Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties. V. Simoncini

Size: px
Start display at page:

Download "Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties. V. Simoncini"

Transcription

1 Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties V. Simoncini Dipartimento di Matematica, Università di ologna 1

2 Outline of the -hour Presentation Schematic presentation of certain algebraic preconditioners (Today) Iterative solvers. Some (hopefully) helpful considerations... (Tomorrow) Spectral analysis of nonsymmetric preconditioners (Last Talk)

3 A The problem T u = f C v g Computational Fluid Dynamics (Elman, Silvester, Wathen 00) Elasticity problems Mixed (FE) formulations of II and IV order elliptic PDEs Linearly Constrained Programs Linear Regression in Statistics Image restoration... Survey: enzi, Golub and Liesen, Acta Num 00

4 A The problem. Simplifications T C u = f v g To make things simple: A symmetric positive (semi)definite T tall, possibly rank deficient C symmetric positive (semi)definite Warning: we shall use g = 0 in some cases 4

5 Spectral properties M = A T O 0 < λ n λ 1 eigs of A 0 < σ m σ 1 sing. vals of σ(m) subset of (Rusten & Winther 199)» q 1 (λ n λ n + 4σ1 ), 1 q (λ 1 λ 1 + 4σ m)» λ n, 1 (λ 1 + qλ 1 + 4σ1 ) xxxx

6 Spectral properties M = A T O 0 < λ n λ 1 eigs of A 0 < σ m σ 1 sing. vals of σ(m) subset of (Rusten & Winther 199)» q 1 (λ n λ n + 4σ 1 ), 1 (λ 1 qλ 1 + 4σ m ) A nonsingular» λ n, 1 (λ 1 + qλ 1 + 4σ1 ) 6

7 Spectral properties M = A T O 0 = λ n λ 1 eigs of A 0 < σ m σ 1 sing. vals of σ(m) subset of» q 1 (λ n λ n + 4σ1 ), 1 q (λ 1 λ 1 + 4σ m)» α 0, 1 (λ 1 + qλ 1 + 4σ1 ) A singular but ut Au u T u > α 0 > 0, u Ker() 7

8 Spectral properties M = A T O 0 < λ n λ 1 eigs of A 0 < σ m σ 1 sing. vals of σ(m) subset of (Rusten & Winther 199)» q 1 (λ n λ n + 4σ1 ), 1 q (λ 1 λ 1 + 4σ m) full rank» λ n, 1 (λ 1 + qλ 1 + 4σ1 ) 8

9 Spectral properties M = A T C 0 < λ n λ 1 eigs of A 0 = σ m σ 1 sing. vals of σ(m) subset of» q» 1 ( γ 1 + λ n (γ 1 + λ n ) + 4σ1 ),1 (λ 1 qλ 1 + 4θ) λ n, 1 (λ 1 + qλ 1 + 4σ1 ) rank deficient, but θ = λ min ( T + C) full rank γ 1 = λ max (C) 9

10 Spectral properties M = A T O 0 < λ n λ 1 eigs of A 0 < σ m σ 1 sing. vals of σ(m) subset of (Rusten & Winther 199)» q 1 (λ n λ n + 4σ1 ), 1 q (λ 1 λ 1 + 4σ m) Good (= slim) spectrum: λ 1 λ n, σ 1 σ m» λ n, 1 (λ 1 + qλ 1 + 4σ1 ) e.g. M = I U UT O, UU T = I 10

11 Spectral properties M = A T O 0 < λ n λ 1 eigs of A 0 < σ m σ 1 sing. vals of σ(m) subset of (Rusten & Winther 199)» q 1 (λ n λ n + 4σ1 ), 1 q (λ 1 λ 1 + 4σ m) Good (= slim) spectrum: λ 1 λ n, σ 1 σ m» λ n, 1 (λ 1 + qλ 1 + 4σ1 ) e.g. M = I U UT O, UU T = I 11

