e-companion ONLY AVAILABLE IN ELECTRONIC FORM Electronic Companion Stochastic Kriging for Simulation Metamodeling

Size: px
Start display at page:

Download "e-companion ONLY AVAILABLE IN ELECTRONIC FORM Electronic Companion Stochastic Kriging for Simulation Metamodeling"

Transcription

1 OPERATIONS RESEARCH doi /opre ec e-companion ONLY AVAILABLE IN ELECTRONIC FORM informs 009 INFORMS Electronic Companion Stochastic Kriging for Simulation Metamodeling by Bruce Ankenman, Barry L. Nelson, and Jeremy Staum, Operations Research, doi /opre

2 ec Proofs EC.1. MSE-optimal Stochastic Kriging Predictor Here we prove the results in Section for stochastic kriging when Σ M, Σ ε and β 0 are known. Most of these results parallel similar derivations in Stein (1999 for standard kriging, to which the reader can refer for missing details. We consider linear predictors of the form λ 0 (x 0 +λ(x 0 Ȳ where λ 0 (x 0 and λ(x 0 are weights that depend on x 0 and will be chosen to give minimum MSE for predicting Y(x 0 =β 0 + M(x 0. To simplify the notation we drop the dependence of λ 0 and λ on x 0. The MSE of the linear predictor is MSE = E (Y(x 0 λ 0 λ Ȳ ] =E (β 0 λ 0 λ 1 k β 0 ] +E (M(x 0 λ Ȳ + λ 1 k β 0 ] +E (β 0 λ 0 λ 1 k β 0 (M(x 0 λ Ȳ + λ 1 k β 0 ] =(β 0 λ 0 λ 1 k β 0 +E (M(x 0 λ Ȳ + λ 1 k β 0 ] =(β 0 λ 0 λ 1 k β 0 +Σ M (x 0, x 0 +λ Σ M + Σ ε ] λ λ T Σ M (x 0,. Now following the same steps as Stein (1999, Chapter 1., we can show that the MSE-optimal weights are λ 0 = β 0 λ 1 k β 0 and λ =Σ M + Σ ε ] 1 Σ M (x 0,. With these weights, the estimator is Ŷ(x 0 =β 0 + Σ M (x 0, Σ M + Σ ε ] 1 ( Ȳ β 0 1 k. By direct substitution the MSE is MSE =Σ M (x 0, x 0 Σ M (x 0, Σ M + Σ ε ] 1 Σ M (x 0, =Σ M (x 0, x 0 Σ M (x 0, Σ 1 M Σ M(x 0, +Σ M (x 0, ΞΣ M (x 0,. (EC.1 The final step follows from Henderson and Searle (1981, which shows that Ξ will be a positive definite matrix that depends on Σ ε and Σ M and will disappear if Σ ε = 0.

3 ec3 EC.. Impact of CRN for k> Design Points As a second illustration of the impact of CRN on stochastic kriging, suppose that 1 ρ ρ Σ M + Σ ε = τ ρ 1 ρ I + V ρρ 1 This matrix is invertible in closed form using Theorem in Graybill (1969 (see also Appendix EC.5. Therefore, the MSE of the stochastic kriging estimator (everything known can be obtained by plugging Σ M, Σ ε and Σ M (x 0, =τ (r 0,r 0,...,r 0 into (7 to obtain which is increasing in ρ. EC.3. Joint Distribution MSE = τ (1 kr0τ (1 + (k 1ρV + τ The multivariate normality of (Y(x 0, Ȳ(x 1,...,Ȳ(x k follows directly from the response surface model (3 and Assumption 1. They imply that CovY j (x i, Y l (x h ] = τ + V(x i, i= h, j = l CovM(x i +ε j (x i, M(x h +ε l (x h ] = τ, i= h, j l τ R M (x i x j ; θ i h and similarly CovY(x 0, Y j (x i ] = CovM(x 0, M(x i +ε j (x i ] = τ R M (x 0 x i ; θ. Since the ε j (x i are independent across replications and design points, averaging the n i replications at design point x i only affects CovȲ(x i, Ȳ(x i ] = VarȲ(x i ] = τ + V(x i /n i. Therefore, Y(x 0 ( ] Ȳ(x 1. MVN τ R M (x 0, ; θ β 0 1 k+1,. (EC. R M (x 0, ; θ τ R M (θ + Diag{V(x i /n i } Ȳ(x k The conditional expectation of Y(x 0 given (Ȳ(x 1,...,Ȳ(x k then follows immediately from standard results for the multivariate normal distribution (e.g., Stein 1999, Appendix A.

