GG303 Lecture 15 10/6/09 1 FINITE STRAIN AND INFINITESIMAL STRAIN

Size: px
Start display at page:

Download "GG303 Lecture 15 10/6/09 1 FINITE STRAIN AND INFINITESIMAL STRAIN"

Transcription

1 GG303 Lecture FINITE STRAIN AND INFINITESIMAL STRAIN I Main Topics on infinitesimal strain A The finite strain tensor [E] B Deformation paths for finite strain C Infinitesimal strain and the infinitesimal strain tensor ε II The finite strain tensor [E] A Used to find the changes in the squares of lengths of line segments in a deformed body. B Definition of [E] in terms of the deformation gradient tensor [F] Recall the coordinate transformation equations: x & y = a b & x& c d y or [ X ] = [ F] [ X ] d x & 2 d y = a b & dx& c d dy or [ d X ] = [ F ][ dx ] If dx dy & = [ dx ] then [ dx dy ] = [ dx ]T ; transposing a matrix is switching its rows and columns dy& = [ dx]t dx where I = 0 0 & is the identity matrix. 2 = d x 2 d y 2 = [ d x d y ] d x & d y = d X 3 ds 2 = dx 2 dy 2 = [ dx dy] dx 4 d s [ ] = [ dx ] T [ I] dx [ ] T [ d X ] [ ] Now dx can be expressed as [F][dX] see eq. II.B.2. Making this substitution into eq. 4 and proceeding with the algebra 2 = [[ F] [ dx] ] T [[ F ][ dx ] = [ dx ] T [ F ] T [ F] [ dx] 5 d s 6 d s 2 ds 2 = [ dx] T [ F] T [ F] [ dx] [ dx] T [ I] [ dx] [ ] dx 7 d s 2 ds 2 = [ dx] T [ F] T [ F] I [ ] 8 2 d s 2 ds & dx [ ] dx { 2 } = [ ] T [ F] T [ F] I 2 [ ] * dx [ ]T E [ ][ dx] 9 E [ ] 2 [ [ ] I] = finite strain tensor & [ F ]T F Stephen Martel Fall 2009: Conrad 5- University of Hawaii

2 GG303 Lecture III Deformation paths Consider two different finite strains described by the following two coordinate transformation equations: A x & y = a b & x& c d y = a x b y & c x d y = F [ ] X [ ] Deformation B C x & 2 y = a 2 b 2& x& c 2 2 d 2 y = a 2 x b 2 y & c 2 x d 2 y = F 2 [ ] X [ ] Deformation 2 Now consider deformation 3 where deformation is acted upon followed by deformation 2 i.e. deformation gradient matrix F first acts on [X] and then F2 acts on [F][X] x & y = a 2 b 2 & a b & x& c 2 d 2 c d y = a 2 a b 2 c a 2 b b 2 d & x& c 2 a d 2 c c 2 b d 2 d y Deformation 3 Next consider deformation 4 where deformation 2 is acted upon followed by deformation i.e. deformation gradient matrix F2 first acts on [X] and then F acts on [F2][X]. D x & y = a b & a 2 b 2 & x& c d c 2 d 2 y = a a 2 b c 2 a b 2 b d 2 & x& c a 2 d c 2 c b 2 d d 2 y Deformation 4 E A comparison of the net deformation gradient matrices in C and D shows they generally are different. Hence the net deformation in a sequence of finite strains depends on the order of the deformations. If the b and c terms [the off-diagonal terms] are small then the deformations are similar Stephen Martel Fall 2009: Conrad 5-2 University of Hawaii

