Yuri Fedorov Multidimensional Integrable Generalizations of the nonholonomic Chaplygin sphere problem. November 29, 2006

Size: px
Start display at page:

Download "Yuri Fedorov Multidimensional Integrable Generalizations of the nonholonomic Chaplygin sphere problem. November 29, 2006"

Transcription

1 Yuri Fedorov Multidimensional Integrable Generalizations of the nonholonomic Chaplygin sphere problem November 29,

2 Preservation of Invariant Measure ẋ = v(x), x = (x 1,..., x n ) ( ) The volume form I = µ(x) dx 1 dx n is said to be an invariant measure of (*) if L v I = 0 µ(x) + µ div(v) = 0. Some Integrability Theorems: Theorem 1. (Euler Jacobi). If the system (*) possesses an an invariant measure I and n 2 independent first integrals, then it is integrable by quadratures. Theorem 2. (Kozlov). Suppose that the system (*) has an invariant measure I(x), k 1 independent integrals f 1 (x),..., f k 1 (x), and there are vector fields u k+1 = v, u k+2,..., u n, independent at each point, commuting with each other, such that Then this system is integrable by quadratures. L uj I = 0, L uj f i = 0, i = 1,..., k, j = k + 1,..., n. 2

3 Example: Spherical Supporter (Yu. F., 1988) A dynamically non-symmetric sphere surrounded by N symmetric spheres C k J ω + ω Jω = N γ k R k, D k ω k = λ k γ k R k, k = 1,..., N. k=1 N nonholonomic constraints expressing absence of slipping at the contact points: λ k ω k = ω (ω, γ k )γ k λ k (ω k, γ k )γ k, λ k (ω k, γ k ) = c k = const. 3

4 Taking into account the constraints, the first equation gives rise to N Λ ω + ω Λω = Γ ω, Λ = J + (D k /λ 2 k)i, Γ = Setting Γ = aα α + bβ β + cγ γ, one obtains the generalized Euler top on T SO(3): First integrals: (K, K), k=1 N D k γ k γ k /λ 2 k, k=1 K = K ω, α = α ω, β = β ω, γ = γ ω, K = (Λ + Γ)ω = Λω + a(ω, α)α + b(ω, β)β + c(ω, γ)γ, (K, α) = (Λ a ω, α), (K, β) = (Λ b ω, β), (K, γ) = (Λ c ω, γ), Λ a = Λ + ai, Λ b = Λ + bi, Λ c = Λ + ci, of which any three integrals are independent. Besides, the system has the kinetic energy integral 1 2 (ω, (Λ + Γ)ω) = 1 2 (ω, Λω) + a 2 (ω, α)2 + b 2 (ω, β)2 + c 2 (ω, γ)2. It also possesses an invariant measure with density µ = det(λ + Γ) By the Euler Jacobi theorem, the system is integrable by quadratures, and its generic invariant manifolds are two-dimensional tori. For N = 1 we have Γ = D 1 γ γ/λ 2 1, γ = γ1, K = K ω, γ = γ ω, K = Λω D(ω, γ)γ, and the spherical support becomes equivalent to the celebrated Chaplygin sphere problem (Chaplygin, 1903). 4

5 The Suslov problem (A. Suslov, 1903) Nonholonomic constraint: the projection of the angular velocity vector ω R 3 to a certain fixed in the body unit vector γ equals zero: ( ω, γ ) = 0. The Lagrangian L = 1 2 ( ω, I ω ), the momentum M = (M 1, M 2, M 3 ) T = I ω. d dt (I ω ) = I ω ω + λ γ, which is equivalent to d dt (I ω ) = (I ω, γ ) ω I 1 γ. The Suslov system possesses the energy integral and a line of equilibria positions ( ω, I ω ) ( M, I 1 M) = h, h = const E = {( ω, γ ) = 0} {(I ω, γ ) = 0}. In the basis where γ = (0, 0, 1) T the energy integral can be replaced by I 22 M 2 1 2I 12M 1 M 2 + I 11 M

6 3 e E 1 2 6

7 Discrete nonholonomic mechanical system on Q Q (J.Cortés, S. Martínez, 1999) (1) a discrete Lagrangian L : Q Q R; (2) distribution D on TQ (D = { q TQ A j (q), q = 0, j = 1,..., s}); (3) a discrete constraint manifold D d Q Q (of the same dimension as D and (q, q) D d for all q Q) F j (q k, q k+1 ) = 0, j = 1,..., s Discrete Lagrange d Alembert equations with multipliers D 1 L(q k, q k+1 ) + D 2 L(q k 1, q k ) = s λ k ja j (q k ), F j (q k, q k+1 ) = 0 j=1 This defines a multi-valued map Q Q Q Q Discrete Euler Poincaré Suslov Equations (Yu. F., D. Zenkov, 2004) - Assume Q = G{g} and L(g g k, g g k+1 ) = L(g k, g k+1 ). - Introduce left displacement W k = g 1 k g k+1 G. There exists reduced discrete Lagrangian l d : (G G)/G = G R such that L d (g k, g k+1 ) = l d (W k ). - The discrete body momentum p k : G G g p k, ξ = d l d (exp( sξ)w k ), p k = RW ds s=0 k l d(w k ). - Left-invariant distribution D T G, D g = TL g d, d = {ξ g a j, ξ = 0, j = 1,..., s}, a j = const. Then a j, g 1 ġ = 0, j = 1,..., s. 7