12 Find P such that General preconditioning strategy MP 1 û = b û = Pu is easier (faster) to solve than Mu = b A look at efficiency: - Dealing with P should be cheap - Storage requirements for P should be low Possibly zero storage - Properties (algebraic/functional) should be exploited Mesh/parameter independence Structure preserving preconditioners 1

13 lock diagonal Preconditioner A nonsing., C = 0: P 1 0 MP 1 0 = 4 P 0 = A 0 0 A 1 T I A 1 T (A 1 T ) 1 (A 1 T ) 1 A 1 0 MINRES converges in at most iterations. σ(p 1 0 MP 1 0 ) = {1, 1/ ± /} A more practical choice: P = Ã 0 spd. Ã A S A 1 T 0 S eigs in [ a, b] [c, d], a, b, c, d > 0 Still an Indefinite Problem 1

14 lock diagonal Preconditioner A nonsing., C = 0: P 1 0 MP 1 0 = 4 P 0 = A 0 0 A 1 T I A 1 T (A 1 T ) 1 (A 1 T ) 1 A 1 0 MINRES converges in at most iterations. σ(p 1 0 MP 1 0 ) = {1, 1/ ± /} A more practical choice: P = Ã 0 spd. Ã A S A 1 T 0 S eigs in [ a, b] [c, d], a, b, c, d > 0 Still an Indefinite Problem 14

15 Giving up symmetry... Change the preconditioner: Mimic the LU factors M = 4 I O A 1 I 4 A T O A 1 T + C P Change the preconditioner: Mimic the Structure M = A T P M C 4 A T O A 1 T + C Change the matrix: Eliminate indef. M = A T C Change the matrix: Regularize (C = 0) M M γ = 4 A T γw or M γ = 4 A + 1 γ T W 1 T O 1

16 Giving up symmetry... Change the preconditioner: Mimic the LU factors M = 4 I O A 1 I 4 A T O A 1 T + C P 4 A T O A 1 T + C Change the preconditioner: Mimic the Structure M = A T M P C Change the matrix: Eliminate indef. M = A T C Change the matrix: Regularize (C = 0) M M γ = 4 A T γw or M γ = 4 A + 1 γ T W 1 T O 16

17 Giving up symmetry... Change the preconditioner: Mimic the LU factors M = 4 I O A 1 I 4 A T O A 1 T + C P 4 A T O A 1 T + C Change the preconditioner: Mimic the Structure M = A T P M C Change the matrix: Eliminate indef. M = A T C Change the matrix: Regularize (C = 0) M M γ = 4 A T γw or M γ = 4 A + 1 γ T W 1 T O 17

18 Giving up symmetry... Change the preconditioner: Mimic the LU factors M = 4 I O A 1 I 4 A T O A 1 T + C P 4 A T O A 1 T + C Change the preconditioner: Mimic the Structure M = A T P M C Change the matrix: Eliminate indef. M = A T C Change the matrix: Regularize (C = 0) M M γ = 4 A T γw or M γ = 4 A + 1 γ T W 1 T O 18

19 Nonstandard inner product:... ut recovering symmetry in disguise Let W be any of MP 1, M For σ(w) in R +, find sym matrix H such that (that is, W is H-symmetric) WH = HW T If H is spd then W is diagonalizable Use PCG on W with H-inner product 19

20 Nonstandard inner product:... ut recovering symmetry in disguise Let W be any of MP 1, M For σ(w) in R +, find sym matrix H such that (that is, W is H-symmetric) WH = HW T If H is spd then W is diagonalizable Use PCG on W with H-inner product 0

21 Triangular preconditioner A spd, P = à T 0 C à A, C A 1 T + C Ideal case: A e = A, C e = A 1 T + C MP 1 = 4 I 0 A 1 I Recovering symmetry? If C = C nonsing., then σ(mp 1 ) in R + If à < A then σ(mp 1 ) in R + with λ [χ 1, χ ] 1, χ j = χ j (( T à 1 + C) C 1, à 1 A) 1