3 GG303 Lecture Stephen Martel Fall 2009: Conrad 5-3 University of Hawaii

4 GG303 Lecture IV Infinitesimal strain and the infinitesimal strain tensor [ε] A What is infinitesimal strain? Deformation where the displacement derivatives are small relative to one i.e. the terms in the corresponding displacement gradient matrix J u [ ] are very small so that the products of the derivatives are very small and can be ignored. B Why consider infinitesimal strain if it is an approximation? Many important geologic deformations are small and largely elastic over short time frames e.g. fracture earthquake deformation volcano deformation. 2 The terms of the infinitesimal strain tensor [ε] have clear geometric meaning clearer than those for finite strain 3 Infinitesimal strain is much more amenable to sophisticated mathematical treatment than finite strain e.g. elasticity theory. 4 The net deformation for infinitesimal strain is independent of the deformation sequence. 5 Example F5 = 0.0& F6 = & J u 5 = 0 0.0& J u 6 = & Deformation 5 followed by deformation 6 gives deformation 7: x & & & x& & x& = = y y y Deformation 6 followed by deformation 5 gives deformation 7a : x & & & x& & x& = = y y y The net deformation is essentially the same in the two cases. Stephen Martel Fall 2009: Conrad 5-4 University of Hawaii

5 GG303 Lecture C The infinitesimal strain tensor Taylor series derivation Consider the displacement of two neighboring points where the distance from point 0 to point initially is given by dx and dy. Point 0 is displaced by an amount u 0 and we wish to find u. We use a truncated Taylor series; it is linear in dx and dy dx and dy are only raised to the first power. u = ux 0 u x x x dx u x y u u 2 u y = uy 0 y y x dx y dy... dy... These can be rearranged into a matrix format: u 3 x u = u x 0 u x u x x y dx y & u 0 u u y & y y dy& = U0 & J u x y & Now split J u [ ] dx [ ] [ ] into two matrices: the symmetric infinitesimal strain matrix [ ] T [ ] = e f [ ] T = e g [ε] and the anti-symmetric rotation matrix [ω] by using J u J u g h& J u J T [ u ] = e e f g g f h h & 4 [ J u ] = 2 J u J u [ ] 2 J T T J u u [ ] = 2 J u J u T J u f [ J u J u T ] = [ ] [ 2 J u J u T ] = h& 0 f g& g f 0 [ ] [ ] Now the displacement expression can be expanded using [ε] and [ω] * u x 5 [ ] = x u x u u & x y x y - * & x 0 u u x y 2 u y & x u [ 0] = y - & x u u x y y & y y 2 u y & y x u x 0 y.. Equations 3 and 5 show that the deformation can be decomposed into a translation a strain and a rotation. D Geometric interpretation of the infinitesimal strain components Stephen Martel Fall 2009: Conrad 5-5 University of Hawaii

6 GG303 Lecture Stephen Martel Fall 2009: Conrad 5-6 University of Hawaii

7 GG303 Lecture Stephen Martel Fall 2009: Conrad 5-7 University of Hawaii

8 GG303 Lecture E Relationship between [ε] and [E] From eq. II.B.9 [E] is defined in terms of deformation gradients: E [ ] 2 [ [ ] I] & [ F ]T F = finite strain tensor The tensor [E] also can be solved for in terms of displacement gradients because F = J u I. 2 E 3 E 4 E 5 E [ ] = 2 [ ] = 2 [ ] = 2 [ ] = 2 [ [ ] & I] [ J u I]T J u I T &u x &u x * * &u x &u x * * * dx dy &u 0 * dx dy y 0 &u 0 * y 0-0 * 0 dx dy dx dy &u x dx *&u x dx dx &u x * * dy &u x dy dy &u - 0 * y dx dy 0 * &u x dx &u x dx dx dx &u x &u x dy dx dy dx &u x dx &u x dy dx dy - &u x &u x dy dy dy dy. If the displacement gradients are small relative to then the products of the displacements are very small relative to and in infinitesimal strain theory they can be dropped yielding [ε]: * u x & 6 [ ] & dx u x & u x & dx dy u y &- dx 2 u x & dy u y & u y & dx dy u = * y & [ 2 J u] [ J u ] T -. dy. This suggests that for multiple deformations infinitesimal strains might be obtained by matrix addition i.e. linear superposition rather than by matrix multiplication; the former is simpler. Also see equation IV.C.5. Stephen Martel Fall 2009: Conrad 5-8 University of Hawaii

