Nucleon Polarisabilities from Compton Scattering Off the Deuteron

Size: px
Start display at page:

Download "Nucleon Polarisabilities from Compton Scattering Off the Deuteron"

Transcription

1 Nucleon Polarisabilities from Compton Scattering Off the Deuteron H. W. Grießhammer Center for Nuclear Studies The George Washington University, DC, USA 1 From Compton Scattering to Dynamical Polarisabilities 2 Previous Successes, Old Worries & a Solution 3 Spin-Polarisabilities in the Deuteron 4 Concluding Questions How do constituents of the nucleon react to external fields? How to reliably extract neutron-polarisabilities? hg/t. R. Hemmert, + R. Hildebrandt, + B. Pasquini, + D. R. Phillips R. Hildebrandt/hg/T. R. Hemmert: [nucl-th/ ] R. Hildebrandt: Ph.D thesis [nucl-th/ ] Friar 1975, Arenhövel/Weyrauch , Karakowski/Miller 1999, Levchuk/L vov 2000, Beane/Malheiro/McGovern/Phillips/van Kolck Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 1-1

2 1. From Compton Scattering to Dynamical Polarisabilities (a) Polarisabilities: Neutron in a Capacitor Polarisabilities parameterise stiffness of charged constituents in electric/magnetic field. _ π+ π+ π+ S S S S S S S S S S S S E π+ B π+ π+ π+ π+ π Nucleon between conducting plates N N N N N N N N N N N N Nucleon between poles of a magnet Proton: ᾱ p := α E1 (ω = 0) fm 3 β p := β M1 (ω = 0) fm 3 Neutron: not so well known Olmos de Leon 2001 spin-polarisabilities & higher multipoles unknown Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 2-1

3 1. From Compton Scattering to Dynamical Polarisabilities (a) Polarisabilities: Neutron in a Capacitor Polarisabilities parameterise stiffness of charged constituents in electric/magnetic field N N N N N N N N N N N N π E π+ B π+ π+ π+ π+ π+ π+ π+ _ Nucleon between conducting plates S S S S S S S S S S S S Nucleon between poles of a magnet Proton: ᾱ p := α E1 (ω = 0) fm 3 β p := β M1 (ω = 0) fm 3 Neutron: not so well known Olmos de Leon 2001 spin-polarisabilities & higher multipoles unknown Dis-entangle scales and mechanisms by ω-dependence. hg/hemmert, + Hildebrandt, + Pasquini Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 2-2

4 (b) Microscopic processes hg/t.r.h./hildebrandt/pasquini 2002/03 Powell: point-like spin- 1 2 with anom. mag. moment [ Dynamical Polarisabilities: 2π α E1 (ω) E 2 + β M1 (ω) B 2 + γ E1E1 (ω) σ ( E E)+γ M1M1 (ω) σ ( B B)+... ] Chiral Dynamics: Cusp at 1-π production threshold. = Nπ Large para-magnetism from N-to- M1 transition. δ β fm 3 = β p 2 fine-tuned, π = + permutations + crossed Core Contribution only for α E1, β M1 : ω-independent dia-magnetism. C.T. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 3-1

5 (c) Extracting Dynamical Polarisabilities hg/trh 2002, Hildebrandt/hg/TRH/Pasquini 2003 (3) Multipole decomposition into photon transitions Tl T l (T = E,M) at fixed energy ω: static: α E1 (ω = 0) = ᾱ etc. Ā 1 (ω,z) = 4π W M W = ω + M 2 + ω 2 : cm energy [ ] ( ) α E1(ω)+cosθ β M1(ω) ω ( ) cosθ α E2 (ω)+(2cos 2 θ 1)β M2 (ω) ω Ā 2 (ω, z) = 4π W M β M1(ω)ω , Ā 3 (ω, z) = 4π W [ ] γ E1E1 (ω)+cosθ γ M1M1 (ω)+γ E1M2 (ω)+cosθ γ M1E2 (ω) ω M Ā 4 (ω, z) = 4π W [ ] γ M1M1 (ω)+γ M1E2 (ω) ω M Ā 5 (ω, z) = 4π W M γ M1M1(ω)ω Ā 6 (ω, z) = 4π W M γ E1M2(ω)ω Dynamical polarisabilities: Response of internal degrees of freedom to external, real photon field of definite multipolarity & non-zero energy. Neither more nor less information about temporal response/dispersive effects of nucleon constituents, but information more readily accessible. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 4-1

6 (d) Spin-Independent Polarisabilities: Quantitative Understanding hg/ /03 Dynamical Polarisabilities: Multipole decomposition of real Compton scattering at fixed energy. Neither more nor less information about response of constituents, but information more readily accessible. α E1 (ω): Pion cusp well captured by single-nπ. β M1 (ω): para-magnetic N-to- M1-transition. Disp. Rel. χdyn. (Nπ) Nπ + + stat. error Here: Strong dispersive effects especially by s para-magnetism fully taken into account. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 5-1

7 (d) Spin-Independent Polarisabilities: Quantitative Understanding hg/ /03 Dynamical Polarisabilities: Multipole decomposition of real Compton scattering at fixed energy. Neither more nor less information about response of constituents, but information more readily accessible. α E1 (ω): Pion cusp well captured by single-nπ. β M1 (ω): para-magnetic N-to- M1-transition. Disp. Rel. Nπ + Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 5-2

8 (e) Determining Static Proton Polarisabilities from Data hg/hildebrandt/hemmert EJPA20, 329 MAMI, Moscow, Illinois ; Saskatoon Dispersion Relations, Nπ only (LO, NLO) Nπ and : δᾱ, δ β, b 1 fitted. Quantity free fit with Baldin-Σ-rule exp. (global) Olmos de Leon 2001 ᾱ p 11.5 ± 2.4 stat 11.0 ± 1.4 stat ± 0.4 Σ 12.1 ± 1.2 stat,mod ± 0.4 Σ β p 3.4 ± 1.7 stat stat ± 0.4 Σ stat,mod ± 0.4 Σ Consistent with Baldin-Σ-rule ᾱ p + β p = 13.8 ± 0.4 for proton. Beane et al. 2002/03: no explicit = disagree as low as ω 80 MeV (LO) [120 MeV (NLO) ] esp. at large momentum-transfer. Model-indep. extraction of spin-independent, static proton dipole polarisabilities from all data 170 MeV. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 6-1

