Ruijsenaars type deformation of hyperbolic BC n Sutherland m

Size: px
Start display at page:

Download "Ruijsenaars type deformation of hyperbolic BC n Sutherland m"

Transcription

1 Ruijsenaars type deformation of hyperbolic BC n Sutherland model March 2015

2 History 1. Olshanetsky and Perelomov discovered the hyperbolic BC n Sutherland model by a reduction/projection procedure, but it had only 2 independent parameters 2. Inozemtsev and Meshcheryakov proved integrability of the three parameter version 3. Feher-Pusztai obtained it with all three parameters by reduction: Start with M = T K and reduce by canonical left and right actions of subgroups K + K, with K = SU(n, n) and K + the compact subgroup satisfying gg = I : J r is a character, and J l is an appropriate analog of the so-called Kazhdan-Kostant-Sternberg element. n n n 2H = p 2 i + a sinh 2 (2q i ) + b sinh 2 (q i ) i=1 + c i,j i j i=1 i=1 [ sinh 2 (q i + q j ) + sinh 2 (q i q j ) ].

3 Relativistic versions of Calogero type models were introduced by Ruijsenaars. It was proposed in several papers of Gorsky and others that Poisson Lie group reduction should be the appropriate setting for these systems. Feher and Klimcik worked on this project and found PLG reduction interpretations for several known Ruijsenaars type systems. My result is a PLG reduction construction of the same kind. It imitates the result of Feher and Pusztai, essentially amounting to the replacement of T K by the Heisenberg double of K. The product of this procedure is a new integrable system. This is roughly speaking the whole story. The rest is a lot of tricky computations.

4 Reduction Suppose we have a group G acting on a differentiable manifold M. The conerstone of reduction is the decision to restrict from the ring C (M) of all smooth functions on M to the subring of invariant functions C (M) G. This means that we shall be interested only in invariant flows. That is, for v V ect(m), for any ϕ C (M) we require v(ϕ g)(x) = v(ϕ)(g x), where (ϕ g)(x) = ϕ(g x). (1) With ˆξ(ϕ)(x) := d ( ) dt ϕ e tξ x, t=0 then infinitesimally, (1) amounts to Lˆξv = 0 ξ g. Interpret v as a vector field on M/G, by restricting it to act only on C (M) G.

5 Poisson case : M, G Suppose now that M is a Poisson space, and that G is a Lie group acting on M in such a way that the Poisson structure is preserved. That is, F, K C (M) G {F, K} C (M) G. (2) In this case, H C (M) G is a sufficient condition for ensuring that the corresponding Hamiltonian vector field X H V ect(m) is invariant.

6 Poisson reduction I : F and F gen (ν) Suppose that F C (M) is a family of functions, all of whose Hamiltonian vector fields are tangent to the vector fields in ĝ, i.e., ϕ F, F C (M) G 0 = X ϕ (F ) = X F (ϕ). Restricting to G-invariant functions, all the functions in F may be viewed as constants : (i) Introduce F gen := {ϕ α α A}, for which F = F gen. (ii) For any set ν := {ν α R α A}, define (iii) Restrict to the submanifold N ν := ψ F gen(ν) F gen (ν) := {ϕ α ν α α A} ψ 1 (0) = {x M ϕ α (x) = ν α }. α A

7 Poisson reduction II : factor by G ν Suppose that G ν G is the maximal subgroup which acts on N ν. C (M) Nν C (M) G )G Nν = (C ν (M) Nν We arrive at a Poisson algebra consisting of the functions C (N ν ) G ν, or, in other words, to the reduced space N ν /G ν =: M red (ν) say. If F := {F i i = 1, 2,... } is a collection of invariant functions with the property {F i, F j } = 0, then their restrictions to N ν will still have zero Poisson bracket, and they define commuting functions on the reduced space M red (ν).

8 M : Heisenberg double, and K : our symmetry group ( ) In 0 Let I nn =. G denotes SL(2n, C). 0 I n K denotes SU(n, n) = {g SL(2n, C) g I nn g = I nn }. B denotes the set of all upper triangular matrices in SL(2n, C) with real, positive diagonal entries, and B n denotes the same set in GL(n, C). {( )} p 0 K K + =, p, q, U(n), K = K 0 q + K + acts on G by ordinary left and right multiplication. The diagonal subgroup in U(n) will be denoted by T. For any k K we( may write ) ( ) ( ) ρ 0 Γ Σ p 0 k =, with ρ, m, p, q SU(n), 0 m Σ Γ 0 q. Γ = diag(cosh( i )), Σ = diag(sinh( i ))

9 g = Lie(G) can be decomposed as the sum g = k + b of the two subalgebras k = Lie(K) and b = Lie(B), with respect to which the projections P k : g k and P b : g b are well-defined. Let, : g g R denote the non-degenerate, invariant inner product defined by X, Y = Im tr XY. Then R := P k P b defines a classical r-matrix on g, skew-symmetric with respect to,. For any function F C (G), the left- and right-derivatives, D l,r F : G g g, of F are defined by d dt F (e tx ge ty ) = D l F (g), X + D r F (g), Y X, Y g. t=0 The Poisson structure on G, viewed as the Heisenberg double based on the bi-algebra g = k + b, is defined by {F, H} = D l F, R(D l H) + D r F, R(D r H).