9 GG303 Lecture Example of IV.B.5: [ε] from superposed vs. sequenced deformations F5 = J 5 = F6 =.0 0 J 6 = & u 0 0.0& 0.02& u & a Linear superposition assuming infinitesimal strain approx.»f5 = [ ;0.00.0]»F6 = [ ; ] F5 = E5 = [ 2 F 5]T F 5 F6 = [ [ ] I] E6 = 2 F 6»E5 = 0.5*F5*F5-eye [ [ [ ]T F 6] I]» E6 = 0.5*F6*F6-eye2 E5 = [ 2 J u 5 ] [ J u 5] T &* E6 = [ 2 J u 6 ] [ J u 6] T &*»E7 = E5 E6 Linear superposition of strains E7 = Infinitesimal approximation [ ] 2 b Sequenced deformation exact E 7 F & * 7»F7 = F6*F5 See eq. IV.B.5 F7 = [ ] T [ F 7 ] I»E7 = 0.5*F7*F7-eye2 Convert def. gradients to strain - E7 = Good match with approximation Stephen Martel Fall 2009: Conrad 5-9 University of Hawaii

10 GG303 Lecture Recap The infinitesimal strain tensor can be used to find the change in the square of the length of a deformed line segment connecting two nearby points separated by distances dx and dy { 2 ds 2 ds 2 } = [ dx] T [][ dx] and with the rotation tensor to find the change in displacement of two points in a deformed medium that are initially separated by distances dx and dy: [U] = [ 2 ][ dx] [ 2 ][ dx ] 9 For infinitesimal strains the displacements are essentially the same no matter whether the pre- or post-deformation positions are used. Stephen Martel Fall 2009: Conrad 5-0 University of Hawaii

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

RHEOLOGY & LINEAR ELASTICITY

RHEOLOGY & LINEAR ELASTICITY GG303 Lecture 20 10/25/09 1 RHEOLOGY & LINEAR ELASTICITY I Main Topics A Rheology: Macroscopic deformation behavior B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous

More information

Lecture Notes #10. The "paradox" of finite strain and preferred orientation pure vs. simple shear

Lecture Notes #10. The paradox of finite strain and preferred orientation pure vs. simple shear 12.520 Lecture Notes #10 Finite Strain The "paradox" of finite strain and preferred orientation pure vs. simple shear Suppose: 1) Anisotropy develops as mineral grains grow such that they are preferentially

More information

GG303 Lab 12 11/7/18 1

GG303 Lab 12 11/7/18 1 GG303 Lab 12 11/7/18 1 DEFORMATION AROUND A HOLE This lab has two main objectives. The first is to develop insight into the displacement, stress, and strain fields around a hole in a sheet under an approximately

More information

MTH 215: Introduction to Linear Algebra

MTH 215: Introduction to Linear Algebra MTH 215: Introduction to Linear Algebra Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 20, 2017 1 LU Factorization 2 3 4 Triangular Matrices Definition

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

Lecture 14: Strain Examples. GEOS 655 Tectonic Geodesy Jeff Freymueller

Lecture 14: Strain Examples. GEOS 655 Tectonic Geodesy Jeff Freymueller Lecture 14: Strain Examples GEOS 655 Tectonic Geodesy Jeff Freymueller A Worked Example Consider this case of pure shear deformation, and two vectors dx 1 and dx 2. How do they rotate? We ll look at vector

More information

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials GG303 Lecture 2 0 9/4/01 1 RHEOLOGY & LINEAR ELASTICITY I II Main Topics A Rheology: Macroscopic deformation behavior B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous

More information

Exercise solutions: concepts from chapter 5

Exercise solutions: concepts from chapter 5 1) Stud the oöids depicted in Figure 1a and 1b. a) Assume that the thin sections of Figure 1 lie in a principal plane of the deformation. Measure and record the lengths and orientations of the principal

More information

Stress analysis of a stepped bar

Stress analysis of a stepped bar Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has cross-sectional areas of A ) and A ) over the lengths l ) and l ), respectively.