8 Discrete Euler Poincaré Suslov Equations (continuation) Discrete left-invariant constraints F j (g g k, g g k+1 ) = F j (g k, g k+1 ) there exist functions f j : G R, j = 1,..., s, such that F j (g k, g k+1 ) = f j (W k ). D d G G is completely defined by the admissible displacement subvariety S = {f 1 (W) = 0,..., f s (W) = 0} G; This implies that the discrete momentum p k is restricted to the admissible momentum subvariety U = {p g p = L Wl d(w), W S} g. p k+1 Ad W k p k = s λ j k+1 aj, where W k, W k+1 S, p k, p k+1 U g. j=1 Our choice of S G: S = exp d. Usually exp d = G! Assume g = h d, h being a subalgebra, such that [h, h] h, [d, d] h, [h, d] d. In this case S = exp d is a smooth submanifold of G homeomorphic to either the symmetric space G/H or to a quotient of G/H by a finite group action. 8

9 Discrete Suslov system G = SO(3) (SO(n) ), {R k } SO(3) (SO(n)) Finite rotations Ω k = R 1 k R k+1 (discrete analogue of the body angular velocity ω = R 1 Ṙ) Discrete Lagrangian is the same as for the discrete Euler top (A. Veselov, J.Moser, 1991) L(R k, R k+1 ) = 1 2 Tr(R kjr T k+1 ), l d(ω k ) = 1 2 Tr (Ω kj), The discrete body angular momentum M k = Ω k J JΩ T k so(3) Continuous constraints are defined by the subspace ω 1n 0 0 ω d = ω n 1,n so(n), d = 0 0 ω 23 so(3) ω 13 ω 23 0 ω 1n... ω n 1,n 0 Discrete constraints are defined by the admissible finite rotations S = exp d = {Ω SO(n) Ω ij = Ω ji, Ω in = Ω ni, 1 i, j n 1.} S is diffeomerphic to RP n 1 = S n 1 /Z 2. For n = 3, 2(q0 2 + q2 1 ) 1 2q 1q 2 2q 0 q 2 Ω = 2q 1 q 2 2(q0 2 + q2 2 ) 1 2q 0q 1, q 2q 0 q 2 2q 0 q 1 2q q2 1 + q2 2 =

10 Discrete Euler Poincaré Suslov equations on so (3). M k+1 = Ω T k M k Ω k + λ k , Admissible momentum locus in so (3), U = {Ω k J JΩ T k Ω k S} M k = Ω k J JΩ T k (a) (b) Theorem 3. Regardless to the branch of the map M k M m+1, the discrete Suslov map preserves the reduced constrained energy E c (M 23, M 13 ) = (J 11 + J 33 )M J 12M 23 M 13 + (J 22 + J 33 )M

11 0.2 3 e E (c) (d) 11

12 A discretization of the Chaplygin sphere {R k, r k }, R k SO(n), r k R n Discrete Lagrangian L = 1 2 Tr(R kjr T k+1 ) + m 2 r k, r k, r k = r k+1 r k. The discrete momentum of the sphere in the body frame M k = Ω k J JΩ T k, Ω k = R T k R k+1 SO(n), Continuous constraints expressing abcence of slipping at the contact point ṙ + ρω γ = 0. Discrete Euler Poincaré equations with multipliers M k = Ω T k 1M k 1 Ω k 1 + ρ F k γ T k, m( r k r k 1 ) = f k. where F k = Rk T f k, γ k = Rk T γ. Our choice of discrete constraints that mimic the continuous constraints r k + ρ 2 ( Ω k Ω T k ) γ = 0, Ωk = R T k+1r k SO(n). Proposition 4. The map admits the following compact representation where K k = Ω T k 1 K k 1Ω k 1, Γ k = Ω T k 1 Γ k 1Ω k 1, K k = Ω k (J + D ) 2 Γ k ( J + D ) 2 Γ k Ω T k + D 2 (Γ kω k Ω T k Γ k) M k + D 2 (Ω kγ k Γ k Ω T k ) + D 2 (Γ kω k Ω T k Γ k), D = mρ 2, = Ω k (J + D ) ( 2 (Γ k+1 + Γ k ) J + D ) 2 (Γ k+1 + Γ k ) Ω T k. 12

13 The classical case n = 3 Let M = (M 1, M 2, M 3 ) T (M 32, M 13, M 21 ) T, K = (K1, K 2, K 3 ) T (K 32, K 13, K 21 ) T. Then the map reads and preserves 3 independent integrals K k = Ω T k 1 K k 1, γ k = Ω T k 1 γ k 1 γ, γ = 1 K, γ = h, K, K = n. The special case K γ. ( K k = hγ k, h =const) This defines map G h : S 2 S 2, G h (γ k ) = γ k+1 Proposition 5. Regardless to branch of the map G h, it has the quadratic integral γ, Λ 1 γ = l. Hence, γ admits the elliptic parameterization, e.g., γ 1 = C 1 cn(u k), γ 2 = C 2 sn(u k), γ 3 = C 3 dn(u k), Therefore, for a fixed l, the map G h is reduced to one-dimensional map u k+1 = u k + u k (u k, l) u k depens non-trivially on u k! 13

arxiv: v1 [math-ph] 28 Aug 2017

arxiv: v1 [math-ph] 28 Aug 2017 SUSLOV PROBLEM WITH THE KLEBSH-TISSERAND POTENTIAL SHENGDA HU, MANUELE SANTOPRETE arxiv:178.8429v1 [math-ph] 28 Aug 217 Abstract. In this paper, we study a nonholonomic mechanical system, namely the Suslov

More information

DYNAMICS OF GENERALIZED EULER TOPS WITH CONSTRAINTS. Dmitry V. Zenkov, Anthony M. Bloch

DYNAMICS OF GENERALIZED EULER TOPS WITH CONSTRAINTS. Dmitry V. Zenkov, Anthony M. Bloch PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 18 21, 2000, Atlanta, USA pp. 398 405 DYNAMICS OF GENERALIZED EULER TOPS WITH CONSTRAINTS Dmitry V. Zenkov,

More information

Dynamics of the n-dimensional Suslov Problem

Dynamics of the n-dimensional Suslov Problem Dynamics of the n-dimensional Suslov Problem Dmitry V. Zenkov Department of Mathematics University of Michigan Ann Arbor, MI 48109 zenkov@math.lsa.umich.edu Anthony M. Bloch Department of Mathematics University

More information

06. Lagrangian Mechanics II

06. Lagrangian Mechanics II University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 06. Lagrangian Mechanics II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Review of Lagrangian Mechanics and Reduction

Review of Lagrangian Mechanics and Reduction Review of Lagrangian Mechanics and Reduction Joel W. Burdick and Patricio Vela California Institute of Technology Mechanical Engineering, BioEngineering Pasadena, CA 91125, USA Verona Short Course, August

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

[#1] R 3 bracket for the spherical pendulum

[#1] R 3 bracket for the spherical pendulum .. Holm Tuesday 11 January 2011 Solutions to MSc Enhanced Coursework for MA16 1 M3/4A16 MSc Enhanced Coursework arryl Holm Solutions Tuesday 11 January 2011 [#1] R 3 bracket for the spherical pendulum

More information

September 21, :43pm Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

September 21, :43pm Holm Vol 2 WSPC/Book Trim Size for 9in by 6in 1 GALILEO Contents 1.1 Principle of Galilean relativity 2 1.2 Galilean transformations 3 1.2.1 Admissible force laws for an N-particle system 6 1.3 Subgroups of the Galilean transformations 8 1.3.1 Matrix

More information

Unimodularity and preservation of measures in nonholonomic mechanics

Unimodularity and preservation of measures in nonholonomic mechanics Unimodularity and preservation of measures in nonholonomic mechanics Luis García-Naranjo (joint with Y. Fedorov and J.C. Marrero) Mathematics Department ITAM, Mexico City, MEXICO ẋ = f (x), x M n, f smooth

More information

On explicit integration of two non-holonomic problems

On explicit integration of two non-holonomic problems On explicit integration of two non-holonomic problems Alexey V. Borisov 1 1 Institute of Computer Sciences, Izhevsk, Russia Generalized Chaplygin systems Equations of motion of the generalized Chaplygin

More information

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations C. David Levermore Department of Mathematics and Institute for Physical Science and Technology

More information

The phenomenon of reversal in the Euler Poincaré Suslov nonholonomic systems

The phenomenon of reversal in the Euler Poincaré Suslov nonholonomic systems The phenomenon of reversal in the Euler Poincaré Suslov nonholonomic systems Valery V.Kozlov arxiv:1509.01089v1 [nlin.si] 3 Sep 2015 Steklov Mathematical Institute, Russian Academy of Sciences Gubkina

More information

Hyperkähler geometry lecture 3

Hyperkähler geometry lecture 3 Hyperkähler geometry lecture 3 Misha Verbitsky Cohomology in Mathematics and Physics Euler Institute, September 25, 2013, St. Petersburg 1 Broom Bridge Here as he walked by on the 16th of October 1843

More information

arxiv: v1 [math.ds] 18 Nov 2008

arxiv: v1 [math.ds] 18 Nov 2008 arxiv:0811.2889v1 [math.ds] 18 Nov 2008 Abstract Quaternions And Dynamics Basile Graf basile.graf@epfl.ch February, 2007 We give a simple and self contained introduction to quaternions and their practical

More information

Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group

Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group Melvin Leok Mathematics, University of California, San Diego Foundations of Dynamics Session, CDS@20 Workshop Caltech,

More information

Hamilton-Jacobi theory on Lie algebroids: Applications to nonholonomic mechanics. Manuel de León Institute of Mathematical Sciences CSIC, Spain

Hamilton-Jacobi theory on Lie algebroids: Applications to nonholonomic mechanics. Manuel de León Institute of Mathematical Sciences CSIC, Spain Hamilton-Jacobi theory on Lie algebroids: Applications to nonholonomic mechanics Manuel de León Institute of Mathematical Sciences CSIC, Spain joint work with J.C. Marrero (University of La Laguna) D.