10 Let c 1, c 2 G and define the subspace M(c 1, c 2 ) G by M(c 1, c 2 ) = {bc 1 k b B, k K} {kc 2 b b B, k K}. Introduce coordinates (b L, k L, b R, k R ) on M(c 1, c 2 ) (not independent) by M(c 1, c 2 ) g = b L c 1 k R = k L c 2 b R. Proposition (Alekseev and Malkin CMP1994) M(c 1, c 2 ) is a symplectic leaf, and all symplectic leaves are of this form. The symplectic structure on M(c 1, c 2 ) can be written [Symp](g) = db L b 1 L, dk L k 1 L + b 1 R db R, k 1 R dk R.

11 Constraints Proposition: The functions Φ k C (G) defined by Φ k (g) = 1 2k tr ( gi n,n g I n,n ) k are in involution with one another. Constraints. Fixing σ B n and x, y R +, constraints are as follows: suppose that ( when written ) in the form xi ω G g = k L b R, b R = 0 x 1 I and that, when written ( in the form y g = b L k R, b L = 1 σ y 1 ) ν, 0 yi with det(σ) = 1, and with both ω and ν undetermined in gl(n). σ B n is the PLG analog of the KKS element.

12 Aside : F gen (ν) For ξ, η k +, define [ ( ) F ξ,η (g) =Im tr ξ gi nn g + y 2 gi nn g 0 0 gi 0 I nn g ( )] y 2 σσ [ + Im tr η g I nn g x 2 g I nn g ( )] +x 2 0 0, 0 I and then define the constraint submanifold by ( ) I 0 g I 0 0 nn g N x,y,σ := {g M(I, I) F ξ,η (g) = 0 ξ, η k + }.

13 - back to the constraints {( Factoring)} on the right by K + and on the left by the subgroup I 0 K 0 p +, let s assume that g is in the gauge ( ) ( ) ργ ρσ xi ω g = Σ Γ 0 x 1 I with ω gl(n, C), ρ SU(n) Compare the two versions of gi nn g and get constraint condition, for T U(n) T Σ 2 T = Σρ σσ ρσ

14 Explanation of where we re up to: Let us make the substitution Ω = Σω + x 1 Γ, so that ( xργ ρσ g = 1 (ΓΩ x 1 ) I). xσ Ω Now, from gi nn g = b L I nn b L we get ΩΩ = y 2 I + x 2 Σ 2 =: Λ 2 Ω = ΛT, T U(n) ν = ρσ 1 (y 2 Γ x 1 Ω ) and T Σ 2 T = Σρ σσ ρσ

15 The PLG KKS element is σ B n, satisfying σσ = α 2 I + ˆvˆv, for α R and ˆv C n s.t. det σ = 1, so the constraint reads T Σ 2 T = α 2 Σ 2 + vv T v := Σρ ˆv and can be supposed real with all entries in R 0. The constraint condition can be solved(!) After some work (quite a lot) [Symp] = ρ dρ, Σ 1 T Σd(Σ 1 T Σ) + T dt + dt T, Σ 1 dσ.

16 After using a few more tricks, we arrive at [Symp] = n i=1 dp i Σ 1 i dσ i where, for P := e ip T, the general solution of the constraint condition was T = P T and T is a (complicated!) explicit, real matrix function of Σ.

17 The simplest of the commuting Hamiltonians produces Φ 1 = 1 2 (x 2 + y 2 ) x 1 n i=1 Σ 2 i n (cos p i ) 1 + Σ 2 i x 2 + y 2 Σ 2 i i=1 k i Σ 2 k α2 Σ 2 i α 2 Σ 2 k Σ2 i α(σ 2 k Σ2 i )

18 The linearisation of the Hamiltonian - which means the degeneration of G to the cotangent bundle of T K, which is the same as the semi-direct product K k K b - yields the BC n Hamiltonian of Feher and Pusztai H 2 = 1 2 n n ˆp 2 1 i + c 1 sinh 2 + c 2 ˆq i=1 i [ + c 3 i=1 i,j i j n i=1 1 sinh 2 (2ˆq i ) 1 sinh 2 (ˆq i + ˆq j ) + 1 sinh 2 (ˆq i ˆq j ) ].

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS CRAIG JACKSON 1. Introduction Generally speaking, geometric quantization is a scheme for associating Hilbert spaces

More information

LECTURE 8: THE MOMENT MAP

LECTURE 8: THE MOMENT MAP LECTURE 8: THE MOMENT MAP Contents 1. Properties of the moment map 1 2. Existence and Uniqueness of the moment map 4 3. Examples/Exercises of moment maps 7 4. Moment map in gauge theory 9 1. Properties

More information

arxiv: v1 [nlin.si] 30 Aug 2013

arxiv: v1 [nlin.si] 30 Aug 2013 An application of the reduction method to Sutherland type many-body systems L. Fehér arxiv:1308.6708v1 [nlin.si] 30 Aug 2013 Department of Theoretical Physics, University of Szeged Tisza Lajos krt 84-86,

More information

These notes are incomplete they will be updated regularly.

