The semi-convergence of GSI method for singular saddle point problems

Size: px
Start display at page:

Download "The semi-convergence of GSI method for singular saddle point problems"

Transcription

1 Bull. Math. Soc. Sci. Math. Roumanie Tome 57(05 No., 04, The semi-convergence of GSI method for singular saddle point problems by Shu-Xin Miao Abstract Recently, Miao Wang considered the GSI method for solving nonsingular saddle point problems studied the convergence of the GSI method. In this paper, we prove the semi-convergence of the GSI method when it is applied to solve the singular saddle point problems. Key Words: GSI method, Singular saddle point problem, Semi-convergence, Iterative method. 00 Mathematics Subject Classification: Primary 65F0, Secondary 65F50. Introduction Consider the saddle point problems of the form ( ( A B x B T 0 y ( b = q, (. where A R m m is symmetric positive definite, B R m n is a matrix of rank r, b R m q R n are given vectors, with m n. When r = n, note that the coefficient matrix is nonsingular the saddle point problem (. has a unique solution. When r < n, the coefficient matrix is singular, in such case, we assume that the saddle point problem (. is consistent []. The saddle point problem (. appears in many engineering scientific computing applications such as constrained optimization, the finite element method to Stokes equations, fluid dynamics weighted linear squares problem [6, 3, 7, 9]. (. is also termed as a Karsh- Kuhn-Tucker (KKT system, or an augmented system, or an equilibrium system [0,, ]. For its property of large sparsity, (. is suitable for being solved by the iterative methods. For nonsingular saddle point problem (., there are many efficient iterative methods have been studied in the literature [3, 7, 4, 9, 7,, 3,, 8], see [4] for a comprehensive survey. Recently, Miao Wang studied the generalized stationary iterative (GSI method

2 94 S.-X. Miao [0] for nonsingular saddle point problem (., see [8]. Note that the GSI method, studied in [8], includes SOR-like method [3] GAOR method [4] as special cases. In most cases, the matrix B is full column rank in scientific computing engineering applications, but not always. If r < n, (. is a singular saddle point problem. Zheng, Bai Yang [] show that the GSOR method [3] can be used to solve the singular saddle point problem (., it is semi-convergent. Li et al. [5, 6] give the semi-convergent analyses of the GSSOR method [] the inexact Uzawa methods [9, 8] for the singular saddle point problem (.. In this paper, the GSI method for solving singular saddle point problem (. is further investigated the semi-convergence conditions are proposed, which generalize the result of Miao Wang [8] for the nonsingular saddle point problems to the singular saddle point problems. Throughout this paper, for A R m m, A T, σ(a ρ(a denote the transpose, the spectral set the spectral radius of the matrix A, respectively. I n is the identity matrix with order n. The semi-convergence of the GSI method Firstly, some basic concepts lemmas are given for latter use. For a matrix C R p p, we call C = M N a splitting if M is nonsingular. Let T = M N, then solving linear systems Cz = c is equivalent to considering the following iterative scheme x k+ = T x k + c, k = 0,,,. (. When C is nonsingular, for any initial vector x 0 the iteration scheme (. converges to the exact solution of the system of linear equations Cz = c if only if ρ(t <. But for the singular matrix C, we have σ(t ρ(t, so that one can require only the semiconvergence of the iterative scheme (.. By [5], the iterative scheme (. is semi-convergent if only if the following three conditions are satisfied: ( The spectral radius of the iterative matrix T is equal to one, i.e., ρ(t = ; ( The elementary divisors of the iterative matrix T associated with λ = σ(t are linear, i.e., rank(i p T = rank(i p T, here rank( denotes the rank of the corresponding matrix; (3 If λ σ(t with λ =, then λ =, i.e., ϑ(t <, where ϑ(t = max{ λ, λ σ(t, λ } is called the semi-convergence factor of the iterative scheme (.. We call a matrix T is semi-convergent provided it satisfies the above three conditions, iterative method (. is semi-convergent if T is a semi-convergent matrix. When C is singular, the semi-convergence property about the iteration scheme (. are described in the following two lemmas.

3 The semi-convergence of GSI method 95 Lemma. [5] Let C = M N with M nonsingular, T = M N. Then for any initial vector x 0 the iterative scheme (. is semi-convergent to a solution x of the system of linear equations Cz = c if only if the matrix T is semi-convergent. Lemma. [] Let H R l l with positive integers l. Then the partitioned matrix ( H 0 T = L is semi-convergent if only if either of the following conditions holds true: ( L = 0 H is semi-convergent; ( ρ(h <. Secondly, we review the GSI method presented in [8]. Following [3], we rewrite system (. as ( ( ( A B x b B T = (. 0 y q for the sake of simplicity. For the coefficient matrix of the linear system (., we make the following splitting: ( ( ( A B αa 0 (α A B B T 0 βb T αq ( βb T, (.3 αq where α β are real parameters with α 0, Q R n n is a nonsingular matrix. With the splitting (.3, the GSI iterative scheme [0] for augmented system (. is defined as ( x (k+ y (k+ = T α,β ( x (k y (k I t + (αd βl ( b q, k = 0,,, (.4 where ( ( T α,β = α Im α A B α β α Q B T I n α Q B T A B is the GSI iteration matrix. (.5 Algorithm. GSI Method:. Given the initial vectors x (0, y (0, the relaxation parameters α, β the nonsingular matrix Q.. For i = 0,,, until convergence, compute { x (k+ = ( α x(k + α A (b By (k, y (k+ = y (k + α Q { B T [x (k+ + ( βx (k ] q }. Remark. It is worth mentioning that the GSI method (.4 becomes the SOR-like method [3] when α = ω β =, the GAOR method [4] when α = ω β = γ ω.