4 ec4 EC.4. Proof of Theorem 1 We first show that for any fixed positive definite covariance matrix Σ ε, the predictor Ŷ (x 0 =β 0 + Σ M (x 0, Σ M + Σ ε] 1 ( Ȳ β 0 1 k is an unbiased predictor. This follows immediately from EŶ (x 0 Y(x 0 ] = β 0 +0 β 0 =0. Next notice that under Model (3 we have S (x i = 1 n i 1 n i j=1 ( Yj (x i Ȳ(x i = 1 n i 1 n i j=1 (ε j (x i ε j (x i. Therefore, under Assumption 1, V(x i =S (x i is independent of Ȳ(x i =β 0 + M(x i + ε j (x i by well-known properties of the normal distribution (recall that M is also independent of ε j (x i. Then since Σ ε = Diag { V(x1 /n 1, V(x } /n,..., V(x k /n k we have ] ] E Ŷ(x 0 Y(x 0 =E E (Ŷ(x 0 Y(x 0 Σ ε =Eβ 0 β 0 ]=0. EC.5. Variance Inflation Example of Section 3.1 As in 3.1, suppose that 1 r r Σ M = τ r 1 r......, rr 1 Σ M (x 0, =τ (r 0,r 0,...,r 0 with r 0,r 0, Σ ε =(V/nI, and we have an independent estimator V Vχ n 1/(n 1. Let γ = V/τ be the ratio of the intrinsic variance to the extrinsic variance. A key to the result is noting that we can write Σ M + Σ ε = qq T + τ Diag{1 r, 1 r,...,1 r} + V n I where q T =( r, r,..., r. This matrix is invertible in closed form using Theorem of Graybill (1969. Specialized to this case { } Σ M + Σ ε ] 1 1 = Diag τ (1 r+v/n,..., 1 τ (1 r+v/n τ r τ (1 r+kτ r + V/n τ (1 r+v/n (EC.3

5 ec5 where indicates a matrix of appropriate dimension with all elements the same. We obtain the MSE of Ŷ(x 0, the stochastic kriging estimator with Σ ε (i.e., V known, MSE = τ (1 kr0 1+(k 1r + γ n by plugging Σ M, Σ ε and Σ M (x 0, into (7 and using the known inverse (EC.3. The MSE of Ŷ(x 0 is derived by substituting V for V and noting that since Ŷ(x 0 is unbiased for any V independent of Ȳ (see Theorem 1 and the proof in Section EC.4 ] ] MSE Ŷ(x 0 =VarŶ(x 0 ] ] =E Var (Ŷ(x 0 V +Var E (Ŷ(x 0 V ] =E Var (Ŷ(x 0 V =E Var β 0 + τ (r 0,r 0,...,r 0 Σ M + V ] 1 (Ȳ n I β0 1 k V ( = τ 1+(k 1r + γ E 1+ n kr 0 kr0 ( (. 1+(k 1r + γ V 1+(k 1r + γ V n V n V The last step requires writing out the conditional variance, recalling that Ȳ and V are independent, and employing several tedious applications of Theorem of Graybill (1969. EC.6. Maximum Likelihood Estimators The log likelihood function for (β 0,τ, θ given (Ȳ(x 1,...,Ȳ(x k follows directly from the joint normal distribution (EC.: l(β 0,τ, θ= ln (π k/] 1 ln τ R M (θ+σ ε ] 1 (Ȳ β0 ] 1 k τ 1 (Ȳ β0 R M (θ+σ ε 1 k. For brevity, let Σ = τ R M (θ+σ ε. Taking derivatives, and applying the matrix calculus results ( and (3 gives l(β 0,τ, θ β 0 = β 0 1 T k Σ 1 1 k + 1 T k Σ 1 Ȳ = 1 T k Σ 1 (Ȳ β 0 1 k = 0 (EC.4