These notes are incomplete they will be updated regularly. These notes are incomplete they will be updated regularly. LIE GROUPS, LIE ALGEBRAS, AND REPRESENTATIONS SPRING SEMESTER 2008 RICHARD A. WENTWORTH Contents 1. Lie groups and Lie algebras 2 1.1. Definition

More information

L. Fehér, KFKI RMKI Budapest and University of Szeged Spin Calogero models and dynamical r-matrices

L. Fehér, KFKI RMKI Budapest and University of Szeged Spin Calogero models and dynamical r-matrices L. Fehér, KFKI RMKI Budapest and University of Szeged Spin Calogero models and dynamical r-matrices Integrable systems of Calogero (Moser, Sutherland, Olshanetsky- Perelomov, Gibbons-Hermsen, Ruijsenaars-Schneider)

More information

arxiv: v1 [math-ph] 15 Sep 2009

arxiv: v1 [math-ph] 15 Sep 2009 On the superintegrability of the rational Ruijsenaars-Schneider model V. Ayadi a and L. Fehér a,b arxiv:0909.2753v1 [math-ph] 15 Sep 2009 a Department of Theoretical Physics, University of Szeged Tisza

More information

A little taste of symplectic geometry

A little taste of symplectic geometry A little taste of symplectic geometry Timothy Goldberg Thursday, October 4, 2007 Olivetti Club Talk Cornell University 1 2 What is symplectic geometry? Symplectic geometry is the study of the geometry

More information

1: Lie groups Matix groups, Lie algebras

1: Lie groups Matix groups, Lie algebras Lie Groups and Bundles 2014/15 BGSMath 1: Lie groups Matix groups, Lie algebras 1. Prove that O(n) is Lie group and that its tangent space at I O(n) is isomorphic to the space so(n) of skew-symmetric matrices

More information

Definition 9.1. The scheme µ 1 (O)/G is called the Hamiltonian reduction of M with respect to G along O. We will denote by R(M, G, O).

Definition 9.1. The scheme µ 1 (O)/G is called the Hamiltonian reduction of M with respect to G along O. We will denote by R(M, G, O). 9. Calogero-Moser spaces 9.1. Hamiltonian reduction along an orbit. Let M be an affine algebraic variety and G a reductive algebraic group. Suppose M is Poisson and the action of G preserves the Poisson

More information

12 Geometric quantization

12 Geometric quantization 12 Geometric quantization 12.1 Remarks on quantization and representation theory Definition 12.1 Let M be a symplectic manifold. A prequantum line bundle with connection on M is a line bundle L M equipped

More information

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI 1. Maximal Tori By a torus we mean a compact connected abelian Lie group, so a torus is a Lie group that is isomorphic to T n = R n /Z n. Definition 1.1.

More information

Symmetric Spaces Toolkit

Symmetric Spaces Toolkit Symmetric Spaces Toolkit SFB/TR12 Langeoog, Nov. 1st 7th 2007 H. Sebert, S. Mandt Contents 1 Lie Groups and Lie Algebras 2 1.1 Matrix Lie Groups........................ 2 1.2 Lie Group Homomorphisms...................

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

arxiv:math-ph/ v1 29 Dec 1999

arxiv:math-ph/ v1 29 Dec 1999 On the classical R-matrix of the degenerate Calogero-Moser models L. Fehér and B.G. Pusztai arxiv:math-ph/9912021v1 29 Dec 1999 Department of Theoretical Physics, József Attila University Tisza Lajos krt

More information

Hamiltonian flows, cotangent lifts, and momentum maps

Hamiltonian flows, cotangent lifts, and momentum maps Hamiltonian flows, cotangent lifts, and momentum maps Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Symplectic manifolds Let (M, ω) and (N, η) be symplectic

More information

LECTURE 3 MATH 261A. Office hours are now settled to be after class on Thursdays from 12 : 30 2 in Evans 815, or still by appointment.

LECTURE 3 MATH 261A. Office hours are now settled to be after class on Thursdays from 12 : 30 2 in Evans 815, or still by appointment. LECTURE 3 MATH 261A LECTURES BY: PROFESSOR DAVID NADLER PROFESSOR NOTES BY: JACKSON VAN DYKE Office hours are now settled to be after class on Thursdays from 12 : 30 2 in Evans 815, or still by appointment.