More information

i.e. the conservation of mass, the conservation of linear momentum, the conservation of energy.

i.e. the conservation of mass, the conservation of linear momentum, the conservation of energy. 04/04/2017 LECTURE 33 Geometric Interpretation of Stream Function: In the last class, you came to know about the different types of boundary conditions that needs to be applied to solve the governing equations

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

Mathematical Background

Mathematical Background CHAPTER ONE Mathematical Background This book assumes a background in the fundamentals of solid mechanics and the mechanical behavior of materials, including elasticity, plasticity, and friction. A previous

More information

Mechanics of materials Lecture 4 Strain and deformation

Mechanics of materials Lecture 4 Strain and deformation Mechanics of materials Lecture 4 Strain and deformation Reijo Kouhia Tampere University of Technology Department of Mechanical Engineering and Industrial Design Wednesday 3 rd February, 206 of a continuum

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Orthogonal Projections, Gram-Schmidt Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./ Orthonormal Sets A set of vectors {u, u,...,

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

GG611 Structural Geology Sec1on Steve Martel POST 805

GG611 Structural Geology Sec1on Steve Martel POST 805 GG611 Structural Geology Sec1on Steve Martel POST 805 smartel@hawaii.edu Lecture 5 Mechanics Stress, Strain, and Rheology 11/6/16 GG611 1 Stresses Control How Rock Fractures hkp://hvo.wr.usgs.gov/kilauea/update/images.html

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Existence of minimizers for the pure displacement problem in nonlinear elasticity

Existence of minimizers for the pure displacement problem in nonlinear elasticity Existence of minimizers for the pure displacement problem in nonlinear elasticity Cristinel Mardare Université Pierre et Marie Curie - Paris 6, Laboratoire Jacques-Louis Lions, Paris, F-75005 France Abstract

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

GG612 Lecture 3. Outline

GG612 Lecture 3. Outline GG61 Lecture 3 Strain and Stress Should complete infinitesimal strain by adding rota>on. Outline Matrix Opera+ons Strain 1 General concepts Homogeneous strain 3 Matrix representa>ons 4 Squares of line

More information

Lecture notes Models of Mechanics

Lecture notes Models of Mechanics Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

= L 1 # L o = " L o. = L 1! L o

= L 1 # L o =  L o. = L 1! L o GG303 Lab 9 10/20/09 1 STRAIN I Main Topics A General deformation B Homogeneous 2-D strain and the strain ellipse C Homogeneous 3-D strain and the strain ellipsoid (Flinn Diagrams) D Comments on measuring

More information

The Kinematic Equations

The Kinematic Equations The Kinematic Equations David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 0139 September 19, 000 Introduction The kinematic or strain-displacement

More information

ME751 Advanced Computational Multibody Dynamics

ME751 Advanced Computational Multibody Dynamics ME751 Advanced Computational Multibody Dynamics October 24, 2016 Antonio Recuero University of Wisconsin-Madison Quote of the Day If a cluttered desk is a sign of a cluttered mind, of what, then, is an

More information

Lecture II: Vector and Multivariate Calculus

Lecture II: Vector and Multivariate Calculus Lecture II: Vector and Multivariate Calculus Dot Product a, b R ' ', a ( b = +,- a + ( b + R. a ( b = a b cos θ. θ convex angle between the vectors. Squared norm of vector: a 3 = a ( a. Alternative notation:

More information

M E 320 Professor John M. Cimbala Lecture 10

M E 320 Professor John M. Cimbala Lecture 10 M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Macroscopic theory Rock as 'elastic continuum'

Macroscopic theory Rock as 'elastic continuum' Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

QM and Angular Momentum

QM and Angular Momentum Chapter 5 QM and Angular Momentum 5. Angular Momentum Operators In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of low spin systems. Here we want to review that

More information

TENSOR TRANSFORMATION OF STRESSES

TENSOR TRANSFORMATION OF STRESSES GG303 Lecture 18 9/4/01 1 TENSOR TRANSFORMATION OF STRESSES Transformation of stresses between planes of arbitrar orientation In the 2-D eample of lecture 16, the normal and shear stresses (tractions)