22 Triangular preconditioner A spd, P = à T 0 C à A, C A 1 T + C Ideal case: A e = A, C e = A 1 T + C MP 1 = 4 I 0 A 1 I Recovering symmetry? If C = C nonsing., then σ(mp 1 ) in R + If à < A then σ(mp 1 ) in R + with λ [χ 1, χ ] 1, χ j = χ j (( T à 1 + C) C 1, à 1 A)

23 Constraint (Indefinite) Preconditioner P = Ã T C MP 1 = AÃ 1 (I Π) + Π O I with Π = ( e A 1 T + C) 1 e A 1 If C nonsing all eigs real and positive If T C = 0 and T + C > 0 all eigs real and positive Special case: C = 0 at most m unit eigs with Jordan blocks

24 Constraint (Indefinite) Preconditioner. Generalizations P = à T C Primal-based: C C nonsing, à A + T C 1 If A + T C 1 > à and C > C all eigs real and positive Dual-based: (C = O) à A, C = S à 1 T for some S If à > A and C < 0 all eigs real and positive MP 1 is H-symmetric with H = blkdiag(ã A, à 1 T S) 4

25 Constraint (Indefinite) Preconditioner. Generalizations P = à T C Primal-based: C C nonsing, à A + T C 1 If A + T C 1 > à and C > C all eigs real and positive Dual-based: (C = O) à A, C = S à 1 T for some S If à > A and C < 0 all eigs real and positive MP 1 is H-symmetric with H = blkdiag(ã A, à 1 T S)

26 The minus-signed Problem M = A T C full rank M positive stable eigs in C + Important facts M has always at least n m real eigs If < λ min (A) λ max (C) all eigs real and positive for C = 0, condition simplifies: λ min (A) > 4λ max ( T A 1 ) If full rank and λ min (A) > λ max (C) apon scaling all eigs real and positive Hermitian-Skew-Hermitian preconditioners lock diagonal preconditioner + nonsym solver 6

27 The minus-signed Problem M = A T C full rank M positive stable eigs in C + Important facts M has always at least n m real eigs If < λ min (A) λ max (C) all eigs real and positive for C = 0, condition simplifies: λ min (A) > 4λ max ( T A 1 ) If full rank and λ min (A) > λ max (C) apon scaling all eigs real and positive Hermitian-Skew-Hermitian preconditioners lock diagonal preconditioner + nonsym solver 7

28 The minus-signed Problem M = A T C full rank M positive stable eigs in C + Important facts M has always at least n m real eigs If < λ min (A) λ max (C) all eigs real and positive for C = 0, condition simplifies: λ min (A) > 4λ max ( T A 1 ) If full rank and λ min (A) > λ max (C) apon scaling all eigs real and positive Hermitian-Skew-Hermitian preconditioners lock diagonal preconditioner + nonsym solver 8

29 Regularized Problem Augmented Lagrangian approach: M γ = A + 1 γ T W 1 T O Particularly interesting for A indefinite or singular Any of the above preconditioners may be used. Somehow related preconditioner for M = A O P = A + T W 1 k T O W T : 9

30 Regularized Problem Augmented Lagrangian approach: M γ = A + 1 γ T W 1 T O Particularly interesting for A indefinite or singular Any of the above preconditioners may be used. Somehow related preconditioner for M = P = A + T W 1 O A T W T O : 0

31 Questions (to be answered) Which formulation/preconditioner for which iterative solver? Is the theoretical spectral information useful in practice? Are the imposed constraints needed? 1

32 Questions (to be answered) Which formulation/preconditioner for which iterative solver? Is the theoretical spectral information useful in practice? Are the imposed constraints needed?

33 Questions (to be answered) Which formulation/preconditioner for which iterative solver? Is the theoretical spectral information useful in practice? Are the imposed constraints needed?