9 2. Previous Successes, Old Worries & a Solution (a) Iso-scalar Nucleon Polarisabilities: Theory and Experiments 2003 Iso-scalar target = extract only iso-scalar polarisabilities ᾱ s = 1 2 (ᾱp + ᾱ n ), β s = 1 2 ( β p + β n ) Experiment ᾱ s [10 4 fm 3 ] β s [10 4 fm 3 ] npb scattering (1) : (Schmiedmayer et al. 1991) 12.2 ± 2.0 Baldin npb scattering (2) : (Koester et al. 1995) 6.0 ± 2.8 Baldin dγ npγ: (Rose et al. 1990) Baldin (Kolb et al. 2000) ?? 3.8 Baldin (Kossert et al. 2003) 12.3 ±[3...4] Baldin dγ dγ Urbana 1994: (Lucas et al.) ω = 49;69 MeV 12 Baldin Lund 2002: (Ludin et al.) ω = 55;66 MeV 11.2 ± 2.0 Baldin χeft prediction ᾱ s ᾱ p 11 β s β p 3 Lattice QCD (quenched) Lee/ Nucleon Baldin Sum Rule: ᾱ s + β s = 1 2π 2 dν σ(γn X) ν 2 = 14.5 ± 0.6 ν 0 Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 7-1

10 (b) Towards Polarisabilities from First Principles: Lattice QCD Pioneering: Quenched, chiral fermions Lee/Zhou/Wilcox/Christensen neutron ᾱ n neutron β n proton β p E Ongoing: spin-polarisabilities, unquenching, m π ց 200 MeV, larger volumes, Engelhardt (LHPC) fully dynamical vs. χeft with dyn. more statistics,... Lee/ , LHPC 2006-, _ Detmold/Tiburzi/Walker-Loud Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 8-1

11 (c) Iso-Vector Polarisabilities Hildebrandt/TRH/hg/Pasquini 2002/ th of iso-scalar polarisabilities in DR; zero in χdyn. at LO. Probes accuracy of data set of Dispersion Relations: Limits by neutron data. Re[α E1 ] Disp. Rel. Re[β M1 ] Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 9-1

12 (d) Dynamical Solves the SAL Puzzle hg/hildebrandt/hemmert/phillips 2004, hg/rph/trh 2005 Predictions taking proton polarisabilities.δ β Illinois, Lund, Saskatoon Nπ only Nπ + with proton values Clear -signature at backward angles. χeft captures angular dependence without altering static values: full dispersion. Before: SAL puzzle ᾱ s = ᾱp +ᾱ n 2 β s = β p + β n 2 Hornidge et al (exp): 8.8 ± 1.0 Baldin Levchuk/L vov 2000: 11 ± 2 7 ± 2 Beane/Malheiro/McGovern/Phillips/van Kolck 2003 (NLO HBχPT): 13.0 ± ± Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 10-1

13 (e) The Problem With Deuteron Compton Scattering at Lower Energies naïve = Thomson on proton correct Thomson on deuteron Low-Energy Theorem: Thomson limit A(ω = 0) = e2 M d ε ε. Friar 1975: Thomson limit current conservation gauge invariance. χeft must give that automatically. Straight-forward for EFT(/π), 1-nucleon sector. Arenhövel 1980: NN phenomenology clear. = Back to basics. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 11-1

14 (f) Messages for the Chiral Power-Counting Weinberg 1991, van Kolck 1992-; cf. hg forthcoming Only phenomenological input: Non-relativistic system with shallow (real/virtual) bound-state. k T NN (E p2,k 2 M ) Q 1 k p p = V NN + q V NN Q 1 Power-Counting: Q m Q m Q 2m+3 2! = Q m = m = 1 Examples: NRQCD/NRQED EFT(/π) χeft Coulomb A 0, p A A 0, p A v 1 C 0 Q 1 + g2 A σ 1 q σ 2 q 4fπ 2 τ 1 τ 2 q 2 + m 2 Q 1 π T NN non-perturbative only in bound-state dynamics: E Q2 M Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 12-1

15 (f) Messages for the Chiral Power-Counting Weinberg 1991, van Kolck 1992-; cf. hg forthcoming Only phenomenological input: Non-relativistic system with shallow (real/virtual) bound-state. k T NN (E p2,k 2 M ) Q 1 k p p = V NN + q V NN Q 1 Power-Counting: Q m Q m Q 2m+3 2! = Q m = m = 1 Examples: NRQCD/NRQED EFT(/π) χeft Coulomb A 0, p A A 0, p A v 1 C 0 Q 1 + g2 A σ 1 q σ 2 q 4fπ 2 τ 1 τ 2 q 2 + m 2 Q 1 π T NN non-perturbative only in bound-state dynamics: E Q2 M E m π T NN (E Q) Q 0 E m π Nstatic = perturbative, 2 orders down cf. soft photons/gluons in NRQED/NRQCD Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 12-2

16 (g) Deuteron Compton Scattering at ω = MeV Hildebrandt/hg/Hemmert 2005, hg 2006 One-body: electric, magnetic moment couplings ω Q2 M 20 MeV partial waves α s E1,β s M1 T NN LO Q 1 LO Q 1 Full LO T NN pivotal for d Thomson at LO. Arenhövel 1980 Iso-scalar polarisabilities N 3 LO χeft pion-exchange currents: Beane et al ; hg/ NLO NLO part. waves Full LO T NN pivotal for total zero NLO contrib. to LET. Arenhövel 1980 Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 13-1

17 (g) Deuteron Compton Scattering at ω = MeV Hildebrandt/hg/Hemmert 2005, hg 2006 One-body: electric, magnetic moment couplings ω Q2 M 20 MeV ω Q 100 MeV partial waves LO Q 1 LO Q 1 ց NLO, N 3 LO T NN Full LO T NN pivotal for d Thomson at LO. Arenhövel 1980 ց N 3 LO, perturbative α s E1,β s M1 Iso-scalar polarisabilities N 3 LO ր NLO χeft pion-exchange currents: Beane et al ; hg/ NLO NLO NLO ց N 2 LO part. waves Full LO T NN pivotal for total zero NLO contrib. to LET. Arenhövel 1980 ց N 3 LO, pert. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 13-2

18 (h) The Consequences of NN-Rescattering Off-shell T NN by Green s function method Arenhövel/Weyrauch 1980/83, Karakowski/Miller 1999, Levchuk/L vov 2000 = Thomson limit built-in order-by-order. A(ω = 0) = e2 M N ε ε A(ω = 0) = e2 M d ε ε : without T NN (old) : with T NN (new) predicted Thomson Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 14-1

19 (h) The Consequences of NN-Rescattering Off-shell T NN by Green s function method Arenhövel/Weyrauch 1980/83, Karakowski/Miller 1999, Levchuk/L vov 2000 = Thomson limit built-in order-by-order. A(ω = 0) = e2 M N ε ε Statistically significant only for ω 70 MeV. Included higher-order diagrams indeed small. A(ω = 0) = e2 M d ε ε : without T NN (old) : with T NN (new) predicted Thomson Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 14-2

20 (h) The Consequences of NN-Rescattering Eliminate Dependence on Deuteron Wave-function also at high ω, for ω 0 clear from Thomson. Illinois, Lund, Saskatoon NNLO χpt AV18 CD-Bonn Nijmegen 93 without T NN with T NN without T NN with T NN Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 15-1