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

Matrix Lie groups. and their Lie algebras. Mahmood Alaghmandan. A project in fulfillment of the requirement for the Lie algebra course

Matrix Lie groups. and their Lie algebras. Mahmood Alaghmandan. A project in fulfillment of the requirement for the Lie algebra course Matrix Lie groups and their Lie algebras Mahmood Alaghmandan A project in fulfillment of the requirement for the Lie algebra course Department of Mathematics and Statistics University of Saskatchewan March

More information

Symplectic and Poisson Manifolds

Symplectic and Poisson Manifolds Symplectic and Poisson Manifolds Harry Smith In this survey we look at the basic definitions relating to symplectic manifolds and Poisson manifolds and consider different examples of these. We go on to

More information

Lie groupoids and Lie algebroids

Lie groupoids and Lie algebroids Lie groupoids and Lie algebroids Songhao Li University of Toronto, Canada University of Waterloo July 30, 2013 Li (Toronto) Groupoids and algebroids Waterloo 2013 1 / 22 Outline Lie groupoid Lie groupoid

More information

Representation theory & the Hubbard model

Representation theory & the Hubbard model Representation theory & the Hubbard model Simon Mayer March 17, 2015 Outline 1. The Hubbard model 2. Representation theory of the symmetric group S n 3. Representation theory of the special unitary group

More information

CLASSICAL GROUPS DAVID VOGAN

CLASSICAL GROUPS DAVID VOGAN CLASSICAL GROUPS DAVID VOGAN 1. Orthogonal groups These notes are about classical groups. That term is used in various ways by various people; I ll try to say a little about that as I go along. Basically

More information

GROUP THEORY PRIMER. New terms: so(2n), so(2n+1), symplectic algebra sp(2n)

GROUP THEORY PRIMER. New terms: so(2n), so(2n+1), symplectic algebra sp(2n) GROUP THEORY PRIMER New terms: so(2n), so(2n+1), symplectic algebra sp(2n) 1. Some examples of semi-simple Lie algebras In the previous chapter, we developed the idea of understanding semi-simple Lie algebras

More information

PREQUANTIZATION OF SYMPLECTIC SUPERMANIFOLDS

PREQUANTIZATION OF SYMPLECTIC SUPERMANIFOLDS Ninth International Conference on Geometry, Integrability and Quantization June 8 13, 2007, Varna, Bulgaria Ivaïlo M. Mladenov, Editor SOFTEX, Sofia 2008, pp 301 307 Geometry, Integrability and Quantization

More information

Topics in Representation Theory: Lie Groups, Lie Algebras and the Exponential Map

Topics in Representation Theory: Lie Groups, Lie Algebras and the Exponential Map Topics in Representation Theory: Lie Groups, Lie Algebras and the Exponential Map Most of the groups we will be considering this semester will be matrix groups, i.e. subgroups of G = Aut(V ), the group

More information

About Lie Groups. timothy e. goldberg. October 6, Lie Groups Beginning Details The Exponential Map and Useful Curves...

About Lie Groups. timothy e. goldberg. October 6, Lie Groups Beginning Details The Exponential Map and Useful Curves... About Lie Groups timothy e. goldberg October 6, 2005 Contents 1 Lie Groups 1 1.1 Beginning Details................................. 1 1.2 The Exponential Map and Useful Curves.................... 3 2 The

More information

Branching rules of unitary representations: Examples and applications to automorphic forms.

Branching rules of unitary representations: Examples and applications to automorphic forms. Branching rules of unitary representations: Examples and applications to automorphic forms. Basic Notions: Jerusalem, March 2010 Birgit Speh Cornell University 1 Let G be a group and V a vector space.

More information

Generalized complex geometry and topological sigma-models

Generalized complex geometry and topological sigma-models Generalized complex geometry and topological sigma-models Anton Kapustin California Institute of Technology Generalized complex geometry and topological sigma-models p. 1/3 Outline Review of N = 2 sigma-models

More information

POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS

POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Volumen 49, Número 1, 2008, Páginas 71 82 POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS H. MONTANI Abstract. We describe a hamiltonian approach to Poisson-Lie T-duality

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky Homogeneous para-kähler Einstein manifolds Dmitri V. Alekseevsky Hamburg,14-18 July 2008 1 The talk is based on a joint work with C.Medori and A.Tomassini (Parma) See ArXiv 0806.2272, where also a survey

More information

A LITTLE TASTE OF SYMPLECTIC GEOMETRY: THE SCHUR-HORN THEOREM CONTENTS

A LITTLE TASTE OF SYMPLECTIC GEOMETRY: THE SCHUR-HORN THEOREM CONTENTS A LITTLE TASTE OF SYMPLECTIC GEOMETRY: THE SCHUR-HORN THEOREM TIMOTHY E. GOLDBERG ABSTRACT. This is a handout for a talk given at Bard College on Tuesday, 1 May 2007 by the author. It gives careful versions

More information

An Invitation to Geometric Quantization

An Invitation to Geometric Quantization An Invitation to Geometric Quantization Alex Fok Department of Mathematics, Cornell University April 2012 What is quantization? Quantization is a process of associating a classical mechanical system to

More information

QUATERNIONS AND ROTATIONS

QUATERNIONS AND ROTATIONS QUATERNIONS AND ROTATIONS SVANTE JANSON 1. Introduction The purpose of this note is to show some well-known relations between quaternions and the Lie groups SO(3) and SO(4) (rotations in R 3 and R 4 )