More information

Continuum Mechanics and the Finite Element Method

Continuum Mechanics and the Finite Element Method Continuum Mechanics and the Finite Element Method 1 Assignment 2 Due on March 2 nd @ midnight 2 Suppose you want to simulate this The familiar mass-spring system l 0 l y i X y i x Spring length before/after

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Trifocal Tensor Lecture 21 March 31, 2005 2 Lord Shiva is depicted as having three eyes. The

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics

CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics CH.3. COMPATIBILITY EQUATIONS Multimedia Course on Continuum Mechanics Overview Introduction Lecture 1 Compatibility Conditions Lecture Compatibility Equations of a Potential Vector Field Lecture 3 Compatibility

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018 1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

KINEMATICS OF CONTINUA

KINEMATICS OF CONTINUA KINEMATICS OF CONTINUA Introduction Deformation of a continuum Configurations of a continuum Deformation mapping Descriptions of motion Material time derivative Velocity and acceleration Transformation

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 17, 2017, Lesson 5 1 Politecnico di Milano, February 17, 2017, Lesson 5 2 Outline

More information

Exercise: mechanics of dike formation at Ship Rock

Exercise: mechanics of dike formation at Ship Rock Exercise: mechanics of dike formation at Ship Rock Reading: Fundamentals of Structural Geology, Ch. 8, p. 87 95, 319-33 Delaney & Pollard, 1981, Deformation of host rocks and flow of magma during growth

More information

SSNV137 - Cable of prestressed in a Summarized concrete straight beam

SSNV137 - Cable of prestressed in a Summarized concrete straight beam Titre : SSNV137 - Câble de précontrainte dans une poutre d[...] Date : 23/10/2012 Page : 1/10 SSNV137 - Cable of prestressed in a Summarized concrete straight beam One considers a concrete straight beam,

More information

THERMODYNAMICS OF FRACTURE GROWTH (18) Griffith energy balance and the fracture energy release rate (G)

THERMODYNAMICS OF FRACTURE GROWTH (18) Griffith energy balance and the fracture energy release rate (G) GG 711c 3/0/0 1 THRMODYNAMICS OF FRACTUR GROWTH (18) I Main topics A Griffith energy balance and the fracture energy release rate (G) B nergy partitioning in a cracked solid & independence of G on loading

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 06 In the last lecture, we have seen a boundary value problem, using the formal

More information

GG303 Lecture 29 9/4/01 1 FABRICS

GG303 Lecture 29 9/4/01 1 FABRICS GG303 Lecture 29 9/4/01 1 FABRICS I Main Topics A What are fabrics? B Planar fabrics C Linear fabrics D Penetrative vs. non-penetrative fabrics E Cleavage and folds F Comments on use of grain-scale observations

More information

CE-570 Advanced Structural Mechanics - Arun Prakash

CE-570 Advanced Structural Mechanics - Arun Prakash Ch1-Intro Page 1 CE-570 Advanced Structural Mechanics - Arun Prakash The BIG Picture What is Mechanics? Mechanics is study of how things work: how anything works, how the world works! People ask: "Do you

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

GG303 Lecture 17 10/25/09 1 MOHR CIRCLE FOR TRACTIONS

GG303 Lecture 17 10/25/09 1 MOHR CIRCLE FOR TRACTIONS GG303 Lecture 17 10/5/09 1 MOHR CIRCLE FOR TRACTIONS I Main Topics A Stresses vs. tractions B Mohr circle for tractions II Stresses vs. tractions A Similarities between stresses and tractions 1 Same dimensions

More information

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering Outline Introduction Kinematics Review Conservation of Mass Stream Function

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Chapter 0. Preliminaries. 0.1 Things you should already know

Chapter 0. Preliminaries. 0.1 Things you should already know Chapter 0 Preliminaries These notes cover the course MATH45061 (Continuum Mechanics) and are intended to supplement the lectures. The course does not follow any particular text, so you do not need to buy