4 96 S.-X. Miao Finally, we discuss the semi-convergence of the GSI method. When the coefficient matrix of (. is nonsingular, the convergence of GSI method is studied in [8]. When r < n, the coefficient matrix of (. is singular, the following theorem describes the semi-convergence property when the GSI method is applied to solve the singular saddle point poblem (.. Theorem. Let A R m m, Q R n n be symmetric positive definite matrices, B R m n be a matrix of rank r with r < n. Denote the largest eigenvalues of the matrix Q B T A B by µ max. Then the GSI method is semi-convergent to a solution of the singular saddle point problem (. if α β satisfies α > max {, µmax } α < β < α(α +. (.6 µ max µ max Proof: By Lemma, we only need to demonstrate the semi-convergence of the iteration matrix T α,β, defined by equation (.5, of the GSI method. Let B = U(B r, 0V be the singular value decomposition of B, where B r = (Σ r, 0 T R m n with Σ r = diag(σ, σ,, σ r, U, V are unitary matrices. Then ( U 0 P = 0 V is an (m + n-by-(m + n unitary matrix. Let T α,β = P T α,β P, then the matrix T α,β has the same eigenvalues with matrix T α,β. Here, we have used ( to denote the conjugate transpose of the corresponding complex matrix. Hence, we only need to demonstrate the semi-convergence of the matrix T α,β. Define matrices  = U AU, B = U BV Q = V QV. Then it holds that B = (B r, 0 ( Q V = Q V V Q V V Q V V Q, V here we have partitioned the unitary matrix V into the block form V = (V, V confirmly to the partition of the matrix B. Through direct operations, we have U A BV = (U A U(U BV =  (B r, 0 = ( B r, 0, V Q B T U = (V Q V (V B T U ( V = Q V Br T V Q V Br T

5 The semi-convergence of GSI method 97 Hence, V Q B T A BV = (V Q V (V B T U(U A U(U BV = Q (B r, 0 T  (B r, 0 = Q ( B T r  B r n r. (.7 T α,β = P T α,β P ( ( = α Im α U A BV α β α V Q B T U I n α V Q B T A BV ( Ĥα,β 0 =, L α,β I n r where Ĥ α,β = ( ( α β α α α Im αâ B r (V Q V B T r I r α (V Q V B T r  B r ( α β L α,β = (V Q V Br T, α (V Q V Br T  B r. As L α,β 0, from Lemma we know that the matrix T α,β is semi-convergent if only if ρ(ĥα,β <. Hence, in what follows, we will give out the restrictions for the parameters α β such that ρ(ĥα,β <. Consider the following nonsingular saddle point problem (  Br Br T 0 ( x ŷ = ( b q. (.8 If the coefficient matrix of the nonsingular saddle point problem (.8 be splitted as ( ( (  Br αâ Br T = 0 (α  0 βbr T α Q B r ( βbr T α Q with the preconditioning matrix Q = (V Q V, then the GSI method for solving (.8 can be well defined, the iteration matrix is Ĥα,β. From Theorem.4 in [8], we know that ρ(ĥα,β < if α β satisfies α > max {, µmax } α < β < α(α +, µ max µ max

6 98 S.-X. Miao here µ max is the largest eigenvalue of the matrix Q BT r  B r. By (.7, we can see that µ max is also the largest eigenvalue of the matrix Q B T A B. The proof is completed. The GSI method has the SOR-like method [3] the GAOR method [4] as its special cases, thus from Theorem, we can derive the following corollaries directly. Corollary. Let A Q be symmetric positive definite, B is a matrix of rank r with r < n. Denote the largest eigenvalues of the matrix Q B T A B by µ max. Then the SOR-like method is semi-convergent to a solution of the singular saddle point problems (. if 0 < ω < µ max. Corollary. Let A Q be symmetric positive definite, B is a matrix of rank r with r < n. Denote the largest eigenvalues of the matrix Q B T A B by µ max. Then the GAOR method is semi-convergent to a solution of the singular saddle point problems (. if ω γ satisfies 0 < ω < min{, µmax } ω µ max < γ < ω + ω ωµ max. Note that min{, µmax }, from Theorem.3 in [5], we known that the condition in Corollary is the sufficient but necessary condition. 3 Conclusion In this paper, we consider the GSI method for solving singular saddle point problems. The semi-convergence conditions are given, which generalize the result of Miao Wang [8] for nonsingular saddle point problems to singular saddle point problems. Meanwhile, from the proof of Theorem, we note that the semi-convergence factor of the GSI method for the singular saddle point problem (. is the convergence factor of the GSI method for the nonsingular saddle point problem (.8. References [] Z.-Z. Bai, G.H. Golub, Accelerated Hermitian skew-hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 7 (007, 3. [] Z.-Z. Bai, G.H. Golub, J.-Y. Pan, Preconditioned Hermitian skew-hermitian splitting methods for non-hermitian positive semidefinite linear systems, Numer. Math., 98 (004, 3.