21 (h) The Consequences of NN-Rescattering Dependence of T NN on NN-potential = short-distance, for ω 0 clear from Thomson. Illinois, Lund, Saskatoon LO χeft AV18 LO χeft-potential: + C 0,P Q 1 Consistent for Compton at NLO: O(Q 0 )-correction of NN-potential presumed zero. AV18 provides < 3% corrections = suggests higher-order indeed Q 1 ( ) Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 16-1

22 (i) Building Confidence: Partial Waves, Photon Multipoles, Optical Theorem J C 3 partial waves T NN Multipolarity of Photon Fields saturated result: L,L 2 L = L = 1 only 10% at SAL energies, for- & backward angles Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 17-1

23 (i) Building Confidence: Partial Waves, Photon Multipoles, Optical Theorem J C 3 partial waves T NN Optical Theorem relates rescattering to dγ np: σ tot (ω) = 1 6ω Im[M fi (θ = 0)] i=f Agrees with Arenhövel, Partovi, Karakowski/Miller to better than 1%. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 17-2

24 (j) Determine Neutron Polarisabilities hg/hemmert/hildebrandt/phillips: 2004; hg/rph/trh 2005 δᾱ, δ β fit independently to all elastic data. Illinois, Lund, Saskatoon Nπ + + stat. error unconstrained: ᾱ s = 11.5 ± 1.3 stat β s = 3.4 ± 1.5 stat Consistent with iso-scalar Baldin Sum-Rule ᾱ s + β s = 14.5 ± 0.6 Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 18-1

25 (j) Determine Neutron Polarisabilities hg/hemmert/hildebrandt/phillips: 2004; hg/rph/trh 2005 Constrain fit of δᾱ, δ β to all elastic data: iso-scalar Baldin Sum-Rule ᾱ s + β s = 14.5 ± 0.6 Illinois, Lund, Saskatoon Nπ + + stat. error constrained: ᾱ s = 11.3 ± 0.7 stat ± 0.6 Σ ±1 theory β s = stat ± 0.6 Σ ±1 theory Proton hg/ : ᾱ p = 11.0 ± 1.4 stat ± 0.4 Σ ± 1 theory β p = stat ± 0.4 Σ ± 1 theory no T NN hg/ : ᾱ s = 12.6 ± 0.8 stat ± 0.6 Σ ± 1.1 wavefu β s = stat ± 0.6 Σ ± 0.1 wavefu estimate theory uncertainty ( ±1): higher-order 1N; AV18 vs. LO χeft, d wave-fu., with vs. without T NN. = neutron proton polarisabilities Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 18-2

26 (a) Reminder: Leading Dynamical Polarisabilities Response of spin-degrees of freedom in nucleon to real photon of definite multipolarity and non-zero energy ω. S S S S S S S S S S S S π+ π+ σ π+ π+ L pol = 4π N { ] [α E1 (ω) E 2 + β M1 (ω) B spin-indep dipole [ γ E1E1 (ω) σ ( E E) + γ M1M1 (ω) σ ( B B) pure spin-dep dipole 2 γ M1E2 (ω) σ i B j E ij + 2 γ E1M2 (ω) σ i E j B ij ] } N mixed spin-dep dipole quadrupole etc. N N N N N N N N N N N N E ij := 1 2 ( ie j + j E i ) etc. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 19-1

27 (b) Iso-Scalar Spin-Dependent Dynamical Polarisabilities Predicted in χeft: No N-core contributions = no free parameters. Spin-physics dominated by pion-cloud + (γ M1M1, γ M1E2 ). Re[γ E1E1 ] Re[γ M1M1 ] Pure polarisabilities γ E1E1, γ M1M1 quite good. Disp. Rel. Nπ Nπ +. Re[γ E1M2 ] Re[γ M1E2 ] Mixed polarisabilities γ E1M2,γ M1E2 small. Uncertainties in DR? Static values (proton vs. iso-scalar) χeft iso-scalar DR iso-scalar MAMI proton LEGS proton γ 0 = (γ E1E1 +γ M1M1 +γ E1M2 +γ M1E2 ) γ π (π pole) = γ E1E1 +γ M1M1 γ E1M2 +γ M1E Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 20-1

28 (c) Spin-Polarisabilities from Circularly Polarised Compton hg/trh/hildebrandt 2003 Best: Incoming γ circularly polarised, sum over final states. N-spin in ( k, k )-plane, perpendicular to k: Σ x = ( ) ( ) ( )+( ) σ k k ε θ vs. σ k k ε θ full Nπ + no γ i s = clear γ i -dep. no l 2 = higher pols negligible proton neutron Also good signal for linear polarisations. Extraction from 2 H/ 3 He needs model-independent subtraction of binding & exchange currents. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 21-1

29 (d) Starting on Deuteron Asymmetries Choudhuri/Phillips 2005, Choudhury/hg 2008 x Circularly polarised γ on vector-polarised d, ω lab = 120 MeV O(Q 3 ) + Rescat. O(ε 3 ) + Rescat O(Q 3 ) + Rescat. O(ε 3 ) + Rescat. Σ x O(Q 3 ) + Rescat. O(ε 3 ) + Rescat O(Q 3 ) + Rescat. O(ε 3 ) + Rescat. z 0-10 Σ z CM Angle (deg) CM Angle (deg) More pronounced by explicit (1232) Σ x sensitive to neutron-γ E1E1,γ M1M1 Σ z in-sensitive to γs Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 22-1

30 (d) Starting on Deuteron Asymmetries Choudhuri/Phillips 2005, Choudhury/hg 2008 Circularly polarised γ on vector-polarised d, ω lab = 120 MeV γ E1E1 (x10-4 fm 4 ) varying γ E1M2 (x10-4 fm 4 ) varying 0 γ E1E1 =2 γ E1E1 =0 γ E1E1 =-2 0 γ E1M2 =2 γ E1M2 =0 γ E1M2 =-2 x γ M1M1 (x10-4 fm 4 ) varying γ M1E2 (x10-4 fm 4 ) varying x γ M1M1 =2 γ M1M1 =0 γ M1M1 = CM Angle (deg) γ M1E2 =2 γ M1E2 =0 γ M1E2 = CM Angle (deg) More pronounced by explicit (1232) Σ x sensitive to neutron-γ E1E1,γ M1M1 Σ z in-sensitive to γs Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 22-2

31 (d) Starting on Deuteron Asymmetries Choudhuri/Phillips 2005, Choudhury/hg 2008 Circularly polarised γ on vector-polarised d, ω lab = 120 MeV Σ z Σ z γ E1E1 (x10-4 fm 4 ) varying γ E1E1 =2 γ E1E1 =0 γ E1E1 = γ M1M1 (x10-4 fm 4 ) varying γ M1M1 =2 γ M1M1 =0 γ M1M1 = CM Angle (deg) γ E1M2 (x10-4 fm 4 ) varying γ E1M2 =2 γ E1M2 =0 γ E1M2 = γ M1E2 (x10-4 fm 4 ) varying γ M1E2 =2 γ M1E2 =0 γ M1E2 = CM Angle (deg) More pronounced by explicit (1232) Σ x sensitive to neutron-γ E1E1,γ M1M1 Σ z in-sensitive to γs Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 22-3