More information

Mechanics and Control. 1. Examples and mathematical preliminaries. 2. Geometric Mechanics. 3. Geometric Control. 4. Nonholonomic Mechanics

Mechanics and Control. 1. Examples and mathematical preliminaries. 2. Geometric Mechanics. 3. Geometric Control. 4. Nonholonomic Mechanics Mechanics and Control Anthony M. Bloch See work with Crouch, Marsden, Murray, Krishnaprasad, Zenkov, 1. Examples and mathematical preliminaries. 2. Geometric Mechanics 3. Geometric Control 4. Nonholonomic

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

Geometry and integrability of Euler Poincaré Suslov equations arxiv:math-ph/ v1 23 Jul 2001

Geometry and integrability of Euler Poincaré Suslov equations arxiv:math-ph/ v1 23 Jul 2001 Geometry and integrability of Euler Poincaré Suslov equations arxiv:math-ph/0107024v1 23 Jul 2001 Božidar Jovanović Mathematisches Institut, LMU Theresienstr. 39, D-80333 München, Germany e-mail: jovanov@rz.mathematik.uni-muenchen.de

More information

ROLLING OF A SYMMETRIC SPHERE ON A HORIZONTAL PLANE WITHOUT SLIDING OR SPINNING. Hernán Cendra 1. and MARÍA ETCHECHOURY

ROLLING OF A SYMMETRIC SPHERE ON A HORIZONTAL PLANE WITHOUT SLIDING OR SPINNING. Hernán Cendra 1. and MARÍA ETCHECHOURY Vol. 57 (2006) REPORTS ON MATHEMATICAL PHYSICS No. 3 ROLLING OF A SYMMETRIC SPHERE ON A HORIZONTAL PLANE WITHOUT SLIDING OR SPINNING Hernán Cendra 1 Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía

More information

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Dennis I. Barrett Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University Grahamstown,

More information

Part III Symmetries, Fields and Particles

Part III Symmetries, Fields and Particles Part III Symmetries, Fields and Particles Theorems Based on lectures by N. Dorey Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often

More information

Dynamical Systems & Lyapunov Stability

Dynamical Systems & Lyapunov Stability Dynamical Systems & Lyapunov Stability Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Ordinary Differential Equations Existence & uniqueness Continuous dependence

More information

The Geometry of Euler s equation. Introduction

The Geometry of Euler s equation. Introduction The Geometry of Euler s equation Introduction Part 1 Mechanical systems with constraints, symmetries flexible joint fixed length In principle can be dealt with by applying F=ma, but this can become complicated

More information

LECTURE 5: SURFACES IN PROJECTIVE SPACE. 1. Projective space

LECTURE 5: SURFACES IN PROJECTIVE SPACE. 1. Projective space LECTURE 5: SURFACES IN PROJECTIVE SPACE. Projective space Definition: The n-dimensional projective space P n is the set of lines through the origin in the vector space R n+. P n may be thought of as the

More information

1. Classifying Spaces. Classifying Spaces

1. Classifying Spaces. Classifying Spaces Classifying Spaces 1. Classifying Spaces. To make our lives much easier, all topological spaces from now on will be homeomorphic to CW complexes. Fact: All smooth manifolds are homeomorphic to CW complexes.

More information

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004 Massachusetts Institute of Technology Department of Physics Course: 8.09 Classical Mechanics Term: Fall 004 Final Examination December 17, 004 Instructions Do not start until you are told to do so. Solve

More information

Discrete Dirac Mechanics and Discrete Dirac Geometry

Discrete Dirac Mechanics and Discrete Dirac Geometry Discrete Dirac Mechanics and Discrete Dirac Geometry Melvin Leok Mathematics, University of California, San Diego Joint work with Anthony Bloch and Tomoki Ohsawa Geometric Numerical Integration Workshop,

More information

7.3 Singular Homology Groups

7.3 Singular Homology Groups 184 CHAPTER 7. HOMOLOGY THEORY 7.3 Singular Homology Groups 7.3.1 Cycles, Boundaries and Homology Groups We can define the singular p-chains with coefficients in a field K. Furthermore, we can define the

More information

Invariant Lagrangian Systems on Lie Groups

Invariant Lagrangian Systems on Lie Groups Invariant Lagrangian Systems on Lie Groups Dennis Barrett Geometry and Geometric Control (GGC) Research Group Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140 Eastern Cape

More information

Noether s Theorem. 4.1 Ignorable Coordinates

Noether s Theorem. 4.1 Ignorable Coordinates 4 Noether s Theorem 4.1 Ignorable Coordinates A central recurring theme in mathematical physics is the connection between symmetries and conservation laws, in particular the connection between the symmetries