6 ec6 l(β 0,τ, θ τ = 1 trace Σ 1 R M (θ ] l(β 0,τ, θ θ p 1 (Ȳ { β0 1 k Σ 1 R M (θσ 1}( Ȳ β 0 1 k = 0 (EC.5 = 1 ] trace Σ 1 τ R M (θ θ p 1 } (Ȳ β0 1 k { Σ 1 τ R M (θ (Ȳ β0 Σ 1 1 k = 0 (EC.6 θ p where θ p is the pth element of θ. Observe that β 0 that solves (EC.4 is explicit given Σ. To obtain starting solutions to search for the MLEs we set R M (θ =I and simplify (EC.4 and (EC.5. EC.7. Estimated MSE To obtain the MSE estimator (5, we first assume Σ M = τ R M (θ and Σ ε are known, so that only β 0 need be estimated. An expression for MSE(x 0 then follows precisely the development in Stein (1999, 1.5 with τ R M (θ+σ ε playing the role of K, the covariance matrix of the random field. Our estimator MSE(x 0 is then obtained by plugging in τ R M ( θ and Σ ε obtained via maximum likelihood estimation. EC.8. Derivation of IMSE-Optimal Design The first step in deriving the IMSE-optimal allocation of replications is to note that MSE(x 0 ; n =Σ M (x 0, x 0 Σ M (x 0, Σ(n 1 Σ M (x 0, = τ τ 4 r(x 0 Σ(n 1 r(x 0 k = τ τ ] 4 Σ(n 1 r i,j i(x 0 r j (x 0 i,j=1 where τ r(x 0 =(Σ M (x 0, x 1, Σ M (x 0, x,...,σ M (x 0, x k. Therefore, k IMSE(n =τ τ ] 4 Σ(n 1 i,j i,j=1 = τ τ 4 1 W Σ(n 1] 1 x 0 X r i (x 0 r j (x 0 dx 0 where is the Hadamard product of matrices. From this we can form the Lagrangian L(n=τ τ 4 1 W Σ(n 1] + λ(n 1 n.

7 ec7 The first-order optimality conditions are L(n n i = τ 4 1 W ] Σ(n 1 1 λ =0 n i for i = 1,,...,k. Careful application of matrix calculus gives ] Σ(n 1 = Σ(n 1 Σ(n Σ(n 1 n i n i Σ(n = V(x i J (ii n i n i where J (ii is a k k matrix with 1 in position (i, i and zeroes elsewhere. The result then follows by solving the first-order conditions. References Graybill, F. A Matrices with Applications in Statistics, nd edition, Wadsworth, Belmont, CA. Henderson, H. V. and S. R. Searle On deriving the inverse of a sum of matrices. SIAM Review 3, Stein, M. L Interpolation of Spatial Data: Some Theory for Kriging. Springer, NY.

STOCHASTIC KRIGING FOR SIMULATION METAMODELING. Bruce Ankenman Barry L. Nelson Jeremy Staum

STOCHASTIC KRIGING FOR SIMULATION METAMODELING. Bruce Ankenman Barry L. Nelson Jeremy Staum Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. STOCHASTIC KRIGING FOR SIMULATION METAMODELING Bruce Ankenman Barry L. Nelson

More information

Mustafa H. Tongarlak Bruce E. Ankenman Barry L. Nelson

Mustafa H. Tongarlak Bruce E. Ankenman Barry L. Nelson Proceedings of the 0 Winter Simulation Conference S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds. RELATIVE ERROR STOCHASTIC KRIGING Mustafa H. Tongarlak Bruce E. Ankenman Barry L.

More information

The Effects of Common Random Numbers on Stochastic Kriging Metamodels

The Effects of Common Random Numbers on Stochastic Kriging Metamodels 7 The Effects of Common Random Numbers on Stochastic Kriging Metamodels XI CHEN, BRUCE E ANKENMAN, and BARRY L NELSON, Northwestern University Ankenman et al introduced stochastic kriging as a metamodeling

More information

Lihua Sun. Department of Economics and Finance, School of Economics and Management Tongji University 1239 Siping Road Shanghai , China

Lihua Sun. Department of Economics and Finance, School of Economics and Management Tongji University 1239 Siping Road Shanghai , China Proceedings of the 20 Winter Simulation Conference S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds. OPTIMIZATION VIA SIMULATION USING GAUSSIAN PROCESS-BASED SEARCH Lihua Sun Department

More information

Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging

Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging Jeremy Staum Collaborators: Bruce Ankenman, Barry Nelson Evren Baysal, Ming Liu, Wei Xie supported by the NSF under Grant No.