32 (e) Spin-Dependent Dynamical Polarisabilities from Multipole Analysis hg/ Spin-physics dominated by pion-cloud +. No N-core contributions. { ] 4π N 1 2 [α E1 (ω) E 2 + β M1 (ω) B 2 [ γ E1E1 (ω) σ ( E E) + γ M1M1 (ω) σ ( B B) } 2 γ M1E2 (ω) σ i B j E ij + 2 γ E1M2 (ω) σ i E j B ij ]+... N spin-indep dipole pure spin-dep dipole mixed spin-dep dipole Assumptions: α E1 (ω), β M1 (ω) well captured, only two spin-polarisabilities γ E1E1 (ω), γ M1M1 (ω) large; superficial fit to existing data. = precision experiments on p, d, 3 He: TUNL/HIγS, MAMI, MAXLab, S-DALINAC, LARA,... Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 23-1

33 4. Concluding Questions Dynamical polarisabilities by multipole-decomposition of real Compton scattering at fixed energy. Propose polarised and un-polarised precision experiments at given ω and varying angle: extract ω-dependence of dynamical spin-polarisabilities: 6 parameters α E1 (ω), β M1 (ω), γ i (ω) at given ω. χeft predicts strong dispersive effects at ω 70 MeV: resonance and 1-π-production threshold not captured by static + slope at ω = 0 Polarisabilities from all Compton data below 200 MeV: ᾱ p = 11.0 ± 1.4 stat ± 0.4 Σ ± 1 theory ᾱ n = 11.6 ± 1.0 stat ± 0.6 Σ ± 1 theory β p = stat ± 0.4 Σ ± 1 theory β n = stat ± 0.6 Σ ± 1 theory The Future: Experiment: Call for data answered by MAXlab, HIγS,?? precision experiments on p, d, 3 H, 3 He polarised = spin-polarisabilities. Theory: N 2 LO, resonance region: -resummation; Short-distance origin of C.T.s δᾱ, δ β. Test your model and your equipment! Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 24-1

34 4. Concluding Questions Dynamical polarisabilities by multipole-decomposition of real Compton scattering at fixed energy. Propose polarised and un-polarised precision experiments at given ω and varying angle: extract ω-dependence of dynamical spin-polarisabilities: 6 parameters α E1 (ω), β M1 (ω), γ i (ω) at given ω. χeft predicts strong dispersive effects at ω 70 MeV: resonance and 1-π-production threshold not captured by static + slope at ω = 0 Polarisabilities from all Compton data below 200 MeV: ᾱ p = 11.0 ± 1.4 stat ± 0.4 Σ ± 1 theory ᾱ n = 11.6 ± 1.0 stat ± 0.6 Σ ± 1 theory β p = stat ± 0.4 Σ ± 1 theory β n = stat ± 0.6 Σ ± 1 theory The Future: Experiment: Call for data answered by MAXlab, HIγS,?? precision experiments on p, d, 3 H, 3 He polarised = spin-polarisabilities. Theory: Comprehensive Compton picture p, d, 3 H, 3 He d, 3 He: N 2 LO HBχPT ; beyond 1π threshold; breakup : N 2 LO (δ,ε), resonance resummation, N 2,3 -forces; best kinematics for spin-pols; Thomson in 3 He Gee-WhAM-collaboration George Washington-Athens-Manchester McGovern/Phillips/Shukla/hg Test your model and your equipment! Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 24-2

35 (a) What Jerry Will Measure: deuteron Compton scattering in the cm frame dσ dω cm [nbarn/sr] Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 25-1

36 (a) Extracting Dynamical Polarisabilities hg/trh 2002, Hildebrandt/hg/TRH/Pasquini 2003 Rigorous definition from spin-independent Compton scattering amplitudes ( T(ω,z) = A 1 (ω,z)( ε ε)+a 2 (ω,z) ε k ˆ )( ε k ˆ ) + i A 3 (ω,z) σ ( ε ε)+ i A 4 (ω,z) σ (ˆ k k) ˆ ( ε ε) [( + i A 5 (ω,z) σ ε k ˆ ) ( ε k ˆ ) ( ε k ˆ ) ( ε k ˆ )] [( + i A 6 (ω,z) σ ε k ˆ ) ( ε k ˆ ) ( ε k ˆ ) ( ε k ˆ )] (1) Choose frame of reference: centre of mass; θ = ( k, k ), z = cosθ. (2) Subtract nucleon pole terms in π 0 s-channel, u-channel, t-channel, : two-photon interaction with point-like spin- 1 2 = Structure-dependent part of Compton amplitude: nucleon of magnetic moment κ (Powell) + pion-pole term. Ā i (ω,cosθ) = A i (ω,cosθ) A pole i (ω,cosθ) Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 26-1

37 (a) Extracting Dynamical Polarisabilities hg/trh 2002, Hildebrandt/hg/TRH/Pasquini 2003 (3) Multipole decomposition into photon transitions Tl T l (T = E,M) at fixed energy ω: static: α E1 (ω = 0) = ᾱ etc. Ā 1 (ω,z) = 4π W M W = ω + M 2 + ω 2 : cm energy [ ] ( ) α E1(ω)+cosθ β M1(ω) ω ( ) cosθ α E2 (ω)+(2cos 2 θ 1)β M2 (ω) ω Ā 2 (ω, z) = 4π W M β M1(ω)ω , Ā 3 (ω, z) = 4π W [ ] γ E1E1 (ω)+cosθ γ M1M1 (ω)+γ E1M2 (ω)+cosθ γ M1E2 (ω) ω M Ā 4 (ω, z) = 4π W [ ] γ M1M1 (ω)+γ M1E2 (ω) ω M Ā 5 (ω, z) = 4π W M γ M1M1(ω)ω Ā 6 (ω, z) = 4π W M γ E1M2(ω)ω Dynamical polarisabilities: Response of internal degrees of freedom to external, real photon field of definite multipolarity & non-zero energy. Neither more nor less information about temporal response/dispersive effects of nucleon constituents, but information more readily accessible. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 26-2

38 (b) Real, Virtual, Dynamical, Generalised, Static: Who is Who Virtual Compton Scattering: Q 2 > 0, ω = 0 = Q 2 = q 2 Generalised Polarisabilities spatial resolution of internal d.o.f. s (?) Where? most experiments q µ = (ω, q) Static Polarisabilities ᾱ p = fm 3 β p = fm 3 but from where? ω Real Compton Scattering: Q 2 = 0, ω > 0 = Dynamical Polarisabilities temporal resolution/response of internal d.o.f. s Which? Neutron: not so well known spin-polarisabilities and higher multipoles unknown Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 27-1

39 (c) The NLO HBχPT-Hypothesis Bernard/Kaiser/Meißner/Schmidt: Phys. Lett. B319 (1993), 269 and Z. Phys. A348 (1993), 317: Aspects of Nucleon Compton Scattering (Citations) ᾱ p,n, β ) p,n = # (c p,n 2 #p,n g 2 A M N ln m π λ + δ(ᾱ, β) p,n (λ) from,, C.T. etc. We are not in that fortunate position but [... ] must resort to the resonance saturation hypothesis to estimate [... ] the constants [... ] at the scale λ equal to some resonance scale. [... ] there is some spurious sensitivity on the value of λ as shown in Fig. 6. While the neutron polarizabilities are quite insensitive to the choice of λ, the much larger coefficients [... ] induce some scale dependence for the proton case. Since most of the counterterms are in fact given by exchange, we have chosen λ = M [= 1232 MeV] (which gives our best values). L (2) L (2) The main sources of uncertainty stem from the choice of the values for g A, the scale λ and the kaon and contributions to the various low-energy constants. Adding these in quadrature leads to ᾱ p E1 = 10.5 ± 2.0, ᾱn E1 = 13.4 ± 1.5, p β M1 = 3.5 ± 3.6, β M1 n = 7.8 ± 3.6 [... ] Notice also that at present the theoretical uncertainties are larger than the experimental ones. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 28-1

40 (d) Determining Static Proton Polarisabilities from Data hg/hildebrandt/hemmert EJPA20, 329 Dispersion Relations MAMI, Moscow, Illinois ; Saskatoon Nπ and : δᾱ, δ β, b 1 fitted. Quantity free fit α δᾱ E1 5.4 ± 2.4 stat naïvely NLO: δα E1, δβ M1 δ β Λ 2 χ M 1 M ± 1.7 stat Large nucleon-core contributions. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 29-1

41 (e) Spin-Averaged Compton Scattering on Proton Target Recall dependence on Dispersion Relations Nπ only Nπ + sensitivity to -physics Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 30-1

42 (e) Spin-Averaged Compton Scattering on Proton Target Dependence on spin- and higher polarisabilities Nπ + full no spin-pols γ i no quadrupole pols clear γ i -dep. higher pols negligible = Dynamics by fitting 6 free functions α E1 (ω), β M1 (ω), γ i (ω) to precise data at fixed ω, varying angle? But: only linear combinations seen in un-polarised exp. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 30-2

43 (f) Spin-Averaged Compton Scattering on Free Neutron Target Dependence on -physics Nπ + no not sensitive to -physics below 130 MeV Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 31-1

44 (f) Spin-Averaged Compton Scattering on Free Neutron Target Spin- and higher polarisabilities Nπ + (full) no γ i s no l 2 clear γ i -dep. higher pols negligible Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 31-2

45 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Incoming nucleon & photon polarised, sum over final states. Kinematics: cm frame; right-handed, circularly polarised photon; nucleon-spin in reaction plane ( k, k ) vs. : Nucleon spin parallel vs. anti-parallel to k vs. : Nucleon spin perpendicular to k Observables: D z = 1 2 ( dσ dω dσ ) dω Σ z = T 2 T 2 T 2 + T 2 D x = 1 2 ( dσ dω dσ ) dω Σ x = T 2 T 2 T 2 + T 2 Extraction of neutron pols from 3 He? (proposal H. Gao, TUNL/HIGS) Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-1

46 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Proton Spin Asymmetry Σ z = : Born term and -physics + Born SSE no dominated by Born term insensitive to -physics Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-2

47 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Proton Spin Asymmetry Σ z = : Spin and higher order polarisabilities + full SSE no γ i s no l 2 γ i -dep. small higher pols negligible Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-3

48 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Proton Spin Asymmetry D z = : Spin and higher order polarisabilities full SSE no γ i s no l 2 Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-4

49 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Proton Spin Asymmetry Σ x = : Born term and -physics + Born SSE no sensitive to -physics Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-5

50 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Proton Spin Asymmetry Σ x = : Spin and higher order polarisabilities + full SSE no γ i s no l 2 clear γ i -dep. higher pols negligible Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-6

51 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Proton Spin Asymmetry D x = : Spin and higher order polarisabilities full SSE no γ i s no l 2 stronger γ i - dep. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-7

52 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Neutron Spin Asymmetry Σ z = : Born term and -physics + Born SSE no dominated by structure term (uncharged!) sensitive to -physics Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-8

53 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Neutron Spin Asymmetry Σ z = : Spin and higher order polarisabilities + full SSE no γ i s no l 2 γ i -dep. higher pols negligible Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-9

54 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Neutron Spin Asymmetry D z = : Spin and higher order polarisabilities full SSE no γ i s no l 2 Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-10

55 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Neutron Spin Asymmetry Σ x = : Born term and -physics + Born SSE no dominated by structure term (uncharged!) sensitive to -physics Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-11

56 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Neutron Spin Asymmetry Σ x = : Spin and higher order polarisabilities + full SSE no γ i s no l 2 strong γ i -dep. higher pols negligible Extraction from deuteron/ 3 He needs model-independent subtraction of binding effects & exchange currents. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-12

57 (g) Asymmetries in Circularly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Neutron Spin Asymmetry D x = : Spin and higher order polarisabilities full SSE no γ i s no l 2 stronger γ i - dep. Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 32-13

58 (h) Asymmetries in Linearly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Incoming nucleon & photon polarised, sum over final states. Kinematics: cm frame; linearly polarised photon; nucleon-spin N-spin k vs. : Photon polarisation parallel vs. perpendicular to nucleon spin Observables: T 2 T 2 T 2 + T 2 Extraction of neutron pols from 3 He? (proposal H. Gao, TUNL/HIGS) Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 33-1

59 (h) Asymmetries in Linearly Polarised Compton Scattering hg/t.r.h./hildebrandt 2003/04 Spin Asymmetry : Spin and higher order polarisabilities + proton full SSE no γ i s no l 2 γ i -dep. small higher pols negligible neutron Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 33-2

60 (i) The SAL Puzzle hg/hemmert/hildebrandt/phillips 2004 All low-ω Compton, dγ npγ consistent with ᾱ s ᾱ p ᾱ n, β s β p β n. Rose/..., Kolb/..., Kossert/..., Urbana Conflicting analyses of SAL data ω = [ MeV]. 30 E γ =50 MeV 30 E γ =94.2 MeV dσ/dω γ (nb/sr) dσ/dω γ (nb/sr) Θ γ (deg) Θ γ (deg) ᾱ s = ᾱp +ᾱ n 2 β s = β p + β n 2 Hornidge et al (exp): 8.8 ± 1.0 Baldin Levchuk/L vov 2000: 11 ± 2 7 ± 2 Beane/Malheiro/McGovern/Phillips/van Kolck 2003 (NLO HBχPT): 13.0 ± ± Polarisabilities, Soft γs & Light Ns INT, Grießhammer, CNS@GWU 34-1

