression-dilation for study of the coupling thermics-cracking

Code_Aster. HSNV129 - Test of compression-dilation for study of the coupling thermics-cracking Titre : HSNV129 - Essai de compression-dilatation pour étu[...] Date : 28/2/218 Page : 1/8 HSNV129 - Test of compression-dilation for study of the coupling thermics-cracking Summary: One applies to an

More information

Numerical modelling of elastic-plastic deformation at crack tips in composite material under stress wave loading

Numerical modelling of elastic-plastic deformation at crack tips in composite material under stress wave loading JOURNAL DE PHYSIQUE IV Colloque C8, supplément au Journal de Physique III, Volume 4, septembre 1994 C8-53 Numerical modelling of elastic-plastic deformation at crack tips in composite material under stress

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 225 Estimates of the second-order derivatives for solutions to the two-phase parabolic problem

More information

Riemann-Lebesgue Lemma. Some pictures.

Riemann-Lebesgue Lemma. Some pictures. Riemann-Lebesgue Lemma. Some pictures. Definition Let f be a differentiable, complex-valued function on R such that f t) dt is convergent. For such a function define f λ) = the Fourier Transform of f.

More information

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement HONOM 2011 in Trento DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement Institute of Aerodynamics and Flow Technology DLR Braunschweig 11. April 2011 1 / 35 Research

More information

Cheapest nuller in the World: Crossed beamsplitter cubes

Cheapest nuller in the World: Crossed beamsplitter cubes Cheapest nuller in the World: François Hénault Institut de Planétologie et d Astrophysique de Grenoble, Université Joseph Fourier, CNRS, B.P. 53, 38041 Grenoble France Alain Spang Laboratoire Lagrange,

More information