More information

Stochastic Kriging for Efficient Nested Simulation of Expected Shortfall

Stochastic Kriging for Efficient Nested Simulation of Expected Shortfall Stochastic Kriging for Efficient Nested Simulation of Expected Shortfall Ming Liu Ph.D. Candidate Department of Industrial Engineering and Management Sciences Robert R. McCormick School of Engineering

More information

Monitoring Wafer Geometric Quality using Additive Gaussian Process

Monitoring Wafer Geometric Quality using Additive Gaussian Process Monitoring Wafer Geometric Quality using Additive Gaussian Process Linmiao Zhang 1 Kaibo Wang 2 Nan Chen 1 1 Department of Industrial and Systems Engineering, National University of Singapore 2 Department

More information

GENERALIZED INTEGRATED BROWNIAN FIELDS FOR SIMULATION METAMODELING. Peter Salemi Jeremy Staum Barry L. Nelson

GENERALIZED INTEGRATED BROWNIAN FIELDS FOR SIMULATION METAMODELING. Peter Salemi Jeremy Staum Barry L. Nelson Proceedings of the 2013 Winter Simulation Conference R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds. GENERALIZED INTEGRATED BROWNIAN FIELDS FOR SIMULATION METAMODELING Peter Salemi Jeremy

More information

arxiv: v1 [math.st] 22 Dec 2018

arxiv: v1 [math.st] 22 Dec 2018 Optimal Designs for Prediction in Two Treatment Groups Rom Coefficient Regression Models Maryna Prus Otto-von-Guericke University Magdeburg, Institute for Mathematical Stochastics, PF 4, D-396 Magdeburg,

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Comparison of prediction quality of the best linear unbiased predictors in time series linear regression models

Comparison of prediction quality of the best linear unbiased predictors in time series linear regression models 1 Comparison of prediction quality of the best linear unbiased predictors in time series linear regression models Martina Hančová Institute of Mathematics, P. J. Šafárik University in Košice Jesenná 5,

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. THE EFFECTS OF ESTIMATION OF HETEROSCEDASTICITY ON STOCHASTIC

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

Proceedings of the 2018 Winter Simulation Conference M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

Proceedings of the 2018 Winter Simulation Conference M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds. Proceedings of the 2018 Winter Simulation Conference M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds. METAMODEL-ASSISTED RISK ANALYSIS FOR STOCHASTIC SIMULATION WITH INPUT UNCERTAINTY

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models, two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent variable,

More information

Link lecture - Lagrange Multipliers

Link lecture - Lagrange Multipliers Link lecture - Lagrange Multipliers Lagrange multipliers provide a method for finding a stationary point of a function, say f(x, y) when the variables are subject to constraints, say of the form g(x, y)

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Regression. Oscar García

Regression. Oscar García Regression Oscar García Regression methods are fundamental in Forest Mensuration For a more concise and general presentation, we shall first review some matrix concepts 1 Matrices An order n m matrix is

More information

Least Squares Estimation-Finite-Sample Properties

Least Squares Estimation-Finite-Sample Properties Least Squares Estimation-Finite-Sample Properties Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) Finite-Sample 1 / 29 Terminology and Assumptions 1 Terminology and Assumptions

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling François Bachoc former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez Department

More information

Stochastic Design Criteria in Linear Models

Stochastic Design Criteria in Linear Models AUSTRIAN JOURNAL OF STATISTICS Volume 34 (2005), Number 2, 211 223 Stochastic Design Criteria in Linear Models Alexander Zaigraev N. Copernicus University, Toruń, Poland Abstract: Within the framework

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices Lecture 3: Simple Linear Regression in Matrix Format To move beyond simple regression we need to use matrix algebra We ll start by re-expressing simple linear regression in matrix form Linear algebra is

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Homework assignment Instructions Please turn in the homework with this cover page. You do not need to edit the solutions. Just make sure the handwriting is legible. You may discuss

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Linear Regression. Junhui Qian. October 27, 2014

Linear Regression. Junhui Qian. October 27, 2014 Linear Regression Junhui Qian October 27, 2014 Outline The Model Estimation Ordinary Least Square Method of Moments Maximum Likelihood Estimation Properties of OLS Estimator Unbiasedness Consistency Efficiency

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Tilburg University. Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging Mehdad, Ehsan; Kleijnen, Jack

Tilburg University. Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging Mehdad, Ehsan; Kleijnen, Jack Tilburg University Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging Mehdad, Ehsan; Kleijnen, Jack Document version: Early version, also known as pre-print Publication

More information

Remedial Measures for Multiple Linear Regression Models

Remedial Measures for Multiple Linear Regression Models Remedial Measures for Multiple Linear Regression Models Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Remedial Measures for Multiple Linear Regression Models 1 / 25 Outline

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation.