More information

Poisson modules and generalized geometry

Poisson modules and generalized geometry arxiv:0905.3227v1 [math.dg] 20 May 2009 Poisson modules and generalized geometry Nigel Hitchin May 20, 2009 Dedicated to Shing-Tung Yau on the occasion of his 60th birthday 1 Introduction Generalized complex

More information

HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY

HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY TIMOTHY E. GOLDBERG These are notes for a talk given in the Lie Groups Seminar at Cornell University on Friday, September 25, 2009. In retrospect, perhaps

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

A MARSDEN WEINSTEIN REDUCTION THEOREM FOR PRESYMPLECTIC MANIFOLDS

A MARSDEN WEINSTEIN REDUCTION THEOREM FOR PRESYMPLECTIC MANIFOLDS A MARSDEN WEINSTEIN REDUCTION THEOREM FOR PRESYMPLECTIC MANIFOLDS FRANCESCO BOTTACIN Abstract. In this paper we prove an analogue of the Marsden Weinstein reduction theorem for presymplectic actions of

More information

The Toda Lattice. Chris Elliott. April 9 th, 2014

The Toda Lattice. Chris Elliott. April 9 th, 2014 The Toda Lattice Chris Elliott April 9 th, 2014 In this talk I ll introduce classical integrable systems, and explain how they can arise from the data of solutions to the classical Yang-Baxter equation.

More information

Lecture 4 Super Lie groups

Lecture 4 Super Lie groups Lecture 4 Super Lie groups In this lecture we want to take a closer look to supermanifolds with a group structure: Lie supergroups or super Lie groups. As in the ordinary setting, a super Lie group is

More information

Exercises Lie groups

Exercises Lie groups Exercises Lie groups E.P. van den Ban Spring 2009 Exercise 1. Let G be a group, equipped with the structure of a C -manifold. Let µ : G G G, (x, y) xy be the multiplication map. We assume that µ is smooth,

More information

Lie Groups, Lie Algebras and the Exponential Map

Lie Groups, Lie Algebras and the Exponential Map Chapter 7 Lie Groups, Lie Algebras and the Exponential Map 7.1 Lie Groups and Lie Algebras In Gallier [?], Chapter 14, we defined the notion of a Lie group as a certain type of manifold embedded in R N,

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

Vector fields in the presence of a contact structure

Vector fields in the presence of a contact structure Vector fields in the presence of a contact structure Valentin Ovsienko To cite this version: Valentin Ovsienko. Vector fields in the presence of a contact structure. Preprint ICJ. 10 pages. 2005.

More information

Poisson Manifolds Bihamiltonian Manifolds Bihamiltonian systems as Integrable systems Bihamiltonian structure as tool to find solutions

Poisson Manifolds Bihamiltonian Manifolds Bihamiltonian systems as Integrable systems Bihamiltonian structure as tool to find solutions The Bi hamiltonian Approach to Integrable Systems Paolo Casati Szeged 27 November 2014 1 Poisson Manifolds 2 Bihamiltonian Manifolds 3 Bihamiltonian systems as Integrable systems 4 Bihamiltonian structure

More information

Symplectic geometry of deformation spaces

Symplectic geometry of deformation spaces July 15, 2010 Outline What is a symplectic structure? What is a symplectic structure? Denition A symplectic structure on a (smooth) manifold M is a closed nondegenerate 2-form ω. Examples Darboux coordinates

More information

Symplectic geometry and Calogero-Moser. system,

Symplectic geometry and Calogero-Moser. system, Symplectic geometry and Calogero-Moser systems Lukas Rødland Supervisor: Luigi Tizzano Subject reader: Maxime Zabzine Bachelor of Science Degree in Physics Uppsala University June 25, 2015 Abstract We

More information

Topics in Representation Theory: Cultural Background

Topics in Representation Theory: Cultural Background Topics in Representation Theory: Cultural Background This semester we will be covering various topics in representation theory, see the separate syllabus for a detailed list of topics, including some that

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

LECTURE 1: LINEAR SYMPLECTIC GEOMETRY

LECTURE 1: LINEAR SYMPLECTIC GEOMETRY LECTURE 1: LINEAR SYMPLECTIC GEOMETRY Contents 1. Linear symplectic structure 3 2. Distinguished subspaces 5 3. Linear complex structure 7 4. The symplectic group 10 *********************************************************************************

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

Many of the exercises are taken from the books referred at the end of the document.

