High-Accuracy Analysis of Compton Scattering off Protons and Deuterons in Chiral EFT

Size: px
Start display at page:

Download "High-Accuracy Analysis of Compton Scattering off Protons and Deuterons in Chiral EFT"

Transcription

1 High-Accuracy Analysis of Compton Scattering off Protons and Deuterons in Chiral EFT H. W. Grießhammer Institute for Nuclear Studies The George Washington University, DC, USA 1 Compton Scattering Explores Low-Energy Dynamics 2 One Nucleon 3 The Other Nucleon 4 Concluding Questions How do constituents of the nucleon react to external fields? How to reliably extract neutron and spin polarisabilities? Comprehensive Theory Effort: hg, J. McGovern (Manchester), D. R. Phillips (Ohio U) arxiv: (proton) + G. Feldman (GW): Prog. Part. Nucl. Phys. 67 (212) 841 Precursors: Hildebrandt/Hemmert/Pasquini/hg ,...,Beane/Malheiro/McGovern/Phillips/van Kolck ; Choudhury Shukla/Phillips 25-8; Friar 1975, Arenhövel/Weyrauch , Karakowski/Miller 1999, Levchuk/L vov Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 1-1

2 1. Compton Scattering Explores Low-Energy Dynamics (a) Energy-Dependent (Dynamical) Polarisabilities hg/hemmert/+hildebrandt/pasquini 22/3 Example: induced electric dipole radiation from harmonically bound charge, damping Γ Lorentz/Drude 19/195 E in (ω) m,q d ind (ω)= q2 1 E ω,γ m ω 2 ω 2 in (ω) iγω }{{} =: 4π α E1 (ω) [ ] L pol = 2π α E1 (ω) E 2 + β M1 (ω) B 2 }{{} electric, magnetic scalar dipole +... Energy- (ω)-dependent multipole-decomposition dis-entangles scales, symmetries & mechanisms of interactions with & among constituents. = Clean, perturbative probe of (1232) properties, nucleon spin-constituents, χiral symmetry of pion-cloud & its breaking (proton-neutron difference). q µ =(ω, q) proton neutron iso-spin breaking: = elmag. p-n self-energy difference from β p M1 β n M1 2γ contribution to Lamb shift in muonic H (β M1 ) Walker-Loud/ Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 2-1

3 (b) Towards Polarisabilities from First Principles: Lattice QCD Pioneering: Quenched, chiral fermions Lee/Zhou/Wilcox/Christensen neutron α n E1 [1 4 fm 3 ] E.1 m π [ MeV] _ Ongoing: spin-polarisabilities, unquenching, m π ց 2 MeV, larger volumes, more statistics,... Lee/ , LHPC 26-, Detmold/Tiburzi/Walker-Loud 26- [1-4 fm] 4 E1 γ γe1e1 n Engelhardt (LHPC) fully dynamical vs. χeft with dyn m [MeV] Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 3-1

4 (c) Separation of Scales: Effective Field Theory from QCD Wilson, Weinberg,... Theory of strong interactions: Quantum Chromo Dynamics QCD L QCD = Ψ q [i / + g /A m q ]Ψ q 1 4 G µν G µν = Effective low-energy degrees of freedom: Nucleons, Pions, (1232) Systematic ordering in Q= typ. momentum m π breakdown scale 1 GeV Controlled approximation: model-independent, error-estimate. π L χeft =(D µ π a )(D µ π a ) m 2 π π a π a N [i D + D 2 2M + g ( ) A 2+ ( σ Dπ+...]N+ C N N H N N) 2f π Correct long-range Physics + all interactions allowed by symmetries. Short-range: encode ignorance into minimal parameter-set at given order. E [MeV] λ[fm=1 15m] p,n (94).2 ω,ρ (77) gauge, Lorentz, iso-spin,... symmetries chiral: pions light & weakly coupled: Goldstone bosons of Chiral SSB = Chiral Effective Field Theory χeft low-energy QCD π (14) M M N 2 H R λ Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 4-1

5 2. One Nucleon (a) Including the (1232) in χeft (1232) lowest hadronic excitation above 1-pion threshold m π, below χeft breakdown scale Λ χ 1 MeV = Expand in δ = M M N Λ χ mπ = p typ 1 ω (numerical fact) Pascalutsa/Phillips 22 and. Λ χ Λ χ Λ χ Low régime ω m π = ω δ 2 High régime ω M M N 3 MeV = ω δ 1 ω M M N : propagator enhanced 1 ω (M M N ) 1 δ 3 = Re-order & dress = 1 E (M M N ) + relativity Probe non-zero width, M1 and E2 transition strengths. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 5-1

6 (b) All Contributions Bernard/Kaiser/Meißner 1994, Hemmert/ hg/hemmert/hildebrandt/pasquini 23, McGovern 21 McGovern/Phillips/hg 212 Low régime ω m π δ 2 High régime ω M M N δ 1 3 MeV ω m π M M N e 2 δ LO e 2 δ ցnlo π e 2 δ 2 N 2 LO e 2 δ 1 N 2 LO covariant with vertex corrections b 1 (M1) b 2 (E2) = LO NLO N 2 LO e 2 δ 3 N 3 LO e 2 δ 1 րlo e 2 δ 3 N 3 LO e 2 δ 1 N 2 LO etc. δα,δβ fit etc. e 2 δ 4 N 4 LO e 2 δ 2 N 3 LO Unified Amplitude: gauge & RG invariant set of all contributions which are in low régime ω m π at least N 4 LO (e 2 δ 4 ): accuracy δ 5 2%; or in high régime ω M M N at least NLO (e 2 δ ): accuracy δ 2 2%. Unknowns: δα,δβ α E1,β M1, γn strengths b 1 (M1), b 2 (E2) Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 6-1

7 (c) Elementary, Watson. Watson 1954 Watson s Theorem: Re[Amplitude] = at resonance peak by unitarity. = Unified Amplitude must contain additional pieces: πn loops order for γ N vertex corrections N 2 LO, N 4 LO for ω m π ω M M N N 7 LO, N 9 LO for ω m π + + e 2 δ 1 N 2 LO e 2 δ 2 N 3 LO = Keep these vertex corrections, albeit higher-order everywhere; check. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 7-1