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation. Statistical Computation Math 475 Jimin Ding Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html October 10, 2013 Ridge Part IV October 10, 2013 1

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

Statistics 351 Probability I Fall 2006 (200630) Final Exam Solutions. θ α β Γ(α)Γ(β) (uv)α 1 (v uv) β 1 exp v }

Statistics 351 Probability I Fall 2006 (200630) Final Exam Solutions. θ α β Γ(α)Γ(β) (uv)α 1 (v uv) β 1 exp v } Statistics 35 Probability I Fall 6 (63 Final Exam Solutions Instructor: Michael Kozdron (a Solving for X and Y gives X UV and Y V UV, so that the Jacobian of this transformation is x x u v J y y v u v

More information

OPTIMAL DESIGN INPUTS FOR EXPERIMENTAL CHAPTER 17. Organization of chapter in ISSO. Background. Linear models

OPTIMAL DESIGN INPUTS FOR EXPERIMENTAL CHAPTER 17. Organization of chapter in ISSO. Background. Linear models CHAPTER 17 Slides for Introduction to Stochastic Search and Optimization (ISSO)by J. C. Spall OPTIMAL DESIGN FOR EXPERIMENTAL INPUTS Organization of chapter in ISSO Background Motivation Finite sample

More information

arxiv: v1 [stat.me] 24 May 2010

arxiv: v1 [stat.me] 24 May 2010 The role of the nugget term in the Gaussian process method Andrey Pepelyshev arxiv:1005.4385v1 [stat.me] 24 May 2010 Abstract The maximum likelihood estimate of the correlation parameter of a Gaussian

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini April 27, 2018 1 / 1 Table of Contents 2 / 1 Linear Algebra Review Read 3.1 and 3.2 from text. 1. Fundamental subspace (rank-nullity, etc.) Im(X ) = ker(x T ) R

More information

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973]

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973] Stats 300C: Theory of Statistics Spring 2018 Lecture 20 May 18, 2018 Prof. Emmanuel Candes Scribe: Will Fithian and E. Candes 1 Outline 1. Stein s Phenomenon 2. Empirical Bayes Interpretation of James-Stein

More information

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University An Introduction to Spatial Statistics Chunfeng Huang Department of Statistics, Indiana University Microwave Sounding Unit (MSU) Anomalies (Monthly): 1979-2006. Iron Ore (Cressie, 1986) Raw percent data

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGRESSION ANALYSIS MODULE II Lecture - 6 Simple Linear Regression Analysis Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Prediction of values of study

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research Linear models Linear models are computationally convenient and remain widely used in applied econometric research Our main focus in these lectures will be on single equation linear models of the form y

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

On corrections of classical multivariate tests for high-dimensional data

On corrections of classical multivariate tests for high-dimensional data On corrections of classical multivariate tests for high-dimensional data Jian-feng Yao with Zhidong Bai, Dandan Jiang, Shurong Zheng Overview Introduction High-dimensional data and new challenge in statistics

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Limit Kriging. Abstract

Limit Kriging. Abstract Limit Kriging V. Roshan Joseph School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, GA 30332-0205, USA roshan@isye.gatech.edu Abstract A new kriging predictor is proposed.

More information

Problem Solving. Correlation and Covariance. Yi Lu. Problem Solving. Yi Lu ECE 313 2/51

Problem Solving. Correlation and Covariance. Yi Lu. Problem Solving. Yi Lu ECE 313 2/51 Yi Lu Correlation and Covariance Yi Lu ECE 313 2/51 Definition Let X and Y be random variables with finite second moments. the correlation: E[XY ] Yi Lu ECE 313 3/51 Definition Let X and Y be random variables

More information

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question Linear regression Reminders Thought questions should be submitted on eclass Please list the section related to the thought question If it is a more general, open-ended question not exactly related to a

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Conditional distributions. Conditional expectation and conditional variance with respect to a variable.

Conditional distributions. Conditional expectation and conditional variance with respect to a variable. Conditional distributions Conditional expectation and conditional variance with respect to a variable Probability Theory and Stochastic Processes, summer semester 07/08 80408 Conditional distributions

More information

Introduction to Design and Analysis of Computer Experiments

Introduction to Design and Analysis of Computer Experiments Introduction to Design and Analysis of Thomas Santner Department of Statistics The Ohio State University October 2010 Outline Empirical Experimentation Empirical Experimentation Physical Experiments (agriculture,

More information

1 Mixed effect models and longitudinal data analysis

1 Mixed effect models and longitudinal data analysis 1 Mixed effect models and longitudinal data analysis Mixed effects models provide a flexible approach to any situation where data have a grouping structure which introduces some kind of correlation between

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

1. Point Estimators, Review

1. Point Estimators, Review AMS571 Prof. Wei Zhu 1. Point Estimators, Review Example 1. Let be a random sample from. Please find a good point estimator for Solutions. There are the typical estimators for and. Both are unbiased estimators.