7 The semi-convergence of GSI method 99 [3] Z.Z. Bai, B.N. Parlett, Z.Q. Wang, On generalized successive overrelaxation methods for augmented systems, Numer. Math., 0 (005, 38. [4] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta. Numerica., 4 (005, 37. [5] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 994. [6] J.T. Betts, Practical Methods for Optimal Control using Nonlinear Programming, SIAM, Philadelphia, PA, 00. [7] Y.H. Cao, Y.Q. Lin, Y.M. Wei, Nolinear Uzawa methods for sloving nonsymmetric saddle point problems, J. Appl. Math. Comput., (006,. [8] F. Chen, Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput., 06 (008, [9] M.-R. Cui, A sufficient condition for the inexact Uzawa algorithm for saddle point problems. J. Comput. Appl. Math., 39 (00, [0] N. Dyn, W.E. Ferguson, The numerical solution of equality constrained quadratic programming problems, Math. Comput., 4 (983, [] M. Fortin, R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, North-Holl, Amsterdam, 983. [] P.E. Gill, W. Murray, M.H. Wright, Practical Optimization, Academic Press, New York, 98. [3] G.H. Golub, X. Wu, J.Y. Yuan, SOR-like methods for augmented systems, BIT, 4 (00, [4] C.J. Li, Z. Li, Y.Y. Nie, D.J. Evans, Generalized AOR method for the augmented system, International Journal of Computer Mathematics, 8 ( [5] J.-L. Li, T.-Z Huang, Semi-convegence analysis of the inexact Uzawa method for singular saddle point problems, Rev. Un. Mat. Argentina, 53 (0, [6] J.-L. Li, T.-Z Huang, D. Luo, The semi-convergence of generalized SSOR method for singular augmented systems, International of Numerical Analysis Modelling, 9 (0, [7] Z. Li, C.J. Li, D.J. Evans, T. Zheng, Two-parameter GSOR method for augmented system, International Journal of Computer Mathematics, 8 ( [8] S.-X. Miao, K. Wang, On generalized stationary iterative method for solving the saddle point problems, J. Appl. Math. Comput., 35 (0,

8 00 S.-X. Miao [9] Y.M. Wei, X.Y. Yu, R.Y. Zhang, Preconditioned conjugate gradient method generalized successive over relaxation method for weighted least squares problems, International Journal of Computer Mathematics, 8 (004, [0] J.H. Yun, S.W. Kim, Generalized stationary iterative method for solving linear systems, Korean J. Comput. Appl. Math., 5 (998, [] G.-F. Zhang, Q.-H. Lu, On generalized symmetric SOR method for augmented system, J. Comput. Appl. Math., 9 (008, [] B. Zheng, Z.-Z. Bai, X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 43 (009, Received: 4..0, Accepted: College of Mathematics Statistics, Northwest Normal University, Lanzhou, , P.R. China shuxinmiao@gmail.com

SEMI-CONVERGENCE ANALYSIS OF THE INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS

SEMI-CONVERGENCE ANALYSIS OF THE INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 53, No. 1, 2012, 61 70 SEMI-CONVERGENCE ANALYSIS OF THE INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS JIAN-LEI LI AND TING-ZHU HUANG Abstract. Recently,

More information

Performance Comparison of Relaxation Methods with Singular and Nonsingular Preconditioners for Singular Saddle Point Problems

Performance Comparison of Relaxation Methods with Singular and Nonsingular Preconditioners for Singular Saddle Point Problems Applied Mathematical Sciences, Vol. 10, 2016, no. 30, 1477-1488 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6269 Performance Comparison of Relaxation Methods with Singular and Nonsingular

More information

Research Article Convergence of a Generalized USOR Iterative Method for Augmented Systems

Research Article Convergence of a Generalized USOR Iterative Method for Augmented Systems Mathematical Problems in Engineering Volume 2013, Article ID 326169, 6 pages http://dx.doi.org/10.1155/2013/326169 Research Article Convergence of a Generalized USOR Iterative Method for Augmented Systems

More information

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices Journal of Computational Applied Mathematics 6 (009) 136 154 Contents lists available at ScienceDirect Journal of Computational Applied Mathematics journal homepage: wwwelseviercom/locate/cam Optimization

More information

ON AUGMENTED LAGRANGIAN METHODS FOR SADDLE-POINT LINEAR SYSTEMS WITH SINGULAR OR SEMIDEFINITE (1,1) BLOCKS * 1. Introduction

ON AUGMENTED LAGRANGIAN METHODS FOR SADDLE-POINT LINEAR SYSTEMS WITH SINGULAR OR SEMIDEFINITE (1,1) BLOCKS * 1. Introduction Journal of Computational Mathematics Vol.xx, No.x, 200x, 1 9. http://www.global-sci.org/jcm doi:10.4208/jcm.1401-cr7 ON AUGMENED LAGRANGIAN MEHODS FOR SADDLE-POIN LINEAR SYSEMS WIH SINGULAR OR SEMIDEFINIE

More information

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS U..B. Sci. Bull., Series A, Vol. 78, Iss. 4, 06 ISSN 3-707 ON A GENERAL CLASS OF RECONDIIONERS FOR NONSYMMERIC GENERALIZED SADDLE OIN ROBLE Fatemeh anjeh Ali BEIK his paper deals with applying a class

More information

arxiv: v1 [math.na] 26 Dec 2013

arxiv: v1 [math.na] 26 Dec 2013 General constraint preconditioning iteration method for singular saddle-point problems Ai-Li Yang a,, Guo-Feng Zhang a, Yu-Jiang Wu a,b a School of Mathematics and Statistics, Lanzhou University, Lanzhou

More information

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER *

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Journal of Computational Mathematics Vol.xx, No.x, 2x, 6. http://www.global-sci.org/jcm doi:?? ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Davod

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 36, pp. 39-53, 009-010. Copyright 009,. ISSN 1068-9613. ETNA P-REGULAR SPLITTING ITERATIVE METHODS FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS

More information

Convergence Properties of Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Matrices

Convergence Properties of Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Matrices Convergence Properties of Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Matrices Zhong-Zhi Bai 1 Department of Mathematics, Fudan University Shanghai

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

Comparison results between Jacobi and other iterative methods

Comparison results between Jacobi and other iterative methods Journal of Computational and Applied Mathematics 169 (2004) 45 51 www.elsevier.com/locate/cam Comparison results between Jacobi and other iterative methods Zhuan-De Wang, Ting-Zhu Huang Faculty of Applied