8 (d) Creating a Consistent Proton Compton Database hg/mcgovern/phillips/feldman PPNP Θ lab Θ lab Θ lab Θ lab 9 2 Θ lab Θ lab Θ lab Θ lab data, mostly New effort for better data: MAMI, MAXlab, HIγS,... Gaps for: ω [16;25] MeV; θ : Baldin check; θ 18 for (1232)! Small quoted systematics = tensions: MAMI vs. LEGS, but also others = no Not more, but more reliable data needed for unpolarised proton. χ 2 1 without pruning. d.o.f. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 8-1

9 (e) Polarisabilities from Consistent Database McGovern/Phillips/hg 212 database: +Feldman PPNP b Θlab Θlab Θlab Θlab Θlab Θlab > 2 MeV: fix b 2 /b 1 =.34 Vanderhaeghen/ Pascalutsa 26, fit b 1 = 3.61±.2; = <17 MeV: polarisabilities α p E1 [1 4 fm 3 ] β p M1 [1 4 fm 3 ] χ 2 /d.o.f. Baldin constrained α p E1 + β p M1 = 13.8±.4 1.7±.4 stat ±.2 Σ ±.3 theory stat ±.2 Σ.3 theory 113.2/135 Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 9-1

10 (f) Fit Discussion: Parameters and Uncertainties McGovern/Phillips/hg 212 Fit to α, β only: Combined πn loops and pushes intermed. angles too high. = Must also fit γ M1M1 2.2±.5 stat for good χ 2, fwd. spin-polarisability γ p 1 (cf. Disp. Rel.). 1σ -contours N 2 LO marginalised over γ M1M1 Consistent with Baldin Σ Rule α E1 + β M1 = 1 2π 2 ν dν σ(γp X) ν 2 = 13.8±.4 Olmos de Leon 21 need more forward data to constrain. Fit Stability: floating norms within exp. sys. uncertainties; vary dataset, b 1, vertex dressing,... Residual Theoretical Uncertainty from convergence pattern: δ of LO NLO change δ(α β)=3.5 LO parameter-free Bernard/Kaiser/Meißner 1994 α p E1 [1 4 fm 3 ] β p M1 [1 4 fm 3 ] χ 2 /d.o.f no fit N 2 LO Baldin constrained α p E1 + β p M1 = 13.8±.4 1.7±.4 stat ±.2 Σ ±.3 theory stat ±.2 Σ.3 theory 113.2/135 Olmos de Leon ±1.2 stat+model ±.4 Σ stat+model ±.4 Σ Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 1-1

11 (g) Spin-Polarisabilities: Nucleonic Bi-Refringence and Faraday Effect Optical Activity: Response of spin-degrees of freedom, experimentally untested. S S S S S S S S S S S S π+ π+ σ π+ π+ L pol = 4π N { ] [α E1 (ω) E 2 + β M1 (ω) B scalar dipole [ γ E1E1 (ω) σ ( E E) + γ M1M1 (ω) σ ( B B) pure spin-dependent dipole 2 γ M1E2 (ω) σ i B j E ij + 2 γ E1M2 (ω) σ i E j B ij ] } N mixed spin-dependent dipole quadrupole etc. N N N N N N N N N N N N E ij := 1 2 ( ie j + j E i ) etc. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 11-1

12 (h) Spin-Polarisabilities from Circular-Polarised Photon O(e 2 δ 3 ): hg/hildebrandt/ O(e 2 δ 4 ): hg/mcgovern in prep. exp: MAMI 211- Proton Best: Incoming γ circularly polarised, sum over final states. N-spin in( k, k )-plane, perpendicular to k: Σ x = ( ) ( ) ( )+( ) σ k k ε θ vs. σ k k ε θ full Nπ+ no γ i s no l 2 proton proton Dominated by structure Clear γ i -dep. Higher pols negligible HIγS? Also good signal for linear polarisations. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 12-1

13 3. The Other Nucleon (a) Iso-Vector Polarisabilities Proton-neutron difference αe1 v := αp E1 αn E1 etc. probes details: Explicit χiral-symmetry-breaking in pion-cloud,..., elmag. p-n self-energy difference[±1] MeV β p M1 β n M1 Appears only in NLO χeft; compatible with 1 1 th of iso-scalar polarisabilities in Dispersion Relations. No free neutron targets = χeft for model-independent subtraction of nuclear binding. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 13-1

14 (b) Deuteron Compton Scattering at ω =... 2 MeV Hildebrandt/hg/Hemmert 25-1, hg 212 One-body: electric, magnetic moment couplings α s E1,β s M1 ω Q2 M 2 MeV ω Q 1 MeV LO, N 3 LO LO,րNLO partial waves T NN LO ց NLO, N 3 LO 2N correlated i B d ± ω q2 M uncorrelated χeft pion-exchange currents: Beane et al ; hg/ NLO NLO NLO ց N 2 LO part. waves NLO ց N 3 LO, pert. Full LO T NN pivotal for current conservation. Arenhövel 198 Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 14-1

15 (c) Consequence of NN-Rescattering: An Exact Low-Energy Theorem hg/... 21, 212 Low-Energy Theorem: Thomson limita(ω = )= e2 M d ε ε. Thirring 195, Friar 1975, Arenhövel 198: Thomson limit current conservation gauge invariance. Exact Theorem = At each χeft order = Checks numerics. 25 dσ d nbarn sr Θ Ω lab MeV Significantly reduces cross section for ω 7 MeV. Numerically confirmed to.2%, irrespective of deuteron wave function & potential. Urbana, Lund data model-independence Wave function & potential dependence significantly reduced even as ω 15 MeV = gauge invariance. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 15-1