More information

M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011

M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011 M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011 Text for the course: Professor Darryl D Holm 25 October 2011 Imperial College London d.holm@ic.ac.uk http://www.ma.ic.ac.uk/~dholm/ Geometric Mechanics

More information

1 Introduction In this paper we analyze the dynamics, and in particular the reconstruction of the so-called Suslov problem a generalized rigid body wi

1 Introduction In this paper we analyze the dynamics, and in particular the reconstruction of the so-called Suslov problem a generalized rigid body wi Dynamics of the n-dimensional Suslov Problem Dmitry V. Zenkov Department of Mathematics University of Michigan Ann Arbor, MI 48109 zenkov@math.lsa.umich.edu Anthony M. Bloch Department of Mathematics University

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics Harris McClamroch Aerospace Engineering, University of Michigan Joint work with Taeyoung Lee (George Washington University) Melvin

More information

Discrete Rigid Body Dynamics and Optimal Control

Discrete Rigid Body Dynamics and Optimal Control Discrete Rigid Body Dynamics and Optimal Control Anthony M. Bloch 1 Department of Mathematics University of Michigan Ann Arbor MI 48109 abloch@math.lsa.umich.edu Jerrold E. Marsden 3 Control and Dynamical

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

A CRASH COURSE IN EULER-POINCARÉ REDUCTION

A CRASH COURSE IN EULER-POINCARÉ REDUCTION A CRASH COURSE IN EULER-POINCARÉ REDUCTION HENRY O. JACOBS Abstract. The following are lecture notes from lectures given at the Fields Institute during the Legacy of Jerrold E. Marsden workshop. In these

More information

Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group

Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 049, 28 pages Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group David IGLESIAS, Juan Carlos

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Second-order dynamical systems of Lagrangian type with dissipation

Second-order dynamical systems of Lagrangian type with dissipation Second-order dynamical systems of Lagrangian type with dissipation T. Mestdag a, W. Sarlet a,b and M. Crampin a a Department of Mathematics, Ghent University Krijgslaan 281, B-9000 Ghent, Belgium b Department

More information

Moving energies as first integrals of nonholonomic systems with affine constraints

Moving energies as first integrals of nonholonomic systems with affine constraints Moving energies as first integrals of nonholonomic systems with affine constraints Francesco Fassò, Luis C. García-Naranjo and Nicola Sansonetto (Second revised version October 14, 2017) Abstract In nonholonomic

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

On the geometry of generalized Chaplygin systems

On the geometry of generalized Chaplygin systems On the geometry of generalized Chaplygin systems By FRANS CANTRIJN Department of Mathematical Physics and Astronomy, Ghent University Krijgslaan 281, B-9000 Ghent, Belgium e-mail: Frans.Cantrijn@rug.ac.be

More information

SYMMETRIES OF ROCKET DYNAMICS. Part 1. Executive Summary 1 1. Equations of Motion 1 2. The Problem to Solve 2. Part 2. Introduction 2 3.

SYMMETRIES OF ROCKET DYNAMICS. Part 1. Executive Summary 1 1. Equations of Motion 1 2. The Problem to Solve 2. Part 2. Introduction 2 3. SYMMETRIES OF ROCKET DYNAMICS ERNEST YEUNG Abstract. I recap the Euler-Poincaré reduction for the Lagrangian of a free (and non-free) rigid body and discuss the constraints and time steps for the Time

More information

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line.

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line. Assignment Goldstein.3 Prove that the shortest distance between two points in space is a straight line. The distance between two points is given by the integral of the infinitesimal arclength: s = = =

More information

Flat Nonholonomic Matching

Flat Nonholonomic Matching Flat Nonholonomic Matching Dmitry V. Zenkov 1 Department of Mathematics North Carolina State University Raleigh, NC 27695 dvzenkov@unity.ncsu.edu Anthony M. Bloch 2 Department of Mathematics University

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm.

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm. PHY646/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT # due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov maslov@phys.ufl.edu 39-053 Rm. 4 Please help your instructor by doing your work neatly.. Goldstein,

More information

Lie algebra cohomology

Lie algebra cohomology Lie algebra cohomology Relation to the de Rham cohomology of Lie groups Presented by: Gazmend Mavraj (Master Mathematics and Diploma Physics) Supervisor: J-Prof. Dr. Christoph Wockel (Section Algebra and

More information

Chap. 1. Some Differential Geometric Tools

Chap. 1. Some Differential Geometric Tools Chap. 1. Some Differential Geometric Tools 1. Manifold, Diffeomorphism 1.1. The Implicit Function Theorem ϕ : U R n R n p (0 p < n), of class C k (k 1) x 0 U such that ϕ(x 0 ) = 0 rank Dϕ(x) = n p x U

More information

Double bracket dissipation. Dissipation in nonholonomic systems. Nonholonomic systems and fields. Inverse Problems and nonholonomic systems