Structured Preconditioners for Saddle Point Problems

Structured Preconditioners for Saddle Point Problems Structured Preconditioners for Saddle Point Problems V. Simoncini Dipartimento di Matematica Università di Bologna valeria@dm.unibo.it. p.1/16 Collaborators on this project Mario Arioli, RAL, UK Michele

More information

Structured Preconditioners for Saddle Point Problems

Structured Preconditioners for Saddle Point Problems Structured Preconditioners for Saddle Point Problems V. Simoncini Dipartimento di Matematica Università di Bologna valeria@dm.unibo.it p. 1 Collaborators on this project Mario Arioli, RAL, UK Michele Benzi,

More information

Iterative solvers for saddle point algebraic linear systems: tools of the trade. V. Simoncini

Iterative solvers for saddle point algebraic linear systems: tools of the trade. V. Simoncini Iterative solvers for saddle point algebraic linear systems: tools of the trade V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The problem

More information

Indefinite Preconditioners for PDE-constrained optimization problems. V. Simoncini

Indefinite Preconditioners for PDE-constrained optimization problems. V. Simoncini Indefinite Preconditioners for PDE-constrained optimization problems V. Simoncini Dipartimento di Matematica, Università di Bologna, Italy valeria.simoncini@unibo.it Partly joint work with Debora Sesana,

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Solvers for the Navier Stokes Equations in Rotation Form Efficient Solvers for the Navier Stokes Equations in Rotation Form Computer Research Institute Seminar Purdue University March 4, 2005 Michele Benzi Emory University Atlanta, GA Thanks to: NSF (MPS/Computational

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

On the accuracy of saddle point solvers

On the accuracy of saddle point solvers On the accuracy of saddle point solvers Miro Rozložník joint results with Valeria Simoncini and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic Seminar at

More information

Numerical behavior of inexact linear solvers

Numerical behavior of inexact linear solvers Numerical behavior of inexact linear solvers Miro Rozložník joint results with Zhong-zhi Bai and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic The fourth

More information

Linear algebra issues in Interior Point methods for bound-constrained least-squares problems

Linear algebra issues in Interior Point methods for bound-constrained least-squares problems Linear algebra issues in Interior Point methods for bound-constrained least-squares problems Stefania Bellavia Dipartimento di Energetica S. Stecco Università degli Studi di Firenze Joint work with Jacek

More information

The antitriangular factorisation of saddle point matrices

The antitriangular factorisation of saddle point matrices The antitriangular factorisation of saddle point matrices J. Pestana and A. J. Wathen August 29, 2013 Abstract Mastronardi and Van Dooren [this journal, 34 (2013) pp. 173 196] recently introduced the block

More information

Key words. inf-sup constant, iterative solvers, preconditioning, saddle point problems

Key words. inf-sup constant, iterative solvers, preconditioning, saddle point problems NATURAL PRECONDITIONING AND ITERATIVE METHODS FOR SADDLE POINT SYSTEMS JENNIFER PESTANA AND ANDREW J. WATHEN Abstract. The solution of quadratic or locally quadratic extremum problems subject to linear(ized)

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices Journal of Computational Applied Mathematics 6 (009) 136 154 Contents lists available at ScienceDirect Journal of Computational Applied Mathematics journal homepage: wwwelseviercom/locate/cam Optimization

More information

SEMI-CONVERGENCE ANALYSIS OF THE INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS

SEMI-CONVERGENCE ANALYSIS OF THE INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 53, No. 1, 2012, 61 70 SEMI-CONVERGENCE ANALYSIS OF THE INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS JIAN-LEI LI AND TING-ZHU HUANG Abstract. Recently,

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 6, No., pp. 377 389 c 004 Society for Industrial and Applied Mathematics SPECTRAL PROPERTIES OF THE HERMITIAN AND SKEW-HERMITIAN SPLITTING PRECONDITIONER FOR SADDLE POINT

More information

7.4 The Saddle Point Stokes Problem

7.4 The Saddle Point Stokes Problem 346 CHAPTER 7. APPLIED FOURIER ANALYSIS 7.4 The Saddle Point Stokes Problem So far the matrix C has been diagonal no trouble to invert. This section jumps to a fluid flow problem that is still linear (simpler