16 (d) Determine Neutron Polarisabilities from all Deuteron Data hg/mcgovern/phillips/ Feldman PPNP 212 Illinois, Lund, Saskatoon Nπ + free fit Nπ + + stat. error, Baldin constrained α s E1 [1 4 fm 3 ] β s M1 [1 4 fm 3 ] χ 2 /d.o.f. NLO free fit 1.5±2. stat ±.8 theory 3.6±1. stat ±.8 theory 24.3/24 NLO Baldin constrained α s E1 + β s M1 = 14.5±.3 1.9±.9 stat ±.2 Σ ±.8 theory stat ±.2 Σ.8 theory 24.4/25 N 2 LO proton (Baldin) hg/... PPNP ±.4 stat ±.2 Σ ±.3 theory stat ±.2 Σ.3 theory 113.2/135 = neutron proton polarisabilities Need better data: MAXlab taken, HIγS approved theory: N 2 LO, beyond pion threshold Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 16-1

17 (e) Goal: Guide, Support, Analyse, Predict Experiments hg/shukla 21- hg/mcgovern/phillips independent observables for proton; 23 for deuteron = Interactive mathematicia 8. notebooks from hgrie@gwu.edu Example double-polarised on deuteron Θcm 16,9, Γ E1E1 ±2 2 First scatt. angle Θ 16 Second scatt. angle Θ 9 Reference frame cm lab x circ nbarn sr Ωcm MeV Deuteron polarisation axis x z Variation by ±2 of Γ E1E1 ΧEFT order Ε 3 Deuteron wave function NNLO Epelbaum 65MeV AV18 NN potential AV18 Range y axis Automatic Γ E1E1 ; Γ E1E1 2; Γ E1E1 2 Future: guide/support experiments at HIγS, MAMI, MAXlab extend analysis proton to 3 MeV full analysis deuteron (tensor-polarised), 3 He Compton@Web on DAC/SAID website Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 17-1

18 (f) Spin-Polarisabilities from Circularly Pol. Photons at 125 MeV Shukla/Phillips 25 Shukla/hg 21; hg 212 Deuteron Best: Incoming γ circularly polarised, sum over final states. N-spin in( k, k )-plane, perpendicular to k: difference circ x, asymmetry Σ circ x = circ x sum σ k k ε θ vs. σ k k ε θ Sensitivity on neutron γ E1E1 x circ nbarn sr Sensitivity on neutron α E1 β M1 ; Baldin-Σ fixed 5.2; 5.2+2; ; 8.2+2; Ω lab 125 MeV, Γ E1E1 ± Θ deg x circ nbarn sr Ω lab 125 MeV, Α E1 Β M1 ±2, Baldin fixed Θ deg Sensitive to γ E1E1, but must nail down α E1, β M1 at lower energy. (1232) and re-scattering increase signal. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 18-1

19 (g) Inelastic Compton Scattering on Nuclei theory: Levckuk/L vov/petrunkin ; Demissie/hg 212- exp: (Rose/ ); Kolb/... SAL 2; Kossert/... MAMI 22 Nucleon polarisabilities from centre of quasi-inelastic peak in A(γ,γA )N 9 data for d(γ,γp)n for ω [23;4] MeV d 3 σ / dω γ dω p de p [nb / MeV sr 2 ] MAID2 MAID2 (scaled) SAID-SMK SAID-SM99K SAL- SENECA γd γ pn s lab θ γ = Kossert et al. 23 found α n E1 = 12.5±1.8(stat) (syst)±1.1(model), β M1 from Baldin sys. & model-error under-estimated?: π production, SAID/MAID-2 amplitudes, π-exchange currents not chirally consistent, E γ [MeV] To Do: Theory starting up: Demissie PhD Analyse elastic & inelastic in unified χeft frame, test quasi-free hypothesis. Enhancement by (1232) peak = accurate theory. To Do: Experiment Better data. Lower energies. Sensitivity of single-/double-polarised observables, breakup asymmetries. Alternative targets: 3 He, 4 He, 6 Li,..., also for proton? Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 19-1

20 (h) Per Aspera Ad Astra: 3 He Experiment: dσ dω (target-charge)2 to 1, more & easier targets Theory: Reliable extraction needs accurate description of nuclear binding & levels = heavier nuclei = lighter nuclei Find sweet-spot between competing forces: 3 He at HIγS, MAMI, MAXlab Example: Sensitivity of unpolarised 3 He cross-section at ω lab = 12 MeV on α n, β n Shukla/Phillips/Nogga α n =-4 α n =-2 α n = α n = 2 α n = β n =-2 β n = β n = 2 β n = 4 β n = cm angle (deg) cm angle (deg) First Compton cross section on 3 He. 3 He as effective neutron spin target. Extend beyond ω [8;12] MeV: re-scattering (Thomson, T NN ), explicit (1232), threshold corrections = Effects will become more pronounced. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 2-1

21 (i) Understanding Energy Dependence Dynamical Polarisabilities: Multipole decomposition of real Compton scattering at fixed energy. Neither more nor less information about response of constituents, but more readily accessible. α E1 (ω): Pion cusp well captured by single-nπ. β M1 (ω): para-magnetic N-to- M1-transition. 3 Ω Π Ω Ω Π Ω Re ΑE1 Ω χeft with (1232) Im ΒM1 Ω Re Im Disp. Rel. Re: refraction; Im: absorption = pion photo-production multipoles. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 21-1

22 (j) Iso-Scalar Spin-Dependent Dynamical Polarisabilities Hildebrandt/TRH/hg/Pasquini 22/3 Predicted in χeft: No N-core contributions = Spin-physics dominated by pion-cloud+ (γ M1M1, γ M1E2 ) ΓE1E1 Ω Ω Π ΓE1M2 Ω Ω Π Ω Ω ΓM1M1 Ω Ω Π Ω Π Ω Ω Pure polarisabilities γ E1E1, γ M1M1 agree. Nπ+ Nπ Disp. Rel.. Mixed polarisabilities γ E1M2,γ M1E2 small. Uncertainties in DR? 4 4 ΓM1E2 Ω Static values χeft DR MAMI LEGS MAMI units: [1 4 fm 4 ] iso-scalar iso-scalar proton proton neutron γ = (γ E1E1 +γ M1M1 +γ E1M2 +γ M1E2 ).7.4 1?? γ π (π pole)= γ E1E1 +γ M1M1 γ E1M2 +γ M1E [ ]±4 model Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 22-1