Many of the exercises are taken from the books referred at the end of the document. Exercises in Geometry I University of Bonn, Winter semester 2014/15 Prof. Christian Blohmann Assistant: Néstor León Delgado The collection of exercises here presented corresponds to the exercises for the

More information

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009 THE GEOMETRY OF B-FIELDS Nigel Hitchin (Oxford) Odense November 26th 2009 THE B-FIELD IN PHYSICS B = i,j B ij dx i dx j flux: db = H a closed three-form Born-Infeld action: det(g ij + B ij ) complexified

More information

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f)) 1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical

More information

Deformations of coisotropic submanifolds in symplectic geometry

Deformations of coisotropic submanifolds in symplectic geometry Deformations of coisotropic submanifolds in symplectic geometry Marco Zambon IAP annual meeting 2015 Symplectic manifolds Definition Let M be a manifold. A symplectic form is a two-form ω Ω 2 (M) which

More information

Higgs Bundles and Character Varieties

Higgs Bundles and Character Varieties Higgs Bundles and Character Varieties David Baraglia The University of Adelaide Adelaide, Australia 29 May 2014 GEAR Junior Retreat, University of Michigan David Baraglia (ADL) Higgs Bundles and Character

More information

Contact and Symplectic Geometry of Monge-Ampère Equations: Introduction and Examples

Contact and Symplectic Geometry of Monge-Ampère Equations: Introduction and Examples Contact and Symplectic Geometry of Monge-Ampère Equations: Introduction and Examples Vladimir Rubtsov, ITEP,Moscow and LAREMA, Université d Angers Workshop "Geometry and Fluids" Clay Mathematical Institute,

More information

Geometric Quantization

Geometric Quantization math-ph/0208008 Geometric Quantization arxiv:math-ph/0208008v3 4 Sep 2002 William Gordon Ritter Jefferson Physical Laboratory, Harvard University Cambridge, MA 02138, USA February 3, 2008 Abstract We review

More information

CHARACTERISTIC CLASSES

CHARACTERISTIC CLASSES 1 CHARACTERISTIC CLASSES Andrew Ranicki Index theory seminar 14th February, 2011 2 The Index Theorem identifies Introduction analytic index = topological index for a differential operator on a compact

More information

AN INTRODUCTION TO THE MASLOV INDEX IN SYMPLECTIC TOPOLOGY

AN INTRODUCTION TO THE MASLOV INDEX IN SYMPLECTIC TOPOLOGY 1 AN INTRODUCTION TO THE MASLOV INDEX IN SYMPLECTIC TOPOLOGY Andrew Ranicki and Daniele Sepe (Edinburgh) http://www.maths.ed.ac.uk/ aar Maslov index seminar, 9 November 2009 The 1-dimensional Lagrangians

More information

Chern forms and the Fredholm determinant

Chern forms and the Fredholm determinant CHAPTER 10 Chern forms and the Fredholm determinant Lecture 10: 20 October, 2005 I showed in the lecture before last that the topological group G = G (Y ;E) for any compact manifold of positive dimension,

More information

Notation. For any Lie group G, we set G 0 to be the connected component of the identity.

Notation. For any Lie group G, we set G 0 to be the connected component of the identity. Notation. For any Lie group G, we set G 0 to be the connected component of the identity. Problem 1 Prove that GL(n, R) is homotopic to O(n, R). (Hint: Gram-Schmidt Orthogonalization.) Here is a sequence

More information

8. COMPACT LIE GROUPS AND REPRESENTATIONS

8. COMPACT LIE GROUPS AND REPRESENTATIONS 8. COMPACT LIE GROUPS AND REPRESENTATIONS. Abelian Lie groups.. Theorem. Assume G is a Lie group and g its Lie algebra. Then G 0 is abelian iff g is abelian... Proof.. Let 0 U g and e V G small (symmetric)

More information

Problems in Linear Algebra and Representation Theory

Problems in Linear Algebra and Representation Theory Problems in Linear Algebra and Representation Theory (Most of these were provided by Victor Ginzburg) The problems appearing below have varying level of difficulty. They are not listed in any specific

More information

1 Smooth manifolds and Lie groups

1 Smooth manifolds and Lie groups An undergraduate approach to Lie theory Slide 1 Andrew Baker, Glasgow Glasgow, 12/11/1999 1 Smooth manifolds and Lie groups A continuous g : V 1 V 2 with V k R m k open is called smooth if it is infinitely

More information

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Integrable Systems: the r-matrix Approach. Michael Semenov-Tian-Shansky.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Integrable Systems: the r-matrix Approach. Michael Semenov-Tian-Shansky. RIMS-1650 Integrable Systems: the r-matrix Approach By Michael Semenov-Tian-Shansky December 2008 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan Integrable Systems: the r-matrix

More information

Basic Concepts of Group Theory

Basic Concepts of Group Theory Chapter 1 Basic Concepts of Group Theory The theory of groups and vector spaces has many important applications in a number of branches of modern theoretical physics. These include the formal theory of

More information

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS DAN CIUBOTARU 1. Classical motivation: spherical functions 1.1. Spherical harmonics. Let S n 1 R n be the (n 1)-dimensional sphere, C (S n 1 ) the

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 013 Solutions Yichen Shi Easter 014 1. (a) Define the groups SU() and SO(3), and find their Lie algebras. Show that these Lie algebras, including their bracket structure,

