Approximation of functions of large matrices. Part I. Computational aspects. V. Simoncini

Size: px
Start display at page:

Download "Approximation of functions of large matrices. Part I. Computational aspects. V. Simoncini"

Transcription

1 Approximation of functions of large matrices. Part I. Computational aspects V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy 1

2 The problem Given A R n n, v R n and f sufficiently smooth function, approximate x = f(a)v A large dimension, v = 1 A sym. pos. (semi)def., or A positive real f(a)v vs f(a) Projection-type methods K approximation space, m = dim(k) V R n m s.t. K = range(v ) x = f(a)v x m = V f(v AV )(V v) 2

3 The problem Given A R n n, v R n and f sufficiently smooth function, approximate A large dimension, v = 1 x = f(a)v A sym. pos. (semi)def., or A positive real f(a)v vs f(a) Projection-type methods K approximation space, m = dim(k) V R n m s.t. K = range(v ) x = f(a)v x m = V f(v AV )(V v) 3

4 Numerical approximation. f(a)v x Important issues: Role of f in the approximation quality Role of A in the approximation quality Efficiency? Measures/Estimates of accuracy? 4

5 Standard Krylov subspace approximation K = K m (A, v) For H m = V AV, v = V e 1 and V V = I m : x m = V m f(h m )e 1 Polynomial approximation: x m = p m 1 (A)v (p m 1 interpolates f at eigenvalues of H m ) (alternatives: other polyns or interpolation points; e.g., Moret & Novati, ) Note: Procedure valid for A symmetric and nonsymmetric Numerical and theoretical results since mid 80s. 5

6 Typical convergence estimates in K m Approximation of f(λ) = exp( λ) (Hochbruck & Lubich 97) A sym. semidef. σ(a) [0, 4ρ], x m = V m exp( H m )e 1, f(a)v x m 10e m2 /(5ρ), 4ρ m 2ρ f(a)v x m 10 ( eρ ) m ρ e ρ, m 2ρ m see also Tal-Ezer 89, Druskin & Knizhnerman 89, Stewart & Leyk 96 Approximation of f(λ) = λ 1/2, exp( λ),... : f(a)v V m f( H m )e 1 = O(exp( 2m λmin λ max )) 6

7 Typical convergence estimates in K m Approximation of f(λ) = exp( λ) (Hochbruck & Lubich 97) A sym. semidef. σ(a) [0, 4ρ], x m = V m exp( H m )e 1, f(a)v x m 10e m2 /(5ρ), 4ρ m 2ρ f(a)v x m 10 ( eρ ) m ρ e ρ, m 2ρ m see also Tal-Ezer 89, Druskin & Knizhnerman 89, Stewart & Leyk 96 Approximation of f(λ) = λ 1/2, exp( λ),... : f(a)v V m f( H m )e 1 = O(exp( 2m λmin λ max )) 7

8 ...When things are not so easy exp( A)v V m exp( H m )e 1 A R , A = error norm Krylov subspace dimension exp( A)v V m exp( H m )e 1 10e m2 /(5ρ), where σ(a) [0, 4ρ] 4ρ m 2ρ 8

9 Acceleration Procedures: Shift-Invert Lanczos A symmetric pos. (semi)def. Choose γ s.t. (I + γa) is invertible, and construct K = K m ((I + γa) 1, v), van den Eshof-Hochbruck 06, Moret-Novati 04 with T m = V (I + γa) 1 V, v = V e 1 and V V = I m x m = V m f( 1 γ (T 1 m I m ))e 1 Rational approximation: x m = p m 1 ((I + γa) 1 )v Choice of γ: γ = 1/ λ min λ max (Moret, tr 2005) 9

10 Acceleration Procedures: Extended Krylov For A nonsingular, K = K m1 (A, v) + K m2 (A 1, A 1 v), Druskin-Knizhnerman 1998, A sym. Note: K = A (m 2 1) K m1 +m 2 1(A, v) Algorithm (augmentation-style) - Fix m 2 m 1 - Run m 2 steps of Inverted Lanczos - Run m 1 steps of Standard Lanczos + orth. 10

11 Extended Krylov: a new implementation m 1 = m 2 = m not fixed a priori K = K m (A, v) + K m (A 1, A 1 v) Arnoldi-type recurrence: - U 1 [v, A 1 v] + orth - U j+1 [AU j (:, 1), A 1 U j (:, 2)] + orth j = 1, 2,... Recurrence to cheaply compute T m = UmAU m, U m = [U 1,..., U m ] Compute x m = U m f(t m )e 1 Simoncini,

12 Extended Krylov: Convergence theory I f satisfying f(z) = 0 (with convenient measure dµ(ζ)) 1 dµ(ζ), z C\], 0] z ζ Druskin-Knizhnerman 1998: A sym: x x m = O(m 2 exp( 2m 4 λ min λ max )) 12

13 Extended Krylov: Convergence theory II A new approximation result for nonsingular A: Let f = f 1 + f 2, a [0, ) f 1 (z) f 2 (z) m 1 k=0 m 1 k=0 γ 1,k F 1,k (z) c 1 Φ 1 ( a) m, γ 2,k F 2,k (z 1 ) c 2 Φ 2 ( 1 a ) m, Φ 1, F 1,k conformal mapping and Faber Polynomial w.r.to W(A) Φ 2, F 2,k conformal mapping and Faber Polynomial w.r.to W(A 1 ) From this, for A symmetric: x x m = O(exp( 2m 4 λ min λ max )) Currently working on A nonsymmetric 13