23 4. Concluding Questions Dynamical polarisabilities: Energy-dependent multipole-decomposition dis-entangles scales, symmetries & mechanisms of interactions with & among constituents: χiral symmetry of pion-cloud, iso-spin breaking, (1232) properties, nucleon spin-constituents. = χeft: unified frame-work off light nuclei: model-independent, systematic, reliable errors. Compton amplitude to 35 MeV Scalar Dipole Polarisabilities from all Compton data below 2 MeV: proton N 2 LO α p = 1.7±.35 stat ±.2 Σ ±.3 theory β p = stat ±.2 Σ.3 theory iso-scalar NLO α s = 1.9±.9 stat ±.2 Σ ±.8 theory β s = stat ±.2 Σ.8 theory neutron NLO α n = 11.1±1.8 stat ±.4 Σ ±.8 theory β n = stat ±.4 Σ.8 theory Theory To-Do List: explore host of observables: expansion p typ Λ χ 1 for credible error-bars. math notebooks One Nucleon: polarisation observables, higher-order in resonance region near-done; long-term Deuteron: embed N 2 LO; extend beyond 1π-threshold into (1232) region; break-up now focus of attention 3 He & heavier: Thomson limit; into (1232) region; break-up starting Data Needed: cross-sections & asymmetries reliable systematics. = spin-polarisabilities. Clean probe to explore the strong force at low energies. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 23-1

24 no Claude Monet: Rock Arch West of Etretat (The Manneport), 1883 Polarisabilities, INT workshop, 35, Grießhammer, 24-1

25 (a) Extracting Dynamical Polarisabilities hg/trh 22, Hildebrandt/hg/TRH/Pasquini 23 Rigorous definition from spin-independent Compton scattering amplitudes T(ω,z) = A 1 (ω,z)( ε ε)+a ( 2 (ω,z) ε k ˆ )( ε ˆ k ) + i A 3 (ω,z) σ ( ε ε)+ i A 4 (ω,z) σ (ˆ k k)( ε ˆ ε) [( + i A 5 (ω,z) σ ε k ˆ )( ε k ˆ ) ( ε ˆ k )( ε k ˆ )] [( + i A 6 (ω,z) σ ε k ˆ )( ε k ˆ ) ( ε ˆ k )( ε k ˆ )] (1) Choose frame of reference: centre of mass; θ = ( k, k ), z=cosθ. (2) Subtract nucleon pole terms in π s-channel, u-channel, t-channel, : two-photon interaction with point-like spin- 1 2 nucleon of magnetic moment κ (Powell)+pion-pole term. = Structure-dependent part of Compton amplitude: Ā i (ω,cosθ)=a i (ω,cosθ) A pole i (ω,cosθ) Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 25-1

26 (a) Extracting Dynamical Polarisabilities hg/trh 22, Hildebrandt/hg/TRH/Pasquini 23 (3) Multipole decomposition into photon transitions Tl T l (T = E,M) at fixed energy ω: static: α E1 (ω = )=ᾱ etc. Ā 1 (ω,z) = 4π W M W = ω+ M 2 + ω 2 : cm energy [ ] ( ) α E1(ω)+cosθ β M1(ω) ω ( ) cosθ α E2 (ω)+(2cos 2 θ 1)β M2 (ω) ω Ā 2 (ω, z) = 4π W M β M1(ω)ω , Ā 3 (ω, z) = 4π W [ ] γ E1E1 (ω)+cosθ γ M1M1 (ω)+γ E1M2 (ω)+cosθ γ M1E2 (ω) ω M Ā 4 (ω, z) = 4π W [ ] γ M1M1 (ω)+γ M1E2 (ω) ω M Ā 5 (ω, z) = 4π W M γ M1M1(ω)ω Ā 6 (ω, z)= 4π W M γ E1M2(ω)ω Dynamical polarisabilities: Response of internal degrees of freedom to external, real photon field of definite multipolarity & non-zero energy. Neither more nor less information about temporal response/dispersive effects of nucleon constituents, but information more readily accessible. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 25-2

27 (b) Imaginary Parts of Iso-Scalar Polarisabilities LO MSSE: without width; only pion production threshold (Nπ graphs). Non-zero width clearly seen in DR. Im[α E1 ] Disp. Rel. SSE. Im[β M1 ] Im[α E2 ] Im[β M2 ] Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 26-1

28 (c) Spin-Dependent Dynamical Polarisabilities from Multipole Analysis hg/ { ] 4π N 1 2 [α E1 (ω) E 2 + β M1 (ω) B 2 [ γ E1E1 (ω) σ ( E E)+γ M1M1 (ω) σ ( B B) } 2 γ M1E2 (ω) σ i B j E ij + 2 γ E1M2 (ω) σ i E j B ij ]+... N spin-indep dipole pure spin-dep dipole mixed spin-dep dipole Assumptions: α E1 (ω), β M1 (ω) well captured, only γ E1E1 (ω), γ M1M1 (ω) large = superficial fit to data. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 27-1

29 (c) Spin-Dependent Dynamical Polarisabilities from Multipole Analysis hg/ Spin-physics dominated by pion-cloud +. No N-core contributions. { ] 4π N 1 2 [α E1 (ω) E 2 + β M1 (ω) B 2 [ γ E1E1 (ω) σ ( E E)+γ M1M1 (ω) σ ( B B) } 2 γ M1E2 (ω) σ i B j E ij + 2 γ E1M2 (ω) σ i E j B ij ]+... N spin-indep dipole pure spin-dep dipole mixed spin-dep dipole Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 27-2

30 (c) Spin-Dependent Dynamical Polarisabilities from Multipole Analysis hg/ Spin-physics dominated by pion-cloud +. No N-core contributions. { ] 4π N 1 2 [α E1 (ω) E 2 + β M1 (ω) B 2 [ γ E1E1 (ω) σ ( E E)+γ M1M1 (ω) σ ( B B) } 2 γ M1E2 (ω) σ i B j E ij + 2 γ E1M2 (ω) σ i E j B ij ]+... N spin-indep dipole pure spin-dep dipole mixed spin-dep dipole Large error-bars because γ i -effects cos 2 θ, while data nearly linear. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 27-3

31 (c) Spin-Dependent Dynamical Polarisabilities from Multipole Analysis Dependence of T NN on NN-potential = short-distance, for ω clear from Thomson. Illinois, Lund, Saskatoon LO χeft AV18 LO χeft-potential: + C,P Q 1 Consistent for Compton at NLO:O(Q )-correction of NN-potential presumed zero. AV18 provides<3% corrections = suggests higher-order indeed Q 1 ( ) Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 28-1

32 (d) Spin-Polarisabilities from Circularly Pol. Photons at 125 MeV Shukla/Phillips 25 Shukla/hg 21; hg 212 Deuteron Best: Incoming γ circularly polarised, sum over final states. N-spin in( k, k )-plane, perpendicular to k: difference circ x, asymmetry Σ circ x = circ x sum σ k k ε θ vs. σ k k ε θ Sensitivity on & NN-rescattering: Sensitivity on wave-function: Nπ, no NN; Nπ+, no NN; Nπ+ +NN NNLO Epelbaum 65 MeV, AV18, Nijmegen 93 Ω lab 125 MeV 2 x nb sr x circ nbarn sr Θcm deg Θ deg More pronounced by explicit (1232) No residual deuteron wave-function dependence Thomson (NN rescatt.) important even at high ω = 125 MeV Higher pols negligible Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 29-1

33 (d) Spin-Polarisabilities from Circularly Pol. Photons at 125 MeV Shukla/Phillips 25 Shukla/hg 21; hg 212 Deuteron Best: Incoming γ circularly polarised, sum over final states. N-spin in( k, k )-plane, perpendicular to k: difference circ x, asymmetry Σ circ x = circ x sum σ k k ε θ vs. σ k k ε θ Sensitivity on neutron γ E1E1 x circ nbarn sr Sensitivity on neutron α E1 β M1 ; Baldin-Σ fixed 5.2; 5.2+2; ; 8.2+2; Ω lab 125 MeV, Γ E1E1 ± Θ deg x circ nbarn sr Ω lab 125 MeV, Α E1 Β M1 ±2, Baldin fixed Θ deg Sensitive to γ E1E1, but must nail down α E1, β M1 at lower energy. Similarly good signal for linear polarisation lin x. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 29-2

34 (d) Spin-Polarisabilities from Circularly Pol. Photons at 125 MeV Shukla/Phillips 25 Shukla/hg 21; hg 212 Deuteron Best: Incoming γ circularly polarised, sum over final states. N-spin in( k, k )-plane, perpendicular to k: difference circ x, asymmetry Σ circ x = circ x sum σ k k ε θ vs. σ k k ε θ Sensitivity on neutron γ E1E1 x circ nbarn sr Sensitivity on neutron α E1 β M1 ; Baldin-Σ fixed 5.2; 5.2+2; ; 8.2+2; Ω lab 125 MeV, Γ E1E1 ± Θ deg x circ nbarn sr Ω lab 125 MeV, Α E1 Β M1 ±2, Baldin fixed Θ deg Sensitive to γ E1E1, but must nail down α E1, β M1 at lower energy. (1232) and re-scattering increase signal. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 29-3

35 (d) Spin-Polarisabilities from Circularly Pol. Photons at 125 MeV Shukla/Phillips 25 Shukla/hg 21; hg 212 Deuteron Best: Incoming γ circularly polarised, sum over final states. N-spin in( k, k )-plane, perpendicular to k: x circ nbarn sr x circ nbarn sr Ω lab 125 MeV, Γ E1E1 ± Θ deg x circ nbarn sr Ω lab 125 MeV, Γ M1M1 ±2 δγ E1E1 =±2 δγ M1M1 =±2 Ω lab 125 MeV, Γ E1M2 ± Θ deg x circ nbarn sr Θ deg Ω lab 125 MeV, Γ M1E2 ±2 δγ E1M2 =±2 δγ M1E2 =± Θ deg Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 29-4

36 (e) Spin-Polarisabilities from Linearly Pol. Photons at 125 MeV Shukla/Phillips 25 Shukla/hg 21 Deuteron Best: Incoming γ linearly polarised, sum over final states. N-spin in( k, k )-plane, parallel to k: difference lin z, asymmetry Σlin z = lin z sum y x z k σ θ k φ k σ θ k φ Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 3-1

37 (e) Spin-Polarisabilities from Linearly Pol. Photons at 125 MeV Shukla/Phillips 25 Shukla/hg 21 Deuteron Best: Incoming γ linearly polarised, sum over final states. N-spin in( k, k )-plane, parallel to k: difference lin z, asymmetry Σlin z = lin z sum y x z k σ θ k φ k σ θ k φ Sensitivity on neutron γ M1M1 2 Sensitivity on neutron α E1 3.2; 3.2+2; ; ; Ω lab 125 MeV, Γ M1M1 ±2 z lin nbarn sr Θ deg Sensitive to γ M1M1, but must nail down α E1, β M1 at lower energy. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 3-2

38 (f) Per Aspera Ad Astra: 3 He Example: Sensitivity of unpolarised cross-section at ω lab = 12 MeV on α n, β n Shukla/Phillips/Nogga α n =-4 α n =-2 α n = α n = 2 α n = β n =-2 β n = β n = 2 β n = 4 β n = cm angle (deg) cm angle (deg) First Compton cross section on 3 He. 3 He as effective neutron spin target. Extend beyond ω [8;12] MeV: re-scattering (Thomson, T NN ), explicit (1232), threshold corrections = Effects will become more pronounced. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 31-1

39 (f) Per Aspera Ad Astra: 3 He Experiment: dσ dω (target-charge)2 to 1, more & easier targets Theory: Reliable extraction needs accurate description of nuclear binding & levels = heavier nuclei = lighter nuclei Find sweet-spot between competing forces: 3 He at HIγS, MAMI, MAXlab Example: Sensitivity of unpolarised 3 He cross-section at ω lab = 12 MeV on α n, β n Shukla/Phillips/Nogga α n =-4 α n =-2 α n = α n = 2 α n = β n =-2 β n = β n = 2 β n = 4 β n = cm angle (deg) cm angle (deg) First Compton cross section on 3 He. 3 He as effective neutron spin target. Extend beyond ω [8;12] MeV: re-scattering (Thomson, T NN ), explicit (1232), threshold corrections = Effects will become more pronounced. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 31-2

40 (g) Starting with 3 He: Doubly-Polarised Choudhury Shukla/Phillips/Nogga 26-9 Example: Sensitivity of polarised cross-section at ω lab = 12 MeV on γ n i s First Compton cross section on 3 He. 3 He as effective neutron spin target. Extend beyond ω [8;12] MeV: re-scattering (Thomson, T NN ), explicit (1232), threshold corrections = Effects will become more pronounced. Polarisabilities, INT workshop, 35, Grießhammer, INS@GWU 32-1

Compton Scattering and Nucleon Polarisabilities in Chiral EFT: Status and Future

Compton Scattering and Nucleon Polarisabilities in Chiral EFT: Status and Future Compton Scattering and Nucleon Polarisabilities in Chiral EFT: Status and Future H. W. Grießhammer Institute for Nuclear Studies The George Washington University, DC, USA INS Institute for Nuclear Studies

More information

Nucleon Polarisabilities from Compton Scattering Off the Deuteron

Nucleon Polarisabilities from Compton Scattering Off the Deuteron Nucleon Polarisabilities from Compton Scattering Off the Deuteron H. W. Grießhammer Center for Nuclear Studies The George Washington University, DC, USA 1 From Compton Scattering to Dynamical Polarisabilities

More information

arxiv:nucl-th/ v1 15 Feb 2004

arxiv:nucl-th/ v1 15 Feb 2004 Compton Scattering off Nucleons: Focus on the Nucleonic Low-Energy Degrees of Freedom Harald W. Grießhammer 1 2 T39, Physik-Department, TU München, D-85747 Garching, Germany arxiv:nucl-th/0402052v1 15

More information

hg: Chiral Structure of Few-Nucleon Systems

hg: Chiral Structure of Few-Nucleon Systems Chiral Structure of Few-Nucleon Systems H. W. Grießhammer Center for Nuclear Studies, The George Washington University, Washington DC, USA D. R. Phillips: Chiral Dynamics with πs, Ns and s Done. hg: Chiral

More information

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University Chiral Dynamics with Pions, Nucleons, and Deltas Daniel Phillips Ohio University Connecting lattice and laboratory EFT Picture credits: C. Davies, Jefferson Lab. What is an Effective Field Theory? M=f(p/Λ)

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Effective Field Theories in Nuclear and Hadron Physics

Effective Field Theories in Nuclear and Hadron Physics Effective Field Theories in Nuclear and Hadron Physics Vadim Lensky Theoretical Physics Group, The University of Manchester January 11, 2013 V. Lensky EFTs in Hadron and Nuclear Physics 1 Outline Introduction

More information

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3 Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He- Deepshikha Choudhury (Collaborators: D. Phillips,. Nogga, R. Hildebrandt) Supported by US-DOE Focus Neutron Spin Polarizabilities

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

Nucleon Polarisabilities and χeft: Bridging Between QCD and Data

Nucleon Polarisabilities and χeft: Bridging Between QCD and Data Nucleon Polarisabilities and χeft: Bridging Between QCD and Data H. W. Grießhammer Institute for Nuclear Studies The George Washington University, DC, USA with Judith A. McGovern (U. Manchester) and Daniel

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

Compton Scattering from Low to High Energies

Compton Scattering from Low to High Energies Compton Scattering from Low to High Energies Marc Vanderhaeghen College of William & Mary / JLab HUGS 2004 @ JLab, June 1-18 2004 Outline Lecture 1 : Real Compton scattering on the nucleon and sum rules

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

Electromagnetic and spin polarisabilities from lattice QCD

Electromagnetic and spin polarisabilities from lattice QCD Lattice Hadron Physics 2006 Electromagnetic and spin polarisabilities from lattice QCD William Detmold [ WD, BC Tiburzi and A Walker-Loud, PRD73, 114505] I: How to extract EM and spin polarisabilities

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Wave functions and compositeness for hadron resonances from the scattering amplitude

Wave functions and compositeness for hadron resonances from the scattering amplitude Wave functions and compositeness for hadron resonances from the scattering amplitude Takayasu SEKIHARA (RCNP, Osaka Univ.) 1. Introduction 2. Two-body wave functions and compositeness 3. Applications:

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Predictions of chiral perturbation theory for Compton scattering off protons

Predictions of chiral perturbation theory for Compton scattering off protons Predictions of chiral perturbation theory for Compton scattering off protons ECT* Trento E-mail: lensky@ect.it Vladimir PASCALUTSA Institut für Kernphysik, Johannes Gutenberg Universität, Mainz D-5599,

More information

Measuring Spin-Polarizabilities of the Proton in

Measuring Spin-Polarizabilities of the Proton in Measuring Spin-Polarizabilities of the Proton in Polarized Compton Scattering at MAMI-Mainz M Rory Miskimen University of Massachusetts, Amherst for the Mainz A2 Collaboration Chiral Dynamics 2012 Compton

More information

The nucleon-nucleon system in chiral effective theory

The nucleon-nucleon system in chiral effective theory The nucleon-nucleon system in chiral effective theory Daniel Phillips Ohio University Research supported by the US Department of Energy Plan χet for nuclear forces: the proposal Leading order for S waves

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

Fate of the neutron-deuteron virtual state as an Efimov level

Fate of the neutron-deuteron virtual state as an Efimov level Fate of the neutron-deuteron virtual state as an Efimov level Gautam Rupak Collaborators: R. Higa (USP), A. Vaghani (MSU), U. van Kolck (IPN-Orsay/UA) Jefferson Laboratory Theory Seminar, Mar 19, 2018

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Nuclear physics around the unitarity limit

Nuclear physics around the unitarity limit Nuclear physics around the unitarity limit Sebastian König Nuclear Theory Workshop TRIUMF, Vancouver, BC February 28, 2017 SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:1607.04623 [nucl-th] SK,

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Compositeness of the Δ(1232) resonance in πn scatterings

Compositeness of the Δ(1232) resonance in πn scatterings Compositeness of the Δ(1232) resonance in πn scatterings Takayasu SEKIHARA (RCNP, Osaka Univ.) in collaboration with Takashi ARAI (KEK), Junko YAMAGATA-SEKIHARA (Oshima National Coll. of Maritime Tech.)

More information

Electroweak Probes of Three-Nucleon Systems

Electroweak Probes of Three-Nucleon Systems Stetson University July 3, 08 Brief Outline Form factors of three-nucleon systems Hadronic parity-violation in three-nucleon systems Pionless Effective Field Theory Ideally suited for momenta p < m π since

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 28.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Introduction & first look into ChPT EFTs for two nucleons Chiral Perturbation Theory

More information

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna) MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS Carlotta Giusti Università and INFN, Pavia Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna) Nuclear ab initio Theories and Neutrino Physics: INT Seattle

More information

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data Daniel Phillips Ohio University and Universität Bonn with V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga

More information

Low-Energy Photonuclear Reactions A Review

Low-Energy Photonuclear Reactions A Review Low-Energy Photonuclear Reactions A Review B.L. Berman Department of Physics The George Washington University Washington, DC 20052, USA International Topical Meeting on Nuclear Research Applications and

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

arxiv: v1 [nucl-th] 23 Feb 2016

arxiv: v1 [nucl-th] 23 Feb 2016 September 12, 2018 Threshold pion production in proton-proton collisions at NNLO in chiral EFT arxiv:1602.07333v1 [nucl-th] 23 Feb 2016 V. Baru, 1, 2 E. Epelbaum, 1 A. A. Filin, 1 C. Hanhart, 3 H. Krebs,

More information

Hadronic Weak Interactions

Hadronic Weak Interactions 1 / 44 Hadronic Weak Interactions Matthias R. Schindler Fundamental Neutron Physics Summer School 2015 Some slides courtesy of N. Fomin 2 / 44 Weak interactions - One of fundamental interactions - Component

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Dispersion Theory in Electromagnetic Interactions

Dispersion Theory in Electromagnetic Interactions arxiv:185.1482v1 [hep-ph] 26 May 218 Keywords Dispersion Theory in Electromagnetic Interactions Barbara Pasquini, 1,2 and Marc Vanderhaeghen 3,4 1 Dipartimento di Fisica, Università degli Studi di Pavia,

More information

Hadronic parity-violation in pionless effective field theory

Hadronic parity-violation in pionless effective field theory Hadronic parity-violation in pionless effective field theory Matthias R. Schindler Ohio University PAVI9 June 25, 29 In collaboration with D. R. Phillips and R. P. Springer Introduction Effective Field

More information

Lattice Simulations with Chiral Nuclear Forces

Lattice Simulations with Chiral Nuclear Forces Lattice Simulations with Chiral Nuclear Forces Hermann Krebs FZ Jülich & Universität Bonn July 23, 2008, XQCD 2008, NCSU In collaboration with B. Borasoy, E. Epelbaum, D. Lee, U. Meißner Outline EFT and

More information

Effective Field Theory for Cold Atoms I

Effective Field Theory for Cold Atoms I Effective Field Theory for Cold Atoms I H.-W. Hammer Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI School on Effective Field Theory across Length Scales, ICTP-SAIFR, Sao Paulo,

More information

Role of Spin in NN NNπ

Role of Spin in NN NNπ Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660061 (6 pages) c The Author(s) DOI: 10.1142/S2010194516600612 Role of Spin in NN NNπ Vadim Baru Institut

More information

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 Real and virtual Compton scattering experiments at MAMI and Jefferson Lab S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 1 Reminder: polarizability of atoms and molecules Neutral atom in external

More information

Challenges for the HI γs Compton Program

Challenges for the HI γs Compton Program Challenges for the HI γs Compton Program Mohammad W. 1 1 Duke University & Triangle Universities Nuclear Laboratory June 17, 2008 Compton Scattering at HI γs Remember When expanding Compton scattering

More information

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron FACULTY OF SCIENCES The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron L. De Cruz, D.G. Ireland, P. Vancraeyveld, T. Vrancx Department of Physics and Astronomy, Ghent

More information

Doubly-polarised pion photoproduction and the GDH sum rule on the nucleon at MAMI

Doubly-polarised pion photoproduction and the GDH sum rule on the nucleon at MAMI Doubly-polarised pion photoproduction and the GDH sum rule on the nucleon at MAMI Federico Cividini on the behalf of the A2 Collaboration Mainz University E-mail: fecividi@uni-mainz.de Susanna Costanza

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Nucleon polarizabilities from low-energy Compton scattering

Nucleon polarizabilities from low-energy Compton scattering Physics Letters B 567 (2003) 200 206 www.elsevier.com/locate/npe Nucleon polarizabilities from low-energy Compton scattering S.R. Beane a, M. Malheiro b,j.a.mcgovern c, D.R. Phillips a,d,u.vankolck e,f

More information

arxiv:nucl-th/ v1 3 Jul 1996

arxiv:nucl-th/ v1 3 Jul 1996 MKPH-T-96-15 arxiv:nucl-th/9607004v1 3 Jul 1996 POLARIZATION PHENOMENA IN SMALL-ANGLE PHOTOPRODUCTION OF e + e PAIRS AND THE GDH SUM RULE A.I. L VOV a Lebedev Physical Institute, Russian Academy of Sciences,

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Volker Credé Florida State University, Tallahassee, FL JLab Users Group Workshop Jefferson Lab 6/4/24 Outline Introduction

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported in part by CNRS, Université Paris Sud, and US DOE Outline Effective

More information

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT a, V. Baru ab, E. Epelbaum a, C. Hanhart c, H. Krebs a, and F. Myhrer d a Institut für Theoretische

More information

Isospin-breaking corrections to the pion nucleon scattering lengths

Isospin-breaking corrections to the pion nucleon scattering lengths Isospin-breaking corrections to the pion nucleon scattering lengths Helmholtz Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

Chiral EFT for nuclear forces with Delta isobar degrees of freedom

Chiral EFT for nuclear forces with Delta isobar degrees of freedom with Delta isobar degrees of freedom Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, Nußallee 4-6, D-535 Bonn, Germany E-mail: hkrebs@itkp.uni-bonn.de

More information

arxiv: v1 [nucl-th] 17 Apr 2013

arxiv: v1 [nucl-th] 17 Apr 2013 arxiv:134.4855v1 [nucl-th] 17 Apr 13 The Upper Energy Limit of HBChPT in Pion Photoproduction Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas,

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

NUCLEAR FORCES. Historical perspective

NUCLEAR FORCES. Historical perspective NUCLEAR FORCES Figure 1: The atomic nucleus made up from protons (yellow) and neutrons (blue) and held together by nuclear forces. Nuclear forces (also known as nuclear interactions or strong forces) are

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Nucleon Nucleon Forces and Mesons

Nucleon Nucleon Forces and Mesons Canada s ational Laboratory for Particle and uclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules ucleon ucleon Forces and Mesons Sonia Bacca

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term J. Martin Camalich University of Sussex, UK in collaboration with J.M. Alarcon and J.A. Oller September 20, 2011 The

More information

arxiv:nucl-th/ v2 30 Jul 2004

arxiv:nucl-th/ v2 30 Jul 2004 Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q 4 ) S.R. Beane 1,2, M. Malheiro 3, J.A. McGovern 4, D.R. Phillips 5, and U. van Kolck 6,7,8 arxiv:nucl-th/0403088v2

More information

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U.

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Renormalization and power counting of chiral nuclear forces 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Arizona) What are we really doing? Correcting Weinberg's scheme about NN contact

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Ralf W. Gothe Nucleon Resonances: From Photoproduction to High Photon October 12-16, 2015, ECT*, Trento, Italy

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

The shape of the Nucleon from Out of Plane

The shape of the Nucleon from Out of Plane The shape of the Nucleon from Out of Plane Some History On sizes and Shapes On out of Plane Some recent data.. Interpreting the data, connecting to theory Past, future and the Bates Legacy C. N. Papanicolas

More information

Local chiral NN potentials and the structure of light nuclei

Local chiral NN potentials and the structure of light nuclei Local chiral NN potentials and the structure of light nuclei Maria Piarulli @ELBA XIV WORKSHOP June 7-July 1 16, Marciana Marina, Isola d Elba PHYSICAL REVIEW C 91, 43(15) Minimally nonlocal nucleon-nucleon

More information

Compton Scattering from Light Nuclei at MAX-lab. Luke Myers Collaboration

Compton Scattering from Light Nuclei at MAX-lab. Luke Myers Collaboration Compton Scattering from Light Nuclei at MAX-lab Luke Myers COMPTON@MAX-lab Collaboration INT Workshop Electroweak Properties of Light Nuclei November 5, 2012 Priorities of the Experimental Program Initially:

More information

Recent Results from Jefferson Lab

Recent Results from Jefferson Lab Recent Results from Jefferson Lab Strange quarks in the nucleon N- Deformation Latest on Pentaquarks Elton S. Smith Jefferson Lab XI International Conference on Hadron Spectroscopy Centro Brasilero Pesquisas

More information

Three-particle scattering amplitudes from a finite volume formalism*

Three-particle scattering amplitudes from a finite volume formalism* INT-13-53W March 2013 Three-particle scattering amplitudes from a finite volume formalism* Zohreh Davoudi University of Washington *Raul Briceno, ZD, arxiv: 1212.3398 Why a finite volume formalism? Lattice

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Dynamical coupled channel calculation of pion and omega meson production

Dynamical coupled channel calculation of pion and omega meson production Dynamical coupled channel calculation of pion and omega meson production INT-JLab Workshop on Hadron Spectroscopy 2009/11/11 Mark Paris Center for Nuclear Studies Data Analysis Center George Washington

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Why? to test strong QCD! How? SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Cornelius Bennhold George Washington University Excitation

More information

Chiral effective field theory for hadron and nuclear physics

Chiral effective field theory for hadron and nuclear physics Chiral effective field theory for hadron and nuclear physics Jose Manuel Alarcón Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn Biographical presentation Biographical presentation Born

More information

PION PHYSICS FROM LATTICE QCD

PION PHYSICS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION PHYSICS FROM LATTICE QCD Jie Hu,1, Fu-Jiun

More information

Bayesian Fitting in Effective Field Theory

Bayesian Fitting in Effective Field Theory Bayesian Fitting in Effective Field Theory Department of Physics Ohio State University February, 26 Collaborators: D. Phillips (Ohio U.), U. van Kolck (Arizona), R.G.E. Timmermans (Groningen, Nijmegen)

More information

Cross section measurements of the elastic electron - deuteron scattering

Cross section measurements of the elastic electron - deuteron scattering Cross section measurements of the elastic electron - deuteron scattering for the A1 Collaboration Institut für Kernphysik, Johannes Gutenberg-Universität Mainz Johann-Joachim-Becher-Weg 45, 55128 Mainz

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum PAX Meeting, Stockholm, 15.06.2010 Modern Theory of Nuclear Forces Evgeny Epelbaum, Ruhr-Universität Bochum Outline Chiral EFT for nuclear forces Some hot topics (work in progress) Deuteron

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho The theory of nuclear forces: Is the never-ending ending story coming to an end? University of Idaho What s left to say? Put the recent progress into a wider perspective. Fill in some missing details.

More information

Lattice QCD From Nucleon Mass to Nuclear Mass

Lattice QCD From Nucleon Mass to Nuclear Mass At the heart of most visible m Lattice QCD From Nucleon Mass to Nuclear Mass Martin J Savage The Proton Mass: At the Heart of Most Visible Matter, Temple University, Philadelphia, March 28-29 (2016) 1

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information