Double bracket dissipation. Dissipation in nonholonomic systems. Nonholonomic systems and fields. Inverse Problems and nonholonomic systems Variational and dissipative aspects of nonholonomic systems Anthony M. Bloch Work with Marsden, Zenkov, Rojo, Fernandez, Mestdag... Double bracket dissipation Dissipation in nonholonomic systems Nonholonomic

More information

Appendix to Lecture 2

Appendix to Lecture 2 PHYS 652: Astrophysics 1 Appendix to Lecture 2 An Alternative Lagrangian In class we used an alternative Lagrangian L = g γδ ẋ γ ẋ δ, instead of the traditional L = g γδ ẋ γ ẋ δ. Here is the justification

More information

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS Kenneth R. Meyer 1 Jesús F. Palacián 2 Patricia Yanguas 2 1 Department of Mathematical Sciences University of Cincinnati, Cincinnati, Ohio (USA) 2 Departamento

More information

Global Formulations of Lagrangian and Hamiltonian Dynamics on Embedded Manifolds

Global Formulations of Lagrangian and Hamiltonian Dynamics on Embedded Manifolds 1 Global Formulations of Lagrangian and Hamiltonian Dynamics on Embedded Manifolds By Taeyoung Lee, Melvin Leok, and N. Harris McClamroch Mechanical and Aerospace Engineering, George Washington University,

More information

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body Engineering Mechanics: Dynamics 12e Chapter 20 3D Kinematics of a Rigid Body Chapter Objectives Kinematics of a body subjected to rotation about a fixed axis and general plane motion. Relative-motion analysis

More information

Gauge Fixing and Constrained Dynamics in Numerical Relativity

Gauge Fixing and Constrained Dynamics in Numerical Relativity Gauge Fixing and Constrained Dynamics in Numerical Relativity Jon Allen The Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation is reviewed. Gauge freedom is discussed and

More information

A geometric solution of the Kervaire Invariant One problem

A geometric solution of the Kervaire Invariant One problem A geometric solution of the Kervaire Invariant One problem Petr M. Akhmet ev 19 May 2009 Let f : M n 1 R n, n = 4k + 2, n 2 be a smooth generic immersion of a closed manifold of codimension 1. Let g :

More information

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015 DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES MAGGIE MILLER September 25, 2015 1. 09/16/2015 1.1. Textbooks. Textbooks relevant to this class are Riemannian Geometry by do Carmo Riemannian Geometry

More information

SOLUTIONS, PROBLEM SET 11

SOLUTIONS, PROBLEM SET 11 SOLUTIONS, PROBLEM SET 11 1 In this problem we investigate the Lagrangian formulation of dynamics in a rotating frame. Consider a frame of reference which we will consider to be inertial. Suppose that

More information

These notes are incomplete they will be updated regularly.

These notes are incomplete they will be updated regularly. These notes are incomplete they will be updated regularly. LIE GROUPS, LIE ALGEBRAS, AND REPRESENTATIONS SPRING SEMESTER 2008 RICHARD A. WENTWORTH Contents 1. Lie groups and Lie algebras 2 1.1. Definition

More information

RIGIDITY OF MINIMAL ISOMETRIC IMMERSIONS OF SPHERES INTO SPHERES. Christine M. Escher Oregon State University. September 10, 1997

RIGIDITY OF MINIMAL ISOMETRIC IMMERSIONS OF SPHERES INTO SPHERES. Christine M. Escher Oregon State University. September 10, 1997 RIGIDITY OF MINIMAL ISOMETRIC IMMERSIONS OF SPHERES INTO SPHERES Christine M. Escher Oregon State University September, 1997 Abstract. We show two specific uniqueness properties of a fixed minimal isometric

More information

Ruijsenaars type deformation of hyperbolic BC n Sutherland m

Ruijsenaars type deformation of hyperbolic BC n Sutherland m Ruijsenaars type deformation of hyperbolic BC n Sutherland model March 2015 History 1. Olshanetsky and Perelomov discovered the hyperbolic BC n Sutherland model by a reduction/projection procedure, but

More information

LAGRANGIAN AND HAMILTONIAN

LAGRANGIAN AND HAMILTONIAN LAGRANGIAN AND HAMILTONIAN A. Constraints and Degrees of Freedom. A constraint is a restriction on the freedom of motion of a system of particles in the form of a condition. The number of independent ways

More information

CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts

CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts Michael Wolf wolf@caltech.edu 6 June 2005 1 Introduction 1.1 Motivation While most mechanics and dynamics

More information

PHY 5246: Theoretical Dynamics, Fall September 28 th, 2015 Midterm Exam # 1

PHY 5246: Theoretical Dynamics, Fall September 28 th, 2015 Midterm Exam # 1 Name: SOLUTIONS PHY 5246: Theoretical Dynamics, Fall 2015 September 28 th, 2015 Mierm Exam # 1 Always remember to write full work for what you do. This will help your grade in case of incomplete or wrong