High-Accuracy Analysis of Compton Scattering off Protons and Deuterons in Chiral EFT

High-Accuracy Analysis of Compton Scattering off Protons and Deuterons in Chiral EFT High-Accuracy Analysis of Compton Scattering off Protons and Deuterons in Chiral EFT H. W. Grießhammer Institute for Nuclear Studies The George Washington University, DC, USA 1 Compton Scattering Explores

More information

arxiv:nucl-th/ v1 15 Feb 2004

arxiv:nucl-th/ v1 15 Feb 2004 Compton Scattering off Nucleons: Focus on the Nucleonic Low-Energy Degrees of Freedom Harald W. Grießhammer 1 2 T39, Physik-Department, TU München, D-85747 Garching, Germany arxiv:nucl-th/0402052v1 15

More information

Compton Scattering and Nucleon Polarisabilities in Chiral EFT: Status and Future

Compton Scattering and Nucleon Polarisabilities in Chiral EFT: Status and Future Compton Scattering and Nucleon Polarisabilities in Chiral EFT: Status and Future H. W. Grießhammer Institute for Nuclear Studies The George Washington University, DC, USA INS Institute for Nuclear Studies

More information

hg: Chiral Structure of Few-Nucleon Systems

hg: Chiral Structure of Few-Nucleon Systems Chiral Structure of Few-Nucleon Systems H. W. Grießhammer Center for Nuclear Studies, The George Washington University, Washington DC, USA D. R. Phillips: Chiral Dynamics with πs, Ns and s Done. hg: Chiral

More information

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3 Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He- Deepshikha Choudhury (Collaborators: D. Phillips,. Nogga, R. Hildebrandt) Supported by US-DOE Focus Neutron Spin Polarizabilities

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University Chiral Dynamics with Pions, Nucleons, and Deltas Daniel Phillips Ohio University Connecting lattice and laboratory EFT Picture credits: C. Davies, Jefferson Lab. What is an Effective Field Theory? M=f(p/Λ)

More information

Predictions of chiral perturbation theory for Compton scattering off protons

Predictions of chiral perturbation theory for Compton scattering off protons Predictions of chiral perturbation theory for Compton scattering off protons ECT* Trento E-mail: lensky@ect.it Vladimir PASCALUTSA Institut für Kernphysik, Johannes Gutenberg Universität, Mainz D-5599,

More information

Compton Scattering from Low to High Energies

Compton Scattering from Low to High Energies Compton Scattering from Low to High Energies Marc Vanderhaeghen College of William & Mary / JLab HUGS 2004 @ JLab, June 1-18 2004 Outline Lecture 1 : Real Compton scattering on the nucleon and sum rules

More information

Challenges for the HI γs Compton Program

Challenges for the HI γs Compton Program Challenges for the HI γs Compton Program Mohammad W. 1 1 Duke University & Triangle Universities Nuclear Laboratory June 17, 2008 Compton Scattering at HI γs Remember When expanding Compton scattering

More information

Low-Energy Photonuclear Reactions A Review

Low-Energy Photonuclear Reactions A Review Low-Energy Photonuclear Reactions A Review B.L. Berman Department of Physics The George Washington University Washington, DC 20052, USA International Topical Meeting on Nuclear Research Applications and

More information

Electromagnetic and spin polarisabilities from lattice QCD

Electromagnetic and spin polarisabilities from lattice QCD Lattice Hadron Physics 2006 Electromagnetic and spin polarisabilities from lattice QCD William Detmold [ WD, BC Tiburzi and A Walker-Loud, PRD73, 114505] I: How to extract EM and spin polarisabilities

More information

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD γ* γ N N MERIEM BENALI November 09, 016 LPC-Clermont-Ferrand GDR-QCD Plan Generalized Polarizabilities (GPs) of the proton Extraction methods of GPs at Q²=0.45 GeV²: - Low Energy expansion approach (LEX)

More information

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 Real and virtual Compton scattering experiments at MAMI and Jefferson Lab S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 1 Reminder: polarizability of atoms and molecules Neutral atom in external

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Compton Scattering from Light Nuclei at MAX-lab. Luke Myers Collaboration

Compton Scattering from Light Nuclei at MAX-lab. Luke Myers Collaboration Compton Scattering from Light Nuclei at MAX-lab Luke Myers COMPTON@MAX-lab Collaboration INT Workshop Electroweak Properties of Light Nuclei November 5, 2012 Priorities of the Experimental Program Initially:

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

Effective Field Theories in Nuclear and Hadron Physics

Effective Field Theories in Nuclear and Hadron Physics Effective Field Theories in Nuclear and Hadron Physics Vadim Lensky Theoretical Physics Group, The University of Manchester January 11, 2013 V. Lensky EFTs in Hadron and Nuclear Physics 1 Outline Introduction

More information

Nucleon polarizabilities from low-energy Compton scattering

Nucleon polarizabilities from low-energy Compton scattering Physics Letters B 567 (2003) 200 206 www.elsevier.com/locate/npe Nucleon polarizabilities from low-energy Compton scattering S.R. Beane a, M. Malheiro b,j.a.mcgovern c, D.R. Phillips a,d,u.vankolck e,f

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Electroweak Probes of Three-Nucleon Systems

Electroweak Probes of Three-Nucleon Systems Stetson University July 3, 08 Brief Outline Form factors of three-nucleon systems Hadronic parity-violation in three-nucleon systems Pionless Effective Field Theory Ideally suited for momenta p < m π since

More information

Measuring Spin-Polarizabilities of the Proton in

Measuring Spin-Polarizabilities of the Proton in Measuring Spin-Polarizabilities of the Proton in Polarized Compton Scattering at MAMI-Mainz M Rory Miskimen University of Massachusetts, Amherst for the Mainz A2 Collaboration Chiral Dynamics 2012 Compton

More information

Fate of the neutron-deuteron virtual state as an Efimov level

Fate of the neutron-deuteron virtual state as an Efimov level Fate of the neutron-deuteron virtual state as an Efimov level Gautam Rupak Collaborators: R. Higa (USP), A. Vaghani (MSU), U. van Kolck (IPN-Orsay/UA) Jefferson Laboratory Theory Seminar, Mar 19, 2018

More information

The nucleon-nucleon system in chiral effective theory

The nucleon-nucleon system in chiral effective theory The nucleon-nucleon system in chiral effective theory Daniel Phillips Ohio University Research supported by the US Department of Energy Plan χet for nuclear forces: the proposal Leading order for S waves