More information

Truss Structures: The Direct Stiffness Method

Truss Structures: The Direct Stiffness Method . Truss Structures: The Companies, CHAPTER Truss Structures: The Direct Stiffness Method. INTRODUCTION The simple line elements discussed in Chapter introduced the concepts of nodes, nodal displacements,

More information

DIAGONALIZATION OF THE STRESS TENSOR

DIAGONALIZATION OF THE STRESS TENSOR DIAGONALIZATION OF THE STRESS TENSOR INTRODUCTION By the use of Cauchy s theorem we are able to reduce the number of stress components in the stress tensor to only nine values. An additional simplification

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finite Element Analsis for Mechanical and Aerospace Design Cornell Universit, Fall 2009 Nicholas Zabaras Materials Process Design and Control Laborator Sible School of Mechanical and Aerospace

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

More information

Exercise: concepts from chapter 5

Exercise: concepts from chapter 5 Reading: Fundamentals of Structural Geology, Ch 5 1) Study the oöids depicted in Figure 1a and 1b. Figure 1a Figure 1b Figure 1. Nearly undeformed (1a) and significantly deformed (1b) oöids with spherulitic

More information

Introduction to Environment System Modeling

Introduction to Environment System Modeling Introduction to Environment System Modeling (3 rd week:modeling with differential equation) Department of Environment Systems, Graduate School of Frontier Sciences, the University of Tokyo Masaatsu AICHI

More information

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess Nonlinear Theory of Elasticity Dr.-Ing. Martin Ruess geometry description Cartesian global coordinate system with base vectors of the Euclidian space orthonormal basis origin O point P domain of a deformable

More information

Notes on Cellwise Data Interpolation for Visualization Xavier Tricoche

Notes on Cellwise Data Interpolation for Visualization Xavier Tricoche Notes on Cellwise Data Interpolation for Visualization Xavier Tricoche urdue University While the data (computed or measured) used in visualization is only available in discrete form, it typically corresponds

More information

Hooke s law and its consequences 1

Hooke s law and its consequences 1 AOE 354 Hooke s law and its consequences Historically, the notion of elasticity was first announced in 676 by Robert Hooke (635 73) in the form of an anagram, ceiinosssttuv. He explained it in 678 as Ut

More information

Topics. GG612 Structural Geology Sec3on Steve Martel POST 805 Lecture 4 Mechanics: Stress and Elas3city Theory

Topics. GG612 Structural Geology Sec3on Steve Martel POST 805 Lecture 4 Mechanics: Stress and Elas3city Theory GG612 Structural Geology Sec3on Steve Martel POST 805 smartel@hawaii.edu Lecture 4 Mechanics: Stress and Elas3city Theory 11/6/15 GG611 1 Topics 1. Stress vectors (trac3ons) 2. Stress at a point 3. Cauchy

More information

3. The linear 3-D elasticity mathematical model

3. The linear 3-D elasticity mathematical model 3. The linear 3-D elasticity mathematical model In Chapter we examined some fundamental conditions that should be satisfied in the modeling of all deformable solids and structures. The study of truss structures

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

1.8. Zeroth-Order Tensors (Scalars). A scalar is a single function (i.e., one component) which is invariant under

1.8. Zeroth-Order Tensors (Scalars). A scalar is a single function (i.e., one component) which is invariant under 1.8. Zeroth-Order Tensors (Scalars). A scalar is a single function (i.e., one component) which is invariant under changes of the coordinate systems. We deal with rectangular coordinate systems only. Thus

More information

1.1 GRAPHS AND LINEAR FUNCTIONS

1.1 GRAPHS AND LINEAR FUNCTIONS MATHEMATICS EXTENSION 4 UNIT MATHEMATICS TOPIC 1: GRAPHS 1.1 GRAPHS AND LINEAR FUNCTIONS FUNCTIONS The concept of a function is already familiar to you. Since this concept is fundamental to mathematics,

More information

Elements of Rock Mechanics

Elements of Rock Mechanics Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Math 2J Lecture 16-11/02/12