More information

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Put your solution to each problem on a separate sheet of paper. Problem 1. (5166) Assume that two random samples {x i } and {y i } are independently

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression BSTT523: Kutner et al., Chapter 1 1 Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression Introduction: Functional relation between

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of ) Kleijnen, J.P.C.

Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of ) Kleijnen, J.P.C. Tilburg University Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039) Kleijnen, J.P.C.; Mehdad, Ehsan Publication date: 2014 Link to publication

More information

Étude de classes de noyaux adaptées à la simplification et à l interprétation des modèles d approximation.

Étude de classes de noyaux adaptées à la simplification et à l interprétation des modèles d approximation. Étude de classes de noyaux adaptées à la simplification et à l interprétation des modèles d approximation. Soutenance de thèse de N. Durrande Ecole des Mines de St-Etienne, 9 november 2011 Directeurs Laurent

More information

Ratio of Linear Function of Parameters and Testing Hypothesis of the Combination Two Split Plot Designs

Ratio of Linear Function of Parameters and Testing Hypothesis of the Combination Two Split Plot Designs Middle-East Journal of Scientific Research 13 (Mathematical Applications in Engineering): 109-115 2013 ISSN 1990-9233 IDOSI Publications 2013 DOI: 10.5829/idosi.mejsr.2013.13.mae.10002 Ratio of Linear

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

On corrections of classical multivariate tests for high-dimensional data. Jian-feng. Yao Université de Rennes 1, IRMAR

On corrections of classical multivariate tests for high-dimensional data. Jian-feng. Yao Université de Rennes 1, IRMAR Introduction a two sample problem Marčenko-Pastur distributions and one-sample problems Random Fisher matrices and two-sample problems Testing cova On corrections of classical multivariate tests for high-dimensional

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds. Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds. AN ADDITIVE GLOBAL AND LOCAL GAUSSIAN PROCESS MODEL FOR LARGE

More information

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is Multinomial Data The multinomial distribution is a generalization of the binomial for the situation in which each trial results in one and only one of several categories, as opposed to just two, as in

More information

A Squared Correlation Coefficient of the Correlation Matrix

A Squared Correlation Coefficient of the Correlation Matrix A Squared Correlation Coefficient of the Correlation Matrix Rong Fan Southern Illinois University August 25, 2016 Abstract Multivariate linear correlation analysis is important in statistical analysis

More information

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise.

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise. 1. Suppose Y 1, Y 2,..., Y n is an iid sample from a Bernoulli(p) population distribution, where 0 < p < 1 is unknown. The population pmf is p y (1 p) 1 y, y = 0, 1 p Y (y p) = (a) Prove that Y is the

More information

COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure)

COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure) STAT 52 Completely Randomized Designs COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure) Completely randomized means no restrictions on the randomization

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

1. Simple Linear Regression

1. Simple Linear Regression 1. Simple Linear Regression Suppose that we are interested in the average height of male undergrads at UF. We put each male student s name (population) in a hat and randomly select 100 (sample). Then their

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Masters Comprehensive Examination Department of Statistics, University of Florida

Masters Comprehensive Examination Department of Statistics, University of Florida Masters Comprehensive Examination Department of Statistics, University of Florida May 6, 003, 8:00 am - :00 noon Instructions: You have four hours to answer questions in this examination You must show

More information

Principles of forecasting

Principles of forecasting 2.5 Forecasting Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables X t (m 1 vector). Let y t+1

More information

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Metamodel-Based Optimization

Metamodel-Based Optimization Metamodel-Based Optimization NSF Workshop on Simulation Optimization May 24, 2010 Russell Barton Penn State Acknowledgments and Apologies To Michael and Barry. To NSF. To all of you. 2 Overview Metamodel-based

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

FIRST MIDTERM EXAM ECON 7801 SPRING 2001

FIRST MIDTERM EXAM ECON 7801 SPRING 2001 FIRST MIDTERM EXAM ECON 780 SPRING 200 ECONOMICS DEPARTMENT, UNIVERSITY OF UTAH Problem 2 points Let y be a n-vector (It may be a vector of observations of a random variable y, but it does not matter how

More information