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

Nucleon EM Form Factors in Dispersion Theory

Nucleon EM Form Factors in Dispersion Theory Nucleon EM Form Factors in Dispersion Theory H.-W. Hammer, University of Bonn supported by DFG, EU and the Virtual Institute on Spin and strong QCD Collaborators: M. Belushkin, U.-G. Meißner Agenda Introduction

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Hadronic parity-violation in pionless effective field theory

Hadronic parity-violation in pionless effective field theory Hadronic parity-violation in pionless effective field theory Matthias R. Schindler Ohio University PAVI9 June 25, 29 In collaboration with D. R. Phillips and R. P. Springer Introduction Effective Field

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

arxiv:nucl-th/ v1 3 Jul 1996

arxiv:nucl-th/ v1 3 Jul 1996 MKPH-T-96-15 arxiv:nucl-th/9607004v1 3 Jul 1996 POLARIZATION PHENOMENA IN SMALL-ANGLE PHOTOPRODUCTION OF e + e PAIRS AND THE GDH SUM RULE A.I. L VOV a Lebedev Physical Institute, Russian Academy of Sciences,

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

arxiv: v1 [nucl-th] 23 Feb 2016

arxiv: v1 [nucl-th] 23 Feb 2016 September 12, 2018 Threshold pion production in proton-proton collisions at NNLO in chiral EFT arxiv:1602.07333v1 [nucl-th] 23 Feb 2016 V. Baru, 1, 2 E. Epelbaum, 1 A. A. Filin, 1 C. Hanhart, 3 H. Krebs,

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information

Nuclear physics around the unitarity limit

Nuclear physics around the unitarity limit Nuclear physics around the unitarity limit Sebastian König Nuclear Theory Workshop TRIUMF, Vancouver, BC February 28, 2017 SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:1607.04623 [nucl-th] SK,

More information

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 8 Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Photon propagator Electron-proton scattering by an exchange of virtual photons ( Dirac-photons ) (1) e - virtual

More information

Nucleon Polarisabilities and χeft: Bridging Between QCD and Data

Nucleon Polarisabilities and χeft: Bridging Between QCD and Data Nucleon Polarisabilities and χeft: Bridging Between QCD and Data H. W. Grießhammer Institute for Nuclear Studies The George Washington University, DC, USA with Judith A. McGovern (U. Manchester) and Daniel

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Nucleon Nucleon Forces and Mesons

Nucleon Nucleon Forces and Mesons Canada s ational Laboratory for Particle and uclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules ucleon ucleon Forces and Mesons Sonia Bacca

More information

Structure of the deuteron

Structure of the deuteron Seminar II Structure of the deuteron Author : Nejc Košnik Advisor : dr. Simon Širca Department of Physics, University of Ljubljana November 17, 004 Abstract Basic properties of the deuteron are given.

More information

arxiv:nucl-th/ v2 30 Jul 2004

arxiv:nucl-th/ v2 30 Jul 2004 Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q 4 ) S.R. Beane 1,2, M. Malheiro 3, J.A. McGovern 4, D.R. Phillips 5, and U. van Kolck 6,7,8 arxiv:nucl-th/0403088v2

More information

Nucleon-nucleon interaction in covariant chiral effective field theory

Nucleon-nucleon interaction in covariant chiral effective field theory Guilin, China The Seventh Asia-Pacific Conference on Few-Body Problems in Physics Nucleon-nucleon interaction in covariant chiral effective field theory Xiu-Lei Ren School of Physics, Peking University

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho The theory of nuclear forces: Is the never-ending ending story coming to an end? University of Idaho What s left to say? Put the recent progress into a wider perspective. Fill in some missing details.

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data Daniel Phillips Ohio University and Universität Bonn with V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga

More information

arxiv: v2 [hep-ex] 12 Feb 2014

arxiv: v2 [hep-ex] 12 Feb 2014 arxiv:141.476v2 [hep-ex] 12 Feb 214 on behalf of the COMPASS collaboration Technische Universität München E-mail: stefan.huber@cern.ch The value of the pion polarizability is predicted with high precision

More information

Donie O Brien Nigel Buttimore

Donie O Brien Nigel Buttimore Spin Observables and Antiproton Polarisation Donie O Brien Nigel Buttimore Trinity College Dublin Email: donie@maths.tcd.ie 17 July 006 CALC 006 Dubna Donie O Brien Introduction Relativistic formulae for

More information

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Three-nucleon potentials in nuclear matter. Alessandro Lovato Three-nucleon potentials in nuclear matter Alessandro Lovato PRC 83, 054003 (2011) arxiv:1109.5489 Outline Ab initio many body method Nuclear Hamiltonian: 2- and 3- body potentials Density dependent potential

More information

Lepton universality test in the photoproduction of e - e + versus " - " + pairs on a proton target

Lepton universality test in the photoproduction of e - e + versus  -  + pairs on a proton target 2011-2014 PhD in theoretical physics under supervision of Prof. Dr. Marc Vanderhaeghen at Johannes Gutenberg University Mainz. Thesis title Light-by-light scattering and the muon s anomalous magnetic moment

More information

Measuring the Proton Spin-Polarizabilities at HIgS

Measuring the Proton Spin-Polarizabilities at HIgS Measuring the Proton Spin-Polarizabilities at HIgS Philippe Martel UMass Amherst Advisor: Rory Miskimen TUNL (Triangle Universities Nuclear Lab) NNPSS 08 - GWU Table of Contents Concerning spin-polarizabilities

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information

Tests of Chiral Perturbation Theory in Primakoff Reactions at COMPASS

Tests of Chiral Perturbation Theory in Primakoff Reactions at COMPASS Tests of Chiral Perturbation Theory in Primakoff Reactions at COMPASS Jan Friedrich Physik Department Technische Universität München for the COMPASS collaboration SPIN-PRAHA-010 July 0 supported by: Maier-Leibnitz-Labor

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Igor Danilkin (collaborators: Matthias F. M. Lutz, Stefan Leupold, Carla Terschlüsen,

More information

Charge exchange reactions and photo-nuclear reactions

Charge exchange reactions and photo-nuclear reactions Charge exchange reactions and photo-nuclear reactions σ( 7 Li, 7 Be) and σ(γ,n) S. Nakayama (Univ of Tokushima) Determination of σ(γ,n) from CE reactions (CE reaction = Charge Exchange reaction) Application

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Dynamical coupled channel calculation of pion and omega meson production

Dynamical coupled channel calculation of pion and omega meson production Dynamical coupled channel calculation of pion and omega meson production INT-JLab Workshop on Hadron Spectroscopy 2009/11/11 Mark Paris Center for Nuclear Studies Data Analysis Center George Washington

More information

BRIDGING OVER p-wave π-production AND WEAK PROCESSES IN FEW-NUCLEON SYSTEMS WITH CHIRAL PERTURBATION THEORY

BRIDGING OVER p-wave π-production AND WEAK PROCESSES IN FEW-NUCLEON SYSTEMS WITH CHIRAL PERTURBATION THEORY MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany BRIDGING OVER p-wave π-production AND WEAK PROCESSES

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U.