Math 2J Lecture 16-11/02/12 Math 2J Lecture 16-11/02/12 William Holmes Markov Chain Recap The population of a town is 100000. Each person is either independent, democrat, or republican. In any given year, each person can choose to

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

Methods of Analysis. Force or Flexibility Method

Methods of Analysis. Force or Flexibility Method INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

More information

LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES

LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES Figure 3.47 a. Two-mass, linear vibration system with spring connections. b. Free-body diagrams. c. Alternative free-body

More information

Introduction to Group Theory

Introduction to Group Theory Chapter 10 Introduction to Group Theory Since symmetries described by groups play such an important role in modern physics, we will take a little time to introduce the basic structure (as seen by a physicist)

More information

Linear and affine transformations

Linear and affine transformations Linear and affine transformations Linear Algebra Review Matrices Transformations Affine transformations in Euclidean space 1 The linear transformation given b a matri Let A be an mn matri. The function

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

Lecture 7: The Beam Element Equations.

Lecture 7: The Beam Element Equations. 4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite

More information

Chapter 2. Rubber Elasticity:

Chapter 2. Rubber Elasticity: Chapter. Rubber Elasticity: The mechanical behavior of a rubber band, at first glance, might appear to be Hookean in that strain is close to 100% recoverable. However, the stress strain curve for a rubber

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

M E 320 Professor John M. Cimbala Lecture 10. The Reynolds Transport Theorem (RTT) (Section 4-6)

M E 320 Professor John M. Cimbala Lecture 10. The Reynolds Transport Theorem (RTT) (Section 4-6) M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Discuss the Reynolds Transport Theorem (RTT) Show how the RTT applies to the conservation laws Begin Chapter 5 Conservation Laws D. The Reynolds

More information

CH.2. DEFORMATION AND STRAIN. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.2. DEFORMATION AND STRAIN. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.. DEFORMATION AND STRAIN Continuum Mechanics Course (MMC) - ETSECCPB - UPC Overview Introduction Deformation Gradient Tensor Material Deformation Gradient Tensor Inverse (Spatial) Deformation Gradient

More information

Math Methods for Polymer Physics Lecture 1: Series Representations of Functions

Math Methods for Polymer Physics Lecture 1: Series Representations of Functions Math Methods for Polymer Physics ecture 1: Series Representations of Functions Series analysis is an essential tool in polymer physics and physical sciences, in general. Though other broadly speaking,

More information

Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros

Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros Computational Design Forward design: direct manipulation of design parameters Level of abstraction Exploration

More information

ME751 Advanced Computational Multibody Dynamics

ME751 Advanced Computational Multibody Dynamics ME751 Advanced Computational Multibody Dynamics November 2, 2016 Antonio Recuero University of Wisconsin-Madison Quotes of the Day The methods which I set forth do not require either constructions or geometrical

More information

Lecture 21: Isoparametric Formulation of Plane Elements.

Lecture 21: Isoparametric Formulation of Plane Elements. 6.6. Rectangular Plane Stress/Strain Element. he CS element uses a triangular shape. he 3 nodes of the CS element allow us to employ linear multivariate approximations to the u and v displacements. he

More information

Strain analysis.

Strain analysis. Strain analysis ecalais@purdue.edu Plates vs. continuum Gordon and Stein, 1991 Most plates are rigid at the until know we have studied a purely discontinuous approach where plates are

More information

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then Linear Elasticity Objectives In this lab you will measure the Young s Modulus of a steel wire. In the process, you will gain an understanding of the concepts of stress and strain. Equipment Young s Modulus

More information

March 27 Math 3260 sec. 56 Spring 2018

March 27 Math 3260 sec. 56 Spring 2018 March 27 Math 3260 sec. 56 Spring 2018 Section 4.6: Rank Definition: The row space, denoted Row A, of an m n matrix A is the subspace of R n spanned by the rows of A. We now have three vector spaces associated

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 16

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 16 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 16 In the last lectures, we have seen one-dimensional boundary value

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information