More information

Some Preconditioning Techniques for Saddle Point Problems

Some Preconditioning Techniques for Saddle Point Problems Some Preconditioning Techniques for Saddle Point Problems Michele Benzi 1 and Andrew J. Wathen 2 1 Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322, USA. benzi@mathcs.emory.edu

More information

Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

ON AUGMENTED LAGRANGIAN METHODS FOR SADDLE-POINT LINEAR SYSTEMS WITH SINGULAR OR SEMIDEFINITE (1,1) BLOCKS * 1. Introduction

ON AUGMENTED LAGRANGIAN METHODS FOR SADDLE-POINT LINEAR SYSTEMS WITH SINGULAR OR SEMIDEFINITE (1,1) BLOCKS * 1. Introduction Journal of Computational Mathematics Vol.xx, No.x, 200x, 1 9. http://www.global-sci.org/jcm doi:10.4208/jcm.1401-cr7 ON AUGMENED LAGRANGIAN MEHODS FOR SADDLE-POIN LINEAR SYSEMS WIH SINGULAR OR SEMIDEFINIE

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

ITERATIVE METHODS FOR DOUBLE SADDLE POINT SYSTEMS

ITERATIVE METHODS FOR DOUBLE SADDLE POINT SYSTEMS IERAIVE MEHODS FOR DOULE SADDLE POIN SYSEMS FAEMEH PANJEH ALI EIK 1 AND MIHELE ENZI Abstract. We consider several iterative methods for solving a class of linear systems with double saddle point structure.

More information

Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods

Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods Julian Hall, Ghussoun Al-Jeiroudi and Jacek Gondzio School of Mathematics University of Edinburgh

More information

1. Introduction. In this paper we consider iterative methods for solving large, sparse, linear systems of equations of the form

1. Introduction. In this paper we consider iterative methods for solving large, sparse, linear systems of equations of the form SIAM J. MARIX ANAL. APPL. Vol. 39, No. 2, pp. 902 921 c 2018 Society for Industrial and Applied Mathematics IERAIVE MEHODS FOR DOULE SADDLE POIN SYSEMS FAEMEH PANJEH ALI EIK AND MIHELE ENZI Abstract. We

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2007-002 Block preconditioning for saddle point systems with indefinite (1,1) block by Michele Benzi, Jia Liu Mathematics and Computer Science EMORY UNIVERSITY International Journal

More information

Chebyshev semi-iteration in Preconditioning

Chebyshev semi-iteration in Preconditioning Report no. 08/14 Chebyshev semi-iteration in Preconditioning Andrew J. Wathen Oxford University Computing Laboratory Tyrone Rees Oxford University Computing Laboratory Dedicated to Victor Pereyra on his

More information

IN this paper, we investigate spectral properties of block

IN this paper, we investigate spectral properties of block On the Eigenvalues Distribution of Preconditioned Block wo-by-two Matrix Mu-Zheng Zhu and a-e Qi Abstract he spectral properties of a class of block matrix are studied, which arise in the numercial solutions

More information

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra Definite versus Indefinite Linear Algebra Christian Mehl Institut für Mathematik TU Berlin Germany 10th SIAM Conference on Applied Linear Algebra Monterey Bay Seaside, October 26-29, 2009 Indefinite Linear

More information

Preconditioners for the incompressible Navier Stokes equations

Preconditioners for the incompressible Navier Stokes equations Preconditioners for the incompressible Navier Stokes equations C. Vuik M. ur Rehman A. Segal Delft Institute of Applied Mathematics, TU Delft, The Netherlands SIAM Conference on Computational Science and

More information

Preconditioned GMRES Revisited

Preconditioned GMRES Revisited Preconditioned GMRES Revisited Roland Herzog Kirk Soodhalter UBC (visiting) RICAM Linz Preconditioning Conference 2017 Vancouver August 01, 2017 Preconditioned GMRES Revisited Vancouver 1 / 32 Table of

More information

1. Introduction. Consider the large and sparse saddle point linear system

1. Introduction. Consider the large and sparse saddle point linear system SIAM J MATRIX ANAL APPL Vol 7, No 3, pp 779 79 c 006 Society for Industrial and Applied Mathematics AN ALGEBRAIC ANALYSIS OF A BLOCK DIAGONAL PRECONDITIONER FOR SADDLE POINT SYSTEMS GENE H GOLUB, CHEN

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS ON THE ROLE OF COUTATOR ARGUENTS IN THE DEVELOPENT OF PARAETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLES JOHN W. PEARSON Abstract. The development of preconditioners for PDE-constrained optimization

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

The semi-convergence of GSI method for singular saddle point problems

The semi-convergence of GSI method for singular saddle point problems Bull. Math. Soc. Sci. Math. Roumanie Tome 57(05 No., 04, 93 00 The semi-convergence of GSI method for singular saddle point problems by Shu-Xin Miao Abstract Recently, Miao Wang considered the GSI method

More information

Performance Comparison of Relaxation Methods with Singular and Nonsingular Preconditioners for Singular Saddle Point Problems

Performance Comparison of Relaxation Methods with Singular and Nonsingular Preconditioners for Singular Saddle Point Problems Applied Mathematical Sciences, Vol. 10, 2016, no. 30, 1477-1488 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6269 Performance Comparison of Relaxation Methods with Singular and Nonsingular

More information

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems A Tuned Preconditioner for for Generalised Eigenvalue Problems Department of Mathematical Sciences University of Bath, United Kingdom IWASEP VI May 22-25, 2006 Pennsylvania State University, University

More information

Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization problems

Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization problems Zeng et al. Journal of Inequalities and Applications 205 205:355 DOI 0.86/s3660-05-0879-x RESEARCH Open Access Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization

More information

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach Clark R. Dohrmann 1 Sandia National Laboratories, crdohrm@sandia.gov. Sandia is a multiprogram laboratory operated by Sandia

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

Convergence Properties of Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Matrices

Convergence Properties of Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Matrices Convergence Properties of Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Matrices Zhong-Zhi Bai 1 Department of Mathematics, Fudan University Shanghai

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Block triangular preconditioner for static Maxwell equations*

Block triangular preconditioner for static Maxwell equations* Volume 3, N. 3, pp. 589 61, 11 Copyright 11 SBMAC ISSN 11-85 www.scielo.br/cam Block triangular preconditioner for static Maxwell equations* SHI-LIANG WU 1, TING-ZHU HUANG and LIANG LI 1 School of Mathematics

More information

Schur Complement Matrix And Its (Elementwise) Approximation: A Spectral Analysis Based On GLT Sequences

Schur Complement Matrix And Its (Elementwise) Approximation: A Spectral Analysis Based On GLT Sequences Schur Complement Matrix And Its (Elementwise) Approximation: A Spectral Analysis Based On GLT Sequences Ali Dorostkar, Maya Neytcheva, and Stefano Serra-Capizzano 2 Department of Information Technology,

More information

Matrix Multiplication Chapter IV Special Linear Systems

Matrix Multiplication Chapter IV Special Linear Systems Matrix Multiplication Chapter IV Special Linear Systems By Gokturk Poyrazoglu The State University of New York at Buffalo BEST Group Winter Lecture Series Outline 1. Diagonal Dominance and Symmetry a.

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS U..B. Sci. Bull., Series A, Vol. 78, Iss. 4, 06 ISSN 3-707 ON A GENERAL CLASS OF RECONDIIONERS FOR NONSYMMERIC GENERALIZED SADDLE OIN ROBLE Fatemeh anjeh Ali BEIK his paper deals with applying a class

More information

On the interplay between discretization and preconditioning of Krylov subspace methods

On the interplay between discretization and preconditioning of Krylov subspace methods On the interplay between discretization and preconditioning of Krylov subspace methods Josef Málek and Zdeněk Strakoš Nečas Center for Mathematical Modeling Charles University in Prague and Czech Academy

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

1 Linear Algebra Problems

1 Linear Algebra Problems Linear Algebra Problems. Let A be the conjugate transpose of the complex matrix A; i.e., A = A t : A is said to be Hermitian if A = A; real symmetric if A is real and A t = A; skew-hermitian if A = A and

More information

ANALYSIS OF AUGMENTED LAGRANGIAN-BASED PRECONDITIONERS FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

ANALYSIS OF AUGMENTED LAGRANGIAN-BASED PRECONDITIONERS FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ANALYSIS OF AUGMENTED LAGRANGIAN-BASED PRECONDITIONERS FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS MICHELE BENZI AND ZHEN WANG Abstract. We analyze a class of modified augmented Lagrangian-based

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

Regularized HSS iteration methods for saddle-point linear systems

Regularized HSS iteration methods for saddle-point linear systems BIT Numer Math DOI 10.1007/s10543-016-0636-7 Regularized HSS iteration methods for saddle-point linear systems Zhong-Zhi Bai 1 Michele Benzi 2 Received: 29 January 2016 / Accepted: 20 October 2016 Springer

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

Department of Computer Science, University of Illinois at Urbana-Champaign

Department of Computer Science, University of Illinois at Urbana-Champaign Department of Computer Science, University of Illinois at Urbana-Champaign Probing for Schur Complements and Preconditioning Generalized Saddle-Point Problems Eric de Sturler, sturler@cs.uiuc.edu, http://www-faculty.cs.uiuc.edu/~sturler

More information

Approximation of functions of large matrices. Part I. Computational aspects. V. Simoncini

Approximation of functions of large matrices. Part I. Computational aspects. V. Simoncini Approximation of functions of large matrices. Part I. Computational aspects V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The problem Given

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 13-10 Comparison of some preconditioners for the incompressible Navier-Stokes equations X. He and C. Vuik ISSN 1389-6520 Reports of the Delft Institute of Applied

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva July 2015 Joint work with Victorita Dolean, Walid Kheriji, Felix Kwok and Roland Masson (1845): First Idea of After preconditioning, it takes only three

More information

Adaptive rational Krylov subspaces for large-scale dynamical systems. V. Simoncini

Adaptive rational Krylov subspaces for large-scale dynamical systems. V. Simoncini Adaptive rational Krylov subspaces for large-scale dynamical systems V. Simoncini Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it joint work with Vladimir Druskin, Schlumberger Doll

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

INCOMPLETE FACTORIZATION CONSTRAINT PRECONDITIONERS FOR SADDLE-POINT MATRICES

INCOMPLETE FACTORIZATION CONSTRAINT PRECONDITIONERS FOR SADDLE-POINT MATRICES INCOMPLEE FACORIZAION CONSRAIN PRECONDIIONERS FOR SADDLE-POIN MARICES H. S. DOLLAR AND A. J. WAHEN Abstract. We consider the application of the conjugate gradient method to the solution of large symmetric,

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

On the Superlinear Convergence of MINRES. Valeria Simoncini and Daniel B. Szyld. Report January 2012

On the Superlinear Convergence of MINRES. Valeria Simoncini and Daniel B. Szyld. Report January 2012 On the Superlinear Convergence of MINRES Valeria Simoncini and Daniel B. Szyld Report 12-01-11 January 2012 This report is available in the World Wide Web at http://www.math.temple.edu/~szyld 0 Chapter

More information

arxiv: v2 [math.na] 1 Feb 2013

arxiv: v2 [math.na] 1 Feb 2013 A FRAMEWORK FOR DEFLATED AND AUGMENTED KRYLOV SUBSPACE METHODS ANDRÉ GAUL, MARTIN H. GUTKNECHT, JÖRG LIESEN AND REINHARD NABBEN arxiv:1206.1506v2 [math.na] 1 Feb 2013 Abstract. We consider deflation and

More information

Key words. convex quadratic programming, interior point methods, KKT systems, preconditioners.