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Renormalization and power counting of chiral nuclear forces 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Arizona) What are we really doing? Correcting Weinberg's scheme about NN contact

More information

Few-nucleon contributions to π-nucleus scattering

Few-nucleon contributions to π-nucleus scattering Mitglied der Helmholtz-Gemeinschaft Few-nucleon contributions to π-nucleus scattering Andreas Nogga, Forschungszentrum Jülich INT Program on Simulations and Symmetries: Cold Atoms, QCD, and Few-hadron

More information

Invariance Principles and Conservation Laws

Invariance Principles and Conservation Laws Invariance Principles and Conservation Laws Outline Translation and rotation Parity Charge Conjugation Charge Conservation and Gauge Invariance Baryon and lepton conservation CPT Theorem CP violation and

More information

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire Nucleon Form Factors Measured with BLAST John Calarco - University of New Hampshire HUGS June, 2006 Outline - Overview and Motivation - Introduction - Existing Methods & Data - Phenomenological Fits -

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron FACULTY OF SCIENCES The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron L. De Cruz, D.G. Ireland, P. Vancraeyveld, T. Vrancx Department of Physics and Astronomy, Ghent

More information

Generalized Parton Distributions in PT

Generalized Parton Distributions in PT Generalized Parton Distributions in PT Nikolai Kivel in collaboration with M. Polyakov & A. Vladimirov Deeply Virtual Compton Scattering e e * A DVCS Q 2 large >> 1/R N Q 2 /s =x Bj fixed Δ 2 ~ 1/R N

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum PAX Meeting, Stockholm, 15.06.2010 Modern Theory of Nuclear Forces Evgeny Epelbaum, Ruhr-Universität Bochum Outline Chiral EFT for nuclear forces Some hot topics (work in progress) Deuteron

More information

SFB Teilprojekt C2 Few Nucleon Systems

SFB Teilprojekt C2 Few Nucleon Systems SFB 634 - Teilprojekt C2 Few Nucleon Systems Thorsten Kröll / Peter von Neumann-Cosel SFB 634 Programme Basic properties of the nucleon Polarizability of the nucleon Charge radius of the proton Electron-beam

More information

Nuclear Reactions in Lattice EFT

Nuclear Reactions in Lattice EFT Nuclear Reactions in Lattice EFT Gautam Rupak Mississippi State University Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NCSU) Thomas Luu

More information

MAMI results for polarizabilities

MAMI results for polarizabilities MAMI results for polarizabilities Philippe Martel A2 Collaboration Johannes Gutenberg-Universität Mainz Mount Allison U., Saint Mary s U., and U. of Regina ECT* - Nucleon Spin Structure at Low Q Trento,

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Pion polarizabilities in Chiral Dynamics

Pion polarizabilities in Chiral Dynamics JLab, 9-27-13 Pion polarizabilities in Chiral Dynamics Jose L. Goity Hampton University/Jefferson Lab Introduction Composite particle in external EM field H = H 0 (A)+2πα E 2 +2πβ B 2 + α, β electric and

More information

First Order Relativistic Three-Body Scattering. Ch. Elster

First Order Relativistic Three-Body Scattering. Ch. Elster First Order Relativistic Three-Body Scattering Ch. Elster T. Lin, W. Polyzou W. Glöcle 4//7 Supported by: U.S. DOE, NERSC,OSC Nucleons: Binding Energy of H NN Model E t [MeV] Nijm I -7.7 Nijm II -7.64

More information

Coulomb effects in pionless effective field theory

Coulomb effects in pionless effective field theory Coulomb effects in pionless effective field theory Sebastian König in collaboration with Hans-Werner Hammer Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported in part by CNRS, Université Paris Sud, and US DOE Outline Effective

More information

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT a, V. Baru ab, E. Epelbaum a, C. Hanhart c, H. Krebs a, and F. Myhrer d a Institut für Theoretische

More information

C.A. Bertulani, Texas A&M University-Commerce

C.A. Bertulani, Texas A&M University-Commerce C.A. Bertulani, Texas A&M University-Commerce in collaboration with: Renato Higa (University of Sao Paulo) Bira van Kolck (Orsay/U. of Arizona) INT/Seattle, Universality in Few-Body Systems, March 10,

More information

Studying Nuclear Structure

Studying Nuclear Structure Microscope for the Studying Nuclear Structure with s School of Physics Seoul National University November 15, 2004 Outline s Microscope for the s Smaller, smaller Quest for basic building blocks of the

More information

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section Scattering Processes General Consideration Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section The form factor Mott scattering Nuclear charge distributions and radii

More information

arxiv: v1 [nucl-th] 17 Apr 2013

arxiv: v1 [nucl-th] 17 Apr 2013 arxiv:134.4855v1 [nucl-th] 17 Apr 13 The Upper Energy Limit of HBChPT in Pion Photoproduction Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas,

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Hans-Jürgen Arends Mainz University

Hans-Jürgen Arends Mainz University Recent Results from MAMI Hans-Jürgen Arends Mainz University Dec. 2008: 1557 MeV Sept. 2009: 1604 MeV KAOS spectrometer High-precision p(e,e )p measurement at MAMI Motivation (see J. Friedrich and Th.

More information

MESON PRODUCTION IN NN COLLISIONS

MESON PRODUCTION IN NN COLLISIONS MENU 07 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 07 IKP, Forschungzentrum Jülich, Germany MESON PRODUCTION IN NN COLLISIONS K. Nakayama a,b,1,

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes

Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes Simona Malace Norfolk State University Light Cone 2015, September 21-25 2015, INFN Frascati What is Quark-hadron duality?

More information

Nucleon Electromagnetic Form Factors: Introduction and Overview

Nucleon Electromagnetic Form Factors: Introduction and Overview Nucleon Electromagnetic Form Factors: Introduction and Overview Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Scattering and Annihilation Electromagnetic Processes Trento, 18- February 013

More information

Virtual Compton Scattering (low energy)

Virtual Compton Scattering (low energy) Virtual Compton Scattering (low energy) A special tool to study nucleon structure Hélène FONVIEILLE LPC-Clermont-Fd France SFB School, Boppard, Aug. 2017 1 - RCS (Real Compton Scattering, polarizabilities)

More information

Form Factors with Electrons and Positrons

Form Factors with Electrons and Positrons HUGS2013, JLab, May 28 June 14, 2013 Form Factors with Electrons and Positrons Part 2: Proton form factor measurements Michael Kohl Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News,

More information

Bayesian Fitting in Effective Field Theory

Bayesian Fitting in Effective Field Theory Bayesian Fitting in Effective Field Theory Department of Physics Ohio State University February, 26 Collaborators: D. Phillips (Ohio U.), U. van Kolck (Arizona), R.G.E. Timmermans (Groningen, Nijmegen)

More information