More information

ON A SPLITTING PRECONDITIONER FOR SADDLE POINT PROBLEMS

ON A SPLITTING PRECONDITIONER FOR SADDLE POINT PROBLEMS J. Appl. Math. & Informatics Vol. 36(208, No. 5-6, pp. 459-474 https://doi.org/0.437/jami.208.459 ON A SPLITTING PRECONDITIONER FOR SADDLE POINT PROBLEMS DAVOD KHOJASTEH SALKUYEH, MARYAM ABDOLMALEKI, SAEED

More information

Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems

Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems Yin Zhang 张寅 August, 2010 Abstract A unified convergence result is derived for an entire class of stationary iterative methods

More information

A Note on Simple Nonzero Finite Generalized Singular Values

A Note on Simple Nonzero Finite Generalized Singular Values A Note on Simple Nonzero Finite Generalized Singular Values Wei Ma Zheng-Jian Bai December 21 212 Abstract In this paper we study the sensitivity and second order perturbation expansions of simple nonzero

More information

An inexact parallel splitting augmented Lagrangian method for large system of linear equations

An inexact parallel splitting augmented Lagrangian method for large system of linear equations An inexact parallel splitting augmented Lagrangian method for large system of linear equations Zheng Peng [1, ] DongHua Wu [] [1]. Mathematics Department of Nanjing University, Nanjing PR. China, 10093

More information

Numerical behavior of inexact linear solvers

Numerical behavior of inexact linear solvers Numerical behavior of inexact linear solvers Miro Rozložník joint results with Zhong-zhi Bai and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic The fourth

More information

CONVERGENCE OF MULTISPLITTING METHOD FOR A SYMMETRIC POSITIVE DEFINITE MATRIX

CONVERGENCE OF MULTISPLITTING METHOD FOR A SYMMETRIC POSITIVE DEFINITE MATRIX J. Appl. Math. & Computing Vol. 182005 No. 1-2 pp. 59-72 CONVERGENCE OF MULTISPLITTING METHOD FOR A SYMMETRIC POSITIVE DEFINITE MATRIX JAE HEON YUN SEYOUNG OH AND EUN HEUI KIM Abstract. We study convergence

More information

Block-Triangular and Skew-Hermitian Splitting Methods for Positive Definite Linear Systems

Block-Triangular and Skew-Hermitian Splitting Methods for Positive Definite Linear Systems Block-Triangular and Skew-Hermitian Splitting Methods for Positive Definite Linear Systems Zhong-Zhi Bai State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematics

More information

POSITIVE DEFINITE AND SEMI-DEFINITE SPLITTING METHODS FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS * 1. Introduction

POSITIVE DEFINITE AND SEMI-DEFINITE SPLITTING METHODS FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS * 1. Introduction Journal of Computational Mathematics Vol.34, No.3, 2016, 300 316. http://www.global-sci.org/jcm doi:10.4208/jcm.1511-m2015-0299 POSITIVE DEFINITE AND SEMI-DEFINITE SPLITTING METHODS FOR NON-HERMITIAN POSITIVE

More information

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection Filomat 30: 06, 37 375 DOI 0.98/FIL67M Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Multiplicative Perturbation Bounds of the Group

More information

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation Zheng-jian Bai Abstract In this paper, we first consider the inverse

More information

IN this paper, we investigate spectral properties of block

IN this paper, we investigate spectral properties of block On the Eigenvalues Distribution of Preconditioned Block wo-by-two Matrix Mu-Zheng Zhu and a-e Qi Abstract he spectral properties of a class of block matrix are studied, which arise in the numercial solutions

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 XVI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 A slightly changed ADMM for convex optimization with three separable operators Bingsheng He Department of

More information

arxiv: v1 [math.na] 1 Sep 2018

arxiv: v1 [math.na] 1 Sep 2018 On the perturbation of an L -orthogonal projection Xuefeng Xu arxiv:18090000v1 [mathna] 1 Sep 018 September 5 018 Abstract The L -orthogonal projection is an important mathematical tool in scientific computing

More information

Generalized AOR Method for Solving System of Linear Equations. Davod Khojasteh Salkuyeh. Department of Mathematics, University of Mohaghegh Ardabili,

Generalized AOR Method for Solving System of Linear Equations. Davod Khojasteh Salkuyeh. Department of Mathematics, University of Mohaghegh Ardabili, Australian Journal of Basic and Applied Sciences, 5(3): 35-358, 20 ISSN 99-878 Generalized AOR Method for Solving Syste of Linear Equations Davod Khojasteh Salkuyeh Departent of Matheatics, University

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Research Article Constrained Solutions of a System of Matrix Equations

Research Article Constrained Solutions of a System of Matrix Equations Journal of Applied Mathematics Volume 2012, Article ID 471573, 19 pages doi:10.1155/2012/471573 Research Article Constrained Solutions of a System of Matrix Equations Qing-Wen Wang 1 and Juan Yu 1, 2 1

More information

Contraction Methods for Convex Optimization and monotone variational inequalities No.12

Contraction Methods for Convex Optimization and monotone variational inequalities No.12 XII - 1 Contraction Methods for Convex Optimization and monotone variational inequalities No.12 Linearized alternating direction methods of multipliers for separable convex programming Bingsheng He Department

More information

A MODIFIED HSS ITERATION METHOD FOR SOLVING THE COMPLEX LINEAR MATRIX EQUATION AXB = C *

A MODIFIED HSS ITERATION METHOD FOR SOLVING THE COMPLEX LINEAR MATRIX EQUATION AXB = C * Journal of Computational Mathematics Vol.34, No.4, 2016, 437 450. http://www.global-sci.org/jcm doi:10.4208/jcm.1601-m2015-0416 A MODIFIED HSS ITERATION METHOD FOR SOLVING THE COMPLEX LINEAR MATRIX EQUATION