More information

Notes on Lie Algebras

Notes on Lie Algebras NEW MEXICO TECH (October 23, 2010) DRAFT Notes on Lie Algebras Ivan G. Avramidi Department of Mathematics New Mexico Institute of Mining and Technology Socorro, NM 87801, USA E-mail: iavramid@nmt.edu 1

More information

Hamiltonian Systems of Negative Curvature are Hyperbolic

Hamiltonian Systems of Negative Curvature are Hyperbolic Hamiltonian Systems of Negative Curvature are Hyperbolic A. A. Agrachev N. N. Chtcherbakova Abstract The curvature and the reduced curvature are basic differential invariants of the pair: Hamiltonian system,

More information

(g 1, g 2 ) g 1 g 2. i : G G

(g 1, g 2 ) g 1 g 2. i : G G 1 Lie Groups Definition (4.1 1 A Lie Group G is a set that is a group a differential manifold with the property that and are smooth. µ : G G G (g 1, g 2 g 1 g 2 i : G G g g 1 Definition (4.1 2 A Lie Subgroup

More information

SYMPLECTIC GEOMETRY: LECTURE 5

SYMPLECTIC GEOMETRY: LECTURE 5 SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M, ω) be a connected compact symplectic manifold, T a torus, T M M a Hamiltonian action of T on M, and Φ: M t the assoaciated moment map. Theorem 0.1 (The

More information

Lecture I: Constrained Hamiltonian systems

Lecture I: Constrained Hamiltonian systems Lecture I: Constrained Hamiltonian systems (Courses in canonical gravity) Yaser Tavakoli December 15, 2014 1 Introduction In canonical formulation of general relativity, geometry of space-time is given

More information

Gelfand Pairs and Invariant Distributions

Gelfand Pairs and Invariant Distributions Gelfand Pairs and Invariant Distributions A. Aizenbud Massachusetts Institute of Technology http://math.mit.edu/~aizenr Examples Example (Fourier Series) Examples Example (Fourier Series) L 2 (S 1 ) =

More information

MANIN PAIRS AND MOMENT MAPS

MANIN PAIRS AND MOMENT MAPS MANIN PAIRS AND MOMENT MAPS ANTON ALEKSEEV AND YVETTE KOSMANN-SCHWARZBACH Abstract. A Lie group G in a group pair (D, G), integrating the Lie algebra g in a Manin pair (d, g), has a quasi-poisson structure.

More information

Non-associative Deformations of Geometry in Double Field Theory

Non-associative Deformations of Geometry in Double Field Theory Non-associative Deformations of Geometry in Double Field Theory Michael Fuchs Workshop Frontiers in String Phenomenology based on JHEP 04(2014)141 or arxiv:1312.0719 by R. Blumenhagen, MF, F. Haßler, D.

More information

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations Twisted Poisson manifolds and their almost symplectically complete isotropic realizations Chi-Kwong Fok National Center for Theoretical Sciences Math Division National Tsing Hua University (Joint work

More information

Gauge Fixing and Constrained Dynamics in Numerical Relativity

Gauge Fixing and Constrained Dynamics in Numerical Relativity Gauge Fixing and Constrained Dynamics in Numerical Relativity Jon Allen The Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation is reviewed. Gauge freedom is discussed and

More information

SINGULAR POISSON KÄHLER GEOMETRY OF CERTAIN ADJOINT QUOTIENTS

SINGULAR POISSON KÄHLER GEOMETRY OF CERTAIN ADJOINT QUOTIENTS GEOMETRY AND TOPOLOGY OF MANIFOLDS BANACH CENTER PUBLICATIONS, VOLUME 76 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007 SINGULAR POISSON KÄHLER GEOMETRY OF CERTAIN ADJOINT QUOTIENTS

More information

Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group

Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 049, 28 pages Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group David IGLESIAS, Juan Carlos

More information

Quantising noncompact Spin c -manifolds

Quantising noncompact Spin c -manifolds Quantising noncompact Spin c -manifolds Peter Hochs University of Adelaide Workshop on Positive Curvature and Index Theory National University of Singapore, 20 November 2014 Peter Hochs (UoA) Noncompact

More information

Lie Groups. Andreas Čap

Lie Groups. Andreas Čap Lie Groups Fall Term 2018/19 Andreas Čap Institut für Mathematik, Universität Wien, Oskar Morgenstern Platz 1, A 1090 Wien E-mail address: Andreas.Cap@univie.ac.at Preface Contents Chapter 1. Lie groups

More information

Action-angle coordinates and geometric quantization. Eva Miranda. Barcelona (EPSEB,UPC) STS Integrable Systems

Action-angle coordinates and geometric quantization. Eva Miranda. Barcelona (EPSEB,UPC) STS Integrable Systems Action-angle coordinates and geometric quantization Eva Miranda Barcelona (EPSEB,UPC) STS Integrable Systems Eva Miranda (UPC) 6ecm July 3, 2012 1 / 30 Outline 1 Quantization: The general picture 2 Bohr-Sommerfeld

More information

Generalized complex geometry

Generalized complex geometry Generalized complex geometry Marco Gualtieri Abstract Generalized complex geometry encompasses complex and symplectic geometry as its extremal special cases. We explore the basic properties of this geometry,

More information

1 v >, which will be G-invariant by construction.

1 v >, which will be G-invariant by construction. 1. Riemannian symmetric spaces Definition 1.1. A (globally, Riemannian) symmetric space is a Riemannian manifold (X, g) such that for all x X, there exists an isometry s x Iso(X, g) such that s x (x) =

More information

BRST and Dirac Cohomology

BRST and Dirac Cohomology BRST and Dirac Cohomology Peter Woit Columbia University Dartmouth Math Dept., October 23, 2008 Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 1 / 23 Outline 1 Introduction 2 Representation

More information

NAMBU-LIE GROUP ACTIONS. 1. Introduction

NAMBU-LIE GROUP ACTIONS. 1. Introduction Acta Math. Univ. Comenianae Vol. LXX, 2(2001), pp. 251 263 251 NAMBU-LIE GROUP ACTIONS N. CICCOLI Abstract. The purpose of this work is to describe the action of Nambu-Lie groups on Nambu spaces and to

More information

Deformations of Coisotropic Submanifolds of Jacobi Manifolds

Deformations of Coisotropic Submanifolds of Jacobi Manifolds Deformations of Coisotropic Submanifolds of Jacobi Manifolds Luca Vitagliano University of Salerno, Italy (in collaboration with: H. V. Lê, Y.-G. Oh, and A. Tortorella) GAMMP, Dortmund, March 16 19, 2015

More information

LIE ALGEBROIDS AND POISSON GEOMETRY, OLIVETTI SEMINAR NOTES

LIE ALGEBROIDS AND POISSON GEOMETRY, OLIVETTI SEMINAR NOTES LIE ALGEBROIDS AND POISSON GEOMETRY, OLIVETTI SEMINAR NOTES BENJAMIN HOFFMAN 1. Outline Lie algebroids are the infinitesimal counterpart of Lie groupoids, which generalize how we can talk about symmetries

More information

BRST 2006 (jmf) 7. g X (M) X ξ X. X η = [ξ X,η]. (X θ)(η) := X θ(η) θ(x η) = ξ X θ(η) θ([ξ X,η]).

BRST 2006 (jmf) 7. g X (M) X ξ X. X η = [ξ X,η]. (X θ)(η) := X θ(η) θ(x η) = ξ X θ(η) θ([ξ X,η]). BRST 2006 (jmf) 7 Lecture 2: Symplectic reduction In this lecture we discuss group actions on symplectic manifolds and symplectic reduction. We start with some generalities about group actions on manifolds.

More information

Integrable Hamiltonian systems generated by antisymmetric matrices

Integrable Hamiltonian systems generated by antisymmetric matrices Journal of Physics: Conference Series OPEN ACCESS Integrable Hamiltonian systems generated by antisymmetric matrices To cite this article: Alina Dobrogowska 013 J. Phys.: Conf. Ser. 474 01015 View the

More information

EXPLICIT QUANTIZATION OF THE KEPLER MANIFOLD

EXPLICIT QUANTIZATION OF THE KEPLER MANIFOLD proceedings of the american mathematical Volume 77, Number 1, October 1979 society EXPLICIT QUANTIZATION OF THE KEPLER MANIFOLD ROBERT J. BLATTNER1 AND JOSEPH A. WOLF2 Abstract. Any representation ir of

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

Geometry of the momentum map

Geometry of the momentum map Geometry of the momentum map Gert Heckman Peter Hochs February 18, 2005 Contents 1 The momentum map 1 1.1 Definition of the momentum map.................. 2 1.2 Examples of Hamiltonian actions..................

More information

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM Proceedings of the Edinburgh Mathematical Society Submitted Paper Paper 14 June 2011 LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM MICHAEL C. CRABB AND PEDRO L. Q. PERGHER Institute of Mathematics,

More information

Physics 129B, Winter 2010 Problem Set 4 Solution

Physics 129B, Winter 2010 Problem Set 4 Solution Physics 9B, Winter Problem Set 4 Solution H-J Chung March 8, Problem a Show that the SUN Lie algebra has an SUN subalgebra b The SUN Lie group consists of N N unitary matrices with unit determinant Thus,

More information

IGA Lecture I: Introduction to G-valued moment maps

IGA Lecture I: Introduction to G-valued moment maps IGA Lecture I: Introduction to G-valued moment maps Adelaide, September 5, 2011 Review: Hamiltonian G-spaces Let G a Lie group, g = Lie(G), g with co-adjoint G-action denoted Ad. Definition A Hamiltonian

More information

Czech Technical University in Prague. Symmetries of finite quantum kinematics and quantum computation

Czech Technical University in Prague. Symmetries of finite quantum kinematics and quantum computation Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering Břehová 7, CZ - 115 19 Prague, Czech Republic J. Tolar Symmetries of finite quantum kinematics and quantum computation

More information