Key words. convex quadratic programming, interior point methods, KKT systems, preconditioners. A COMPARISON OF REDUCED AND UNREDUCED SYMMETRIC KKT SYSTEMS ARISING FROM INTERIOR POINT METHODS BENEDETTA MORINI, VALERIA SIMONCINI, AND MATTIA TANI Abstract. We address the iterative solution of symmetric

More information

Solving Ax = b, an overview. Program

Solving Ax = b, an overview. Program Numerical Linear Algebra Improving iterative solvers: preconditioning, deflation, numerical software and parallelisation Gerard Sleijpen and Martin van Gijzen November 29, 27 Solving Ax = b, an overview

More information

A PRECONDITIONER FOR LINEAR SYSTEMS ARISING FROM INTERIOR POINT OPTIMIZATION METHODS

A PRECONDITIONER FOR LINEAR SYSTEMS ARISING FROM INTERIOR POINT OPTIMIZATION METHODS A PRECONDITIONER FOR LINEAR SYSTEMS ARISING FROM INTERIOR POINT OPTIMIZATION METHODS TIM REES AND CHEN GREIF Abstract. We explore a preconditioning technique applied to the problem of solving linear systems

More information

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS M. ARIOLI 1,3 AND D. LOGHIN 2 Abstract. We study stopping criteria that are suitable in the solution by Krylov space based methods of linear and non

More information

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER *

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Journal of Computational Mathematics Vol.xx, No.x, 2x, 6. http://www.global-sci.org/jcm doi:?? ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Davod

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

arxiv: v1 [math.na] 26 Dec 2013

arxiv: v1 [math.na] 26 Dec 2013 General constraint preconditioning iteration method for singular saddle-point problems Ai-Li Yang a,, Guo-Feng Zhang a, Yu-Jiang Wu a,b a School of Mathematics and Statistics, Lanzhou University, Lanzhou

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

MATHEMATICS 217 NOTES

MATHEMATICS 217 NOTES MATHEMATICS 27 NOTES PART I THE JORDAN CANONICAL FORM The characteristic polynomial of an n n matrix A is the polynomial χ A (λ) = det(λi A), a monic polynomial of degree n; a monic polynomial in the variable

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME MS&E 38 (CME 338 Large-Scale Numerical Optimization Course description Instructor: Michael Saunders Spring 28 Notes : Review The course teaches

More information

Eigenvalues and diagonalization

Eigenvalues and diagonalization Eigenvalues and diagonalization Patrick Breheny November 15 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction The next topic in our course, principal components analysis, revolves

More information

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009) Iterative methods for Linear System of Equations Joint Advanced Student School (JASS-2009) Course #2: Numerical Simulation - from Models to Software Introduction In numerical simulation, Partial Differential

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 5, 2012 Andre Tkacenko

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners

Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA

More information

Journal of Computational and Applied Mathematics. Multigrid method for solving convection-diffusion problems with dominant convection

Journal of Computational and Applied Mathematics. Multigrid method for solving convection-diffusion problems with dominant convection Journal of Computational and Applied Mathematics 226 (2009) 77 83 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Eigenvalue Problems; Similarity Transformations Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Eigenvalue

More information

This can be accomplished by left matrix multiplication as follows: I

This can be accomplished by left matrix multiplication as follows: I 1 Numerical Linear Algebra 11 The LU Factorization Recall from linear algebra that Gaussian elimination is a method for solving linear systems of the form Ax = b, where A R m n and bran(a) In this method

More information

Lecture 13 Stability of LU Factorization; Cholesky Factorization. Songting Luo. Department of Mathematics Iowa State University

Lecture 13 Stability of LU Factorization; Cholesky Factorization. Songting Luo. Department of Mathematics Iowa State University Lecture 13 Stability of LU Factorization; Cholesky Factorization Songting Luo Department of Mathematics Iowa State University MATH 562 Numerical Analysis II ongting Luo ( Department of Mathematics Iowa

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

Eigenvalue Problems and Singular Value Decomposition

Eigenvalue Problems and Singular Value Decomposition Eigenvalue Problems and Singular Value Decomposition Sanzheng Qiao Department of Computing and Software McMaster University August, 2012 Outline 1 Eigenvalue Problems 2 Singular Value Decomposition 3 Software

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information