More information

Permutation transformations of tensors with an application

Permutation transformations of tensors with an application DOI 10.1186/s40064-016-3720-1 RESEARCH Open Access Permutation transformations of tensors with an application Yao Tang Li *, Zheng Bo Li, Qi Long Liu and Qiong Liu *Correspondence: liyaotang@ynu.edu.cn

More information

BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION

BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION K Y BERNETIKA VOLUM E 46 ( 2010), NUMBER 4, P AGES 655 664 BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION Guang-Da Hu and Qiao Zhu This paper is concerned with bounds of eigenvalues of a complex

More information

The upper Jacobi and upper Gauss Seidel type iterative methods for preconditioned linear systems

The upper Jacobi and upper Gauss Seidel type iterative methods for preconditioned linear systems Applied Mathematics Letters 19 (2006) 1029 1036 wwwelseviercom/locate/aml The upper Jacobi upper Gauss Seidel type iterative methods for preconditioned linear systems Zhuan-De Wang, Ting-Zhu Huang School

More information

Approximation algorithms for nonnegative polynomial optimization problems over unit spheres

Approximation algorithms for nonnegative polynomial optimization problems over unit spheres Front. Math. China 2017, 12(6): 1409 1426 https://doi.org/10.1007/s11464-017-0644-1 Approximation algorithms for nonnegative polynomial optimization problems over unit spheres Xinzhen ZHANG 1, Guanglu

More information

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES olume 10 2009, Issue 2, Article 41, 10 pp. ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES HANYU LI, HU YANG, AND HUA SHAO COLLEGE OF MATHEMATICS AND PHYSICS CHONGQING UNIERSITY

More information

Iterative Solution methods

Iterative Solution methods p. 1/28 TDB NLA Parallel Algorithms for Scientific Computing Iterative Solution methods p. 2/28 TDB NLA Parallel Algorithms for Scientific Computing Basic Iterative Solution methods The ideas to use iterative

More information

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES HANYU LI, HU YANG College of Mathematics and Physics Chongqing University Chongqing, 400030, P.R. China EMail: lihy.hy@gmail.com,

More information

AN INVERSE EIGENVALUE PROBLEM AND AN ASSOCIATED APPROXIMATION PROBLEM FOR GENERALIZED K-CENTROHERMITIAN MATRICES

AN INVERSE EIGENVALUE PROBLEM AND AN ASSOCIATED APPROXIMATION PROBLEM FOR GENERALIZED K-CENTROHERMITIAN MATRICES AN INVERSE EIGENVALUE PROBLEM AND AN ASSOCIATED APPROXIMATION PROBLEM FOR GENERALIZED K-CENTROHERMITIAN MATRICES ZHONGYUN LIU AND HEIKE FAßBENDER Abstract: A partially described inverse eigenvalue problem

More information

THE solution of the absolute value equation (AVE) of

THE solution of the absolute value equation (AVE) of The nonlinear HSS-like iterative method for absolute value equations Mu-Zheng Zhu Member, IAENG, and Ya-E Qi arxiv:1403.7013v4 [math.na] 2 Jan 2018 Abstract Salkuyeh proposed the Picard-HSS iteration method

More information

A note on the unique solution of linear complementarity problem

A note on the unique solution of linear complementarity problem COMPUTATIONAL SCIENCE SHORT COMMUNICATION A note on the unique solution of linear complementarity problem Cui-Xia Li 1 and Shi-Liang Wu 1 * Received: 13 June 2016 Accepted: 14 November 2016 First Published:

More information

Some bounds for the spectral radius of the Hadamard product of matrices

Some bounds for the spectral radius of the Hadamard product of matrices Some bounds for the spectral radius of the Hadamard product of matrices Guang-Hui Cheng, Xiao-Yu Cheng, Ting-Zhu Huang, Tin-Yau Tam. June 1, 2004 Abstract Some bounds for the spectral radius of the Hadamard

More information

The Hermitian R-symmetric Solutions of the Matrix Equation AXA = B

The Hermitian R-symmetric Solutions of the Matrix Equation AXA = B International Journal of Algebra, Vol. 6, 0, no. 9, 903-9 The Hermitian R-symmetric Solutions of the Matrix Equation AXA = B Qingfeng Xiao Department of Basic Dongguan olytechnic Dongguan 53808, China

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Singular Value Inequalities for Real and Imaginary Parts of Matrices

Singular Value Inequalities for Real and Imaginary Parts of Matrices Filomat 3:1 16, 63 69 DOI 1.98/FIL16163C Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Singular Value Inequalities for Real Imaginary

More information

When is the hermitian/skew-hermitian part of a matrix a potent matrix?

When is the hermitian/skew-hermitian part of a matrix a potent matrix? Electronic Journal of Linear Algebra Volume 24 Volume 24 (2012/2013) Article 9 2012 When is the hermitian/skew-hermitian part of a matrix a potent matrix? Dijana Ilisevic Nestor Thome njthome@mat.upv.es

More information

Journal of Computational and Applied Mathematics. Multigrid method for solving convection-diffusion problems with dominant convection

Journal of Computational and Applied Mathematics. Multigrid method for solving convection-diffusion problems with dominant convection Journal of Computational and Applied Mathematics 226 (2009) 77 83 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

Schur Complements on Hilbert Spaces and Saddle Point Systems

Schur Complements on Hilbert Spaces and Saddle Point Systems Schur Complements on Hilbert Spaces and Saddle Point Systems Constantin Bacuta Mathematical Sciences, University of Delaware, 5 Ewing Hall 976 Abstract For any continuous bilinear form defined on a pair

More information

Regularized HSS iteration methods for saddle-point linear systems

Regularized HSS iteration methods for saddle-point linear systems BIT Numer Math DOI 10.1007/s10543-016-0636-7 Regularized HSS iteration methods for saddle-point linear systems Zhong-Zhi Bai 1 Michele Benzi 2 Received: 29 January 2016 / Accepted: 20 October 2016 Springer

More information

Block triangular preconditioner for static Maxwell equations*

Block triangular preconditioner for static Maxwell equations* Volume 3, N. 3, pp. 589 61, 11 Copyright 11 SBMAC ISSN 11-85 www.scielo.br/cam Block triangular preconditioner for static Maxwell equations* SHI-LIANG WU 1, TING-ZHU HUANG and LIANG LI 1 School of Mathematics

More information

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n Electronic Journal of Linear Algebra ISSN 08-380 Volume 22, pp. 52-538, May 20 THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE WEI-WEI XU, LI-XIA CAI, AND WEN LI Abstract. In this

More information

The reflexive re-nonnegative definite solution to a quaternion matrix equation

The reflexive re-nonnegative definite solution to a quaternion matrix equation Electronic Journal of Linear Algebra Volume 17 Volume 17 28 Article 8 28 The reflexive re-nonnegative definite solution to a quaternion matrix equation Qing-Wen Wang wqw858@yahoo.com.cn Fei Zhang Follow

More information

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH V. FABER, J. LIESEN, AND P. TICHÝ Abstract. Numerous algorithms in numerical linear algebra are based on the reduction of a given matrix

More information

Key words. Index, Drazin inverse, group inverse, Moore-Penrose inverse, index splitting, proper splitting, comparison theorem, monotone iteration.

Key words. Index, Drazin inverse, group inverse, Moore-Penrose inverse, index splitting, proper splitting, comparison theorem, monotone iteration. The Electronic Journal of Linear Algebra. A publication of the International Linear Algebra Society. Volume 8, pp. 83-93, June 2001. ISSN 1081-3810. http://math.technion.ac.il/iic/ela ELA ADDITIONAL RESULTS

More information

A NEW EFFECTIVE PRECONDITIONED METHOD FOR L-MATRICES

A NEW EFFECTIVE PRECONDITIONED METHOD FOR L-MATRICES Journal of Mathematical Sciences: Advances and Applications Volume, Number 2, 2008, Pages 3-322 A NEW EFFECTIVE PRECONDITIONED METHOD FOR L-MATRICES Department of Mathematics Taiyuan Normal University

More information

Two efficient inexact algorithms for a class of large sparse complex linear systems

Two efficient inexact algorithms for a class of large sparse complex linear systems Two efficient inexact algorithms for a class of large sparse complex linear systems Vahid Edalatpour, Davod Hezari and Davod Khojasteh Salkuyeh Faculty of Mathematical Sciences, University of Guilan, Rasht,

More information

Here is an example of a block diagonal matrix with Jordan Blocks on the diagonal: J

Here is an example of a block diagonal matrix with Jordan Blocks on the diagonal: J Class Notes 4: THE SPECTRAL RADIUS, NORM CONVERGENCE AND SOR. Math 639d Due Date: Feb. 7 (updated: February 5, 2018) In the first part of this week s reading, we will prove Theorem 2 of the previous class.

More information

ELA THE MINIMUM-NORM LEAST-SQUARES SOLUTION OF A LINEAR SYSTEM AND SYMMETRIC RANK-ONE UPDATES

ELA THE MINIMUM-NORM LEAST-SQUARES SOLUTION OF A LINEAR SYSTEM AND SYMMETRIC RANK-ONE UPDATES Volume 22, pp. 480-489, May 20 THE MINIMUM-NORM LEAST-SQUARES SOLUTION OF A LINEAR SYSTEM AND SYMMETRIC RANK-ONE UPDATES XUZHOU CHEN AND JUN JI Abstract. In this paper, we study the Moore-Penrose inverse

More information

Jae Heon Yun and Yu Du Han

Jae Heon Yun and Yu Du Han Bull. Korean Math. Soc. 39 (2002), No. 3, pp. 495 509 MODIFIED INCOMPLETE CHOLESKY FACTORIZATION PRECONDITIONERS FOR A SYMMETRIC POSITIVE DEFINITE MATRIX Jae Heon Yun and Yu Du Han Abstract. We propose

More information

Computers and Mathematics with Applications. Convergence analysis of the preconditioned Gauss Seidel method for H-matrices

Computers and Mathematics with Applications. Convergence analysis of the preconditioned Gauss Seidel method for H-matrices Computers Mathematics with Applications 56 (2008) 2048 2053 Contents lists available at ScienceDirect Computers Mathematics with Applications journal homepage: wwwelseviercom/locate/camwa Convergence analysis

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS Jordan Journal of Mathematics and Statistics JJMS) 53), 2012, pp.169-184 A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS ADEL H. AL-RABTAH Abstract. The Jacobi and Gauss-Seidel iterative

More information

CLASSICAL ITERATIVE METHODS

CLASSICAL ITERATIVE METHODS CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped

More information

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR WEN LI AND MICHAEL K. NG Abstract. In this paper, we study the perturbation bound for the spectral radius of an m th - order n-dimensional

More information

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I A X 1 A + B X 1 B. Hosoo Lee

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I A X 1 A + B X 1 B. Hosoo Lee Korean J. Math. 22 (214), No. 1, pp. 123 131 http://dx.doi.org/1.11568/jm.214.22.1.123 PERTRBATION ANAYSIS FOR THE MATRIX EQATION X = I A X 1 A + B X 1 B Hosoo Lee Abstract. The purpose of this paper is

More information

arxiv: v1 [math.ra] 11 Aug 2014

arxiv: v1 [math.ra] 11 Aug 2014 Double B-tensors and quasi-double B-tensors Chaoqian Li, Yaotang Li arxiv:1408.2299v1 [math.ra] 11 Aug 2014 a School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, P. R. China 650091

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2007-002 Block preconditioning for saddle point systems with indefinite (1,1) block by Michele Benzi, Jia Liu Mathematics and Computer Science EMORY UNIVERSITY International Journal

More information

Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties. V. Simoncini

Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties. V. Simoncini Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties V. Simoncini Dipartimento di Matematica, Università di ologna valeria@dm.unibo.it 1 Outline

More information

Two-parameter generalized Hermitian and skew-hermitian splitting iteration method

Two-parameter generalized Hermitian and skew-hermitian splitting iteration method To appear in the International Journal of Computer Mathematics Vol. 00, No. 00, Month 0XX, 1 Two-parameter generalized Hermitian and skew-hermitian splitting iteration method N. Aghazadeh a, D. Khojasteh

More information

Journal of Computational and Applied Mathematics. New matrix iterative methods for constraint solutions of the matrix

Journal of Computational and Applied Mathematics. New matrix iterative methods for constraint solutions of the matrix Journal of Computational and Applied Mathematics 35 (010 76 735 Contents lists aailable at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elseier.com/locate/cam New

More information

Formulas for the Drazin Inverse of Matrices over Skew Fields

Formulas for the Drazin Inverse of Matrices over Skew Fields Filomat 30:12 2016 3377 3388 DOI 102298/FIL1612377S Published by Faculty of Sciences and Mathematics University of Niš Serbia Available at: http://wwwpmfniacrs/filomat Formulas for the Drazin Inverse of

More information

arxiv: v2 [math-ph] 3 Jun 2017

arxiv: v2 [math-ph] 3 Jun 2017 Elasticity M -tensors and the Strong Ellipticity Condition Weiyang Ding Jinjie Liu Liqun Qi Hong Yan June 6, 2017 arxiv:170509911v2 [math-ph] 3 Jun 2017 Abstract In this paper, we propose a class of tensors

More information

Preconditioning Strategy to Solve Fuzzy Linear Systems (FLS)

Preconditioning Strategy to Solve Fuzzy Linear Systems (FLS) From the SelectedWorks of SA Edalatpanah March 12 2012 Preconditioning Strategy to Solve Fuzzy Linear Systems (FLS) SA Edalatpanah University of Guilan Available at: https://works.bepress.com/sa_edalatpanah/3/

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11 XI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11 Alternating direction methods of multipliers for separable convex programming Bingsheng He Department of Mathematics

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

Spectral inequalities and equalities involving products of matrices

Spectral inequalities and equalities involving products of matrices Spectral inequalities and equalities involving products of matrices Chi-Kwong Li 1 Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187 (ckli@math.wm.edu) Yiu-Tung Poon Department

More information

Indefinite Preconditioners for PDE-constrained optimization problems. V. Simoncini

Indefinite Preconditioners for PDE-constrained optimization problems. V. Simoncini Indefinite Preconditioners for PDE-constrained optimization problems V. Simoncini Dipartimento di Matematica, Università di Bologna, Italy valeria.simoncini@unibo.it Partly joint work with Debora Sesana,

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Solvers for the Navier Stokes Equations in Rotation Form Efficient Solvers for the Navier Stokes Equations in Rotation Form Computer Research Institute Seminar Purdue University March 4, 2005 Michele Benzi Emory University Atlanta, GA Thanks to: NSF (MPS/Computational

More information

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C Journal of Computational and Applied Mathematics 200 (2007) 749 760 www.elsevier.com/locate/cam The reflexive and anti-reflexive solutions of the matrix equation A H XB =C Xiang-yang Peng a,b,, Xi-yan

More information

The eigenvalue distribution of block diagonally dominant matrices and block H-matrices

The eigenvalue distribution of block diagonally dominant matrices and block H-matrices Electronic Journal of Linear Algebra Volume 20 Volume 20 (2010) Article 45 2010 The eigenvalue distribution of block diagonay dominant matrices and block H-matrices Cheng-Yi Zhang chengyizhang@yahoo.com.cn

More information

On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems

On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems Applied Numerical athematics 54 2005) 122 134 wwwelseviercom/locate/apnum On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems G Awanou a,,jlai b a Institute

More information

Analytical formulas for calculating the extremal ranks and inertias of A + BXB when X is a fixed-rank Hermitian matrix

Analytical formulas for calculating the extremal ranks and inertias of A + BXB when X is a fixed-rank Hermitian matrix Analytical formulas for calculating the extremal ranks and inertias of A + BXB when X is a fixed-rank Hermitian matrix Yongge Tian CEMA, Central University of Finance and Economics, Beijing 100081, China

More information

A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations

A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations Jin Yun Yuan Plamen Y. Yalamov Abstract A method is presented to make a given matrix strictly diagonally dominant

More information

arxiv: v3 [math.ra] 22 Aug 2014

arxiv: v3 [math.ra] 22 Aug 2014 arxiv:1407.0331v3 [math.ra] 22 Aug 2014 Positivity of Partitioned Hermitian Matrices with Unitarily Invariant Norms Abstract Chi-Kwong Li a, Fuzhen Zhang b a Department of Mathematics, College of William

More information

Matrix Inequalities by Means of Block Matrices 1

Matrix Inequalities by Means of Block Matrices 1 Mathematical Inequalities & Applications, Vol. 4, No. 4, 200, pp. 48-490. Matrix Inequalities by Means of Block Matrices Fuzhen Zhang 2 Department of Math, Science and Technology Nova Southeastern University,

More information

A SUFFICIENTLY EXACT INEXACT NEWTON STEP BASED ON REUSING MATRIX INFORMATION

A SUFFICIENTLY EXACT INEXACT NEWTON STEP BASED ON REUSING MATRIX INFORMATION A SUFFICIENTLY EXACT INEXACT NEWTON STEP BASED ON REUSING MATRIX INFORMATION Anders FORSGREN Technical Report TRITA-MAT-2009-OS7 Department of Mathematics Royal Institute of Technology November 2009 Abstract

More information

ELA

ELA POSITIVE DEFINITE SOLUTION OF THE MATRIX EQUATION X = Q+A H (I X C) δ A GUOZHU YAO, ANPING LIAO, AND XUEFENG DUAN Abstract. We consider the nonlinear matrix equation X = Q+A H (I X C) δ A (0 < δ 1), where

More information

An Even Order Symmetric B Tensor is Positive Definite

An Even Order Symmetric B Tensor is Positive Definite An Even Order Symmetric B Tensor is Positive Definite Liqun Qi, Yisheng Song arxiv:1404.0452v4 [math.sp] 14 May 2014 October 17, 2018 Abstract It is easily checkable if a given tensor is a B tensor, or

More information

On convergence rate of the Douglas-Rachford operator splitting method

On convergence rate of the Douglas-Rachford operator splitting method On convergence rate of the Douglas-Rachford operator splitting method Bingsheng He and Xiaoming Yuan 2 Abstract. This note provides a simple proof on a O(/k) convergence rate for the Douglas- Rachford

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

S.F. Xu (Department of Mathematics, Peking University, Beijing)

S.F. Xu (Department of Mathematics, Peking University, Beijing) Journal of Computational Mathematics, Vol.14, No.1, 1996, 23 31. A SMALLEST SINGULAR VALUE METHOD FOR SOLVING INVERSE EIGENVALUE PROBLEMS 1) S.F. Xu (Department of Mathematics, Peking University, Beijing)

More information

Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization relations.

Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization relations. HIROSHIMA S THEOREM AND MATRIX NORM INEQUALITIES MINGHUA LIN AND HENRY WOLKOWICZ Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization

More information

Homework 2 Foundations of Computational Math 2 Spring 2019

Homework 2 Foundations of Computational Math 2 Spring 2019 Homework 2 Foundations of Computational Math 2 Spring 2019 Problem 2.1 (2.1.a) Suppose (v 1,λ 1 )and(v 2,λ 2 ) are eigenpairs for a matrix A C n n. Show that if λ 1 λ 2 then v 1 and v 2 are linearly independent.

More information

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 7: Iterative methods for solving linear systems Xiaoqun Zhang Shanghai Jiao Tong University Last updated: December 24, 2014 1.1 Review on linear algebra Norms of vectors and matrices vector

More information

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra Definite versus Indefinite Linear Algebra Christian Mehl Institut für Mathematik TU Berlin Germany 10th SIAM Conference on Applied Linear Algebra Monterey Bay Seaside, October 26-29, 2009 Indefinite Linear

More information

Modified Gauss Seidel type methods and Jacobi type methods for Z-matrices

Modified Gauss Seidel type methods and Jacobi type methods for Z-matrices Linear Algebra and its Applications 7 (2) 227 24 www.elsevier.com/locate/laa Modified Gauss Seidel type methods and Jacobi type methods for Z-matrices Wen Li a,, Weiwei Sun b a Department of Mathematics,

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2010-026 On Preconditioned MHSS Iteration Methods for Complex Symmetric Linear Systems by Zhong-Zhi Bai, Michele Benzi, Fang Chen Mathematics and Computer Science EMORY UNIVERSITY On

More information

First, we review some important facts on the location of eigenvalues of matrices.

First, we review some important facts on the location of eigenvalues of matrices. BLOCK NORMAL MATRICES AND GERSHGORIN-TYPE DISCS JAKUB KIERZKOWSKI AND ALICJA SMOKTUNOWICZ Abstract The block analogues of the theorems on inclusion regions for the eigenvalues of normal matrices are given

More information

GLOBAL CONVERGENCE OF CONJUGATE GRADIENT METHODS WITHOUT LINE SEARCH

GLOBAL CONVERGENCE OF CONJUGATE GRADIENT METHODS WITHOUT LINE SEARCH GLOBAL CONVERGENCE OF CONJUGATE GRADIENT METHODS WITHOUT LINE SEARCH Jie Sun 1 Department of Decision Sciences National University of Singapore, Republic of Singapore Jiapu Zhang 2 Department of Mathematics

More information

A CONVERGENCE RESULT FOR MATRIX RICCATI DIFFERENTIAL EQUATIONS ASSOCIATED WITH M-MATRICES

A CONVERGENCE RESULT FOR MATRIX RICCATI DIFFERENTIAL EQUATIONS ASSOCIATED WITH M-MATRICES A CONVERGENCE RESULT FOR MATRX RCCAT DFFERENTAL EQUATONS ASSOCATED WTH M-MATRCES CHUN-HUA GUO AND BO YU Abstract. The initial value problem for a matrix Riccati differential equation associated with an

More information

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors Chapter 7 Canonical Forms 7.1 Eigenvalues and Eigenvectors Definition 7.1.1. Let V be a vector space over the field F and let T be a linear operator on V. An eigenvalue of T is a scalar λ F such that there

More information