More information

The Strominger Yau Zaslow conjecture

The Strominger Yau Zaslow conjecture The Strominger Yau Zaslow conjecture Paul Hacking 10/16/09 1 Background 1.1 Kähler metrics Let X be a complex manifold of dimension n, and M the underlying smooth manifold with (integrable) almost complex

More information

ISOLATING BLOCKS NEAR THE COLLINEAR RELATIVE EQUILIBRIA OF THE THREE-BODY PROBLEM

ISOLATING BLOCKS NEAR THE COLLINEAR RELATIVE EQUILIBRIA OF THE THREE-BODY PROBLEM ISOLATING BLOCKS NEAR THE COLLINEAR RELATIVE EQUILIBRIA OF THE THREE-BODY PROBLEM RICHARD MOECKEL Abstract. The collinear relative equilibrium solutions are among the few explicitly known periodic solutions

More information

arxiv:math-ph/ v1 22 May 2003

arxiv:math-ph/ v1 22 May 2003 On the global version of Euler-Lagrange equations. arxiv:math-ph/0305045v1 22 May 2003 R. E. Gamboa Saraví and J. E. Solomin Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de

More information

1 Hamiltonian formalism

1 Hamiltonian formalism 1 Hamiltonian formalism 1.1 Hamilton s principle of stationary action A dynamical system with a finite number n degrees of freedom can be described by real functions of time q i (t) (i =1, 2,..., n) which,

More information

arxiv: v1 [math.oc] 22 Apr 2007

arxiv: v1 [math.oc] 22 Apr 2007 arxiv:0704.2886v1 [math.oc] 22 Apr 2007 Control of mechanical systems on Lie groups and ideal hydrodynamics Mikhail V. Deryabin Abstract In contrast to the Euler-Poincaré reduction of geodesic flows of

More information

Group Actions and Cohomology in the Calculus of Variations

Group Actions and Cohomology in the Calculus of Variations Group Actions and Cohomology in the Calculus of Variations JUHA POHJANPELTO Oregon State and Aalto Universities Focused Research Workshop on Exterior Differential Systems and Lie Theory Fields Institute,

More information

arxiv: v5 [math-ph] 1 Oct 2014

arxiv: v5 [math-ph] 1 Oct 2014 VARIATIONAL INTEGRATORS FOR UNDERACTUATED MECHANICAL CONTROL SYSTEMS WITH SYMMETRIES LEONARDO COLOMBO, FERNANDO JIMÉNEZ, AND DAVID MARTÍN DE DIEGO arxiv:129.6315v5 [math-ph] 1 Oct 214 Abstract. Optimal

More information

Math 550 / David Dumas / Fall Problems

Math 550 / David Dumas / Fall Problems Math 550 / David Dumas / Fall 2014 Problems Please note: This list was last updated on November 30, 2014. Problems marked with * are challenge problems. Some problems are adapted from the course texts;

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

An invitation to log geometry p.1

An invitation to log geometry p.1 An invitation to log geometry James M c Kernan UCSB An invitation to log geometry p.1 An easy integral Everyone knows how to evaluate the following integral: 1 0 1 1 x 2 dx. An invitation to log geometry

More information

Lecture 4. Alexey Boyarsky. October 6, 2015

Lecture 4. Alexey Boyarsky. October 6, 2015 Lecture 4 Alexey Boyarsky October 6, 2015 1 Conservation laws and symmetries 1.1 Ignorable Coordinates During the motion of a mechanical system, the 2s quantities q i and q i, (i = 1, 2,..., s) which specify

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations Twisted Poisson manifolds and their almost symplectically complete isotropic realizations Chi-Kwong Fok National Center for Theoretical Sciences Math Division National Tsing Hua University (Joint work

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

ON COLISSIONS IN NONHOLONOMIC SYSTEMS

ON COLISSIONS IN NONHOLONOMIC SYSTEMS ON COLISSIONS IN NONHOLONOMIC SYSTEMS DMITRY TRESCHEV AND OLEG ZUBELEVICH DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY, M. V. LOMONOSOV MOSCOW STATE UNIVERSITY RUSSIA, 119899, MOSCOW,

More information

The Toda Lattice. Chris Elliott. April 9 th, 2014

The Toda Lattice. Chris Elliott. April 9 th, 2014 The Toda Lattice Chris Elliott April 9 th, 2014 In this talk I ll introduce classical integrable systems, and explain how they can arise from the data of solutions to the classical Yang-Baxter equation.

More information

Seminar on Motives Standard Conjectures

Seminar on Motives Standard Conjectures Seminar on Motives Standard Conjectures Konrad Voelkel, Uni Freiburg 17. January 2013 This talk will briefly remind you of the Weil conjectures and then proceed to talk about the Standard Conjectures on

More information

Hamiltonian flows, cotangent lifts, and momentum maps

Hamiltonian flows, cotangent lifts, and momentum maps Hamiltonian flows, cotangent lifts, and momentum maps Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Symplectic manifolds Let (M, ω) and (N, η) be symplectic

More information

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3 : Solution Set Two Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein October 7, 2015 Contents 1 Problem #1: Projectile Motion. 2 1.1 Cartesian Coordinates....................................

More information

Variational principles and Hamiltonian Mechanics

Variational principles and Hamiltonian Mechanics A Primer on Geometric Mechanics Variational principles and Hamiltonian Mechanics Alex L. Castro, PUC Rio de Janeiro Henry O. Jacobs, CMS, Caltech Christian Lessig, CMS, Caltech Alex L. Castro (PUC-Rio)

More information

Lecture I: Constrained Hamiltonian systems

Lecture I: Constrained Hamiltonian systems Lecture I: Constrained Hamiltonian systems (Courses in canonical gravity) Yaser Tavakoli December 15, 2014 1 Introduction In canonical formulation of general relativity, geometry of space-time is given

More information

K-stability and Kähler metrics, I

K-stability and Kähler metrics, I K-stability and Kähler metrics, I Gang Tian Beijing University and Princeton University Let M be a Kähler manifold. This means that M be a complex manifold together with a Kähler metric ω. In local coordinates

More information

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization)

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Anton Shiriaev 1,2, Leonid Freidovich 1, Sergey Gusev 3 1 Department

More information

Stabilization of Collective Motion in Three Dimensions: A Consensus Approach

Stabilization of Collective Motion in Three Dimensions: A Consensus Approach Stabilization of Collective Motion in Three Dimensions: A Consensus Approach Luca Scardovi, Naomi Ehrich Leonard, and Rodolphe Sepulchre Abstract This paper proposes a methodology to stabilize relative

More information

1 Integrability. 2 Hamiltonian Mechanics and Integrability

1 Integrability. 2 Hamiltonian Mechanics and Integrability 1 Integrability As soon as physicists wrote down mathematical equations describing physical systems, they have been looking for situations in which they could be solved exactly. Of course, as you all well

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

DIRAC COTANGENT BUNDLE REDUCTION HIROAKI YOSHIMURA JERROLD E. MARSDEN. (Communicated by Juan-Pablo Ortega)

DIRAC COTANGENT BUNDLE REDUCTION HIROAKI YOSHIMURA JERROLD E. MARSDEN. (Communicated by Juan-Pablo Ortega) JOURNAL OF GEOMETRIC MECHANICS doi:10.3934/jgm.2009.1.87 c American Institute of Mathematical Sciences Volume 1, Number 1, March 2009 pp. 87 158 DIRAC COTANGENT BUNDLE REDUCTION HIROAKI YOSHIMURA Applied

More information

Abstract. Jacobi curves are far going generalizations of the spaces of \Jacobi

Abstract. Jacobi curves are far going generalizations of the spaces of \Jacobi Principal Invariants of Jacobi Curves Andrei Agrachev 1 and Igor Zelenko 2 1 S.I.S.S.A., Via Beirut 2-4, 34013 Trieste, Italy and Steklov Mathematical Institute, ul. Gubkina 8, 117966 Moscow, Russia; email:

More information

The Motion and Control of a Chaplygin Sleigh with Internal Shape in an Ideal Fluid

The Motion and Control of a Chaplygin Sleigh with Internal Shape in an Ideal Fluid The Motion and Control of a Chaplygin Sleigh with Internal Shape in an Ideal Fluid by Christopher Barot A dissertation submitted in partial fulllment of the requirements for the degree of Doctor of Philosophy

More information

Instanton calculus for quiver gauge theories

Instanton calculus for quiver gauge theories Instanton calculus for quiver gauge theories Vasily Pestun (IAS) in collaboration with Nikita Nekrasov (SCGP) Osaka, 2012 Outline 4d N=2 quiver theories & classification Instanton partition function [LMNS,

More information

Video 3.1 Vijay Kumar and Ani Hsieh

Video 3.1 Vijay Kumar and Ani Hsieh Video 3.1 Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Dynamics of Robot Arms Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Lagrange s Equation of Motion Lagrangian Kinetic Energy Potential

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Newton-Euler formulation) Dimitar Dimitrov Örebro University June 8, 2012 Main points covered Newton-Euler formulation forward dynamics inverse dynamics

More information

LOOP GROUPS AND CATEGORIFIED GEOMETRY. Notes for talk at Streetfest. (joint work with John Baez, Alissa Crans and Urs Schreiber)

LOOP GROUPS AND CATEGORIFIED GEOMETRY. Notes for talk at Streetfest. (joint work with John Baez, Alissa Crans and Urs Schreiber) LOOP GROUPS AND CATEGORIFIED GEOMETRY Notes for talk at Streetfest (joint work with John Baez, Alissa Crans and Urs Schreiber) Lie 2-groups A (strict) Lie 2-group is a small category G such that the set

More information

CUT LOCI AND DISTANCE FUNCTIONS

CUT LOCI AND DISTANCE FUNCTIONS Math. J. Okayama Univ. 49 (2007), 65 92 CUT LOCI AND DISTANCE FUNCTIONS Jin-ichi ITOH and Takashi SAKAI 1. Introduction Let (M, g) be a compact Riemannian manifold and d(p, q) the distance between p, q

More information