14 Convergence rate. A R symmetric. f(λ) = λ 1/ norm of error 10 6 norm of error dimension of approximation space dimension of approximation space σ(a) = [0.01, 0.9] σ(a) = [1, 50] Uniform spectral distribution 14

15 Experiment. A R normal. f(λ) = λ 1/ ellipse a1=0.097, a2=0.01, c= true a= sqrt(l 1 l n ) a optimal 10 4 norm of error dimension of approximation space σ(a) on an elliptic curve in C + with center on real axis 15

16 Log-uniform spectral distribution. f (3) (z) = exp( z), f (5) (z) = z 1/2, f (7) (z) = z 1/4 case 3 1 case 5 1 case 7 1 space dim. at convergence space dim. at convergence space dim. at convergence case case shift invert Lanczos(0.1) 10 5 SI Lanczos(γ) Standard Krylov case Extended 7 2 Krylov space dim. at convergence space dim. at convergence space dim. at convergence cases *-1: λ min = 10 1 cases *-2: λ min = 10 4 x-axis: λ max = 10 k 16

17 SI-Lanczos and dependence on parameter γ 10 0 f(x) = exp( sqrt(x)), λ min = 1e 1, λ max = 1e f(x) = exp( sqrt(x)), λ min = 1e 4, λ max = 1e Lanczos Lanczos 10 3 SI(0.01) EK SI(γ) EK SI(0.1) SI(0.1)SI(1) SI(100) SI(10) SI(0.01) SI(γ) Log-uniform spectral distribution 17

18 Comparisons: CPU Time in Matlab A R : L(u) = 1 10 u xx 100u yy, in [0, 1] 2, hom.b.c. σ(a) [ , ], f(λ) = λ 1/2 Method space dim. CPU Time Standard Krylov Rational (Zolotarev) 0.50 SI-Lanczos(0.001) SI-Lanczos (1e-5) SI-Lanczos (γ=2e-5) Extended Krylov No reorthogonalization. Direct solves. Tol =

19 A nonsymmetric matrix. f(z) = z A R : L(u) = 100u xx u yy + 10xu x in [0, 1] 2, hom.b.c norm of error 10 4 SI Arnoldi(1e 3) Extended Krylov SI Arnoldi(2e 5) SI Arnoldi(1e 5) dimension of approximation space σ(a) R, λ min = , λ max = Full orthogonalization 19

20 Conclusions and work in progress Great potential of using f(a)v in application problems Exploit low cost of using A instead of f(a) Further developments in acceleration techniques The case of A nonsymmetric (preliminary encouraging tests) New implementation of the Extended Krylov method Improved convergence bounds for A symmetric New convergence results for A nonsymmetric (to be completed) Performance: - Does not depend on parameters - Competitive for A sym, and nonsym. (preliminary tests) 20

21 Conclusions and work in progress Great potential of using f(a)v in application problems Exploit low cost of using A instead of f(a) Further developments in acceleration techniques The case of A nonsymmetric (preliminary encouraging tests) New implementation of the Extended Krylov method Improved convergence bounds for A symmetric New convergence results for A nonsymmetric (to be completed) Performance: - Does not depend on parameters - Competitive for A sym, and nonsym. (preliminary tests) 21

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

Adaptive rational Krylov subspaces for large-scale dynamical systems. V. Simoncini

Adaptive rational Krylov subspaces for large-scale dynamical systems. V. Simoncini Adaptive rational Krylov subspaces for large-scale dynamical systems V. Simoncini Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it joint work with Vladimir Druskin, Schlumberger Doll

More information

Error Estimation and Evaluation of Matrix Functions

Error Estimation and Evaluation of Matrix Functions Error Estimation and Evaluation of Matrix Functions Bernd Beckermann Carl Jagels Miroslav Pranić Lothar Reichel UC3M, Nov. 16, 2010 Outline: Approximation of functions of matrices: f(a)v with A large and

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

The rational Krylov subspace for parameter dependent systems. V. Simoncini

The rational Krylov subspace for parameter dependent systems. V. Simoncini The rational Krylov subspace for parameter dependent systems V. Simoncini Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it 1 Given the continuous-time system Motivation. Model

More information

Error bounds for Lanczos approximations of rational functions of matrices

Error bounds for Lanczos approximations of rational functions of matrices Error bounds for Lanczos approximations of rational functions of matrices Andreas Frommer 1 and Valeria Simoncini 2 1 Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, D-42097

More information

Exponential integration of large systems of ODEs

Exponential integration of large systems of ODEs Exponential integration of large systems of ODEs Jitse Niesen (University of Leeds) in collaboration with Will Wright (Melbourne University) 23rd Biennial Conference on Numerical Analysis, June 2009 Plan

More information

CONVERGENCE ANALYSIS OF PROJECTION METHODS FOR THE NUMERICAL SOLUTION OF LARGE LYAPUNOV EQUATIONS

CONVERGENCE ANALYSIS OF PROJECTION METHODS FOR THE NUMERICAL SOLUTION OF LARGE LYAPUNOV EQUATIONS CONVERGENCE ANALYSIS OF PROJECTION METHODS FOR THE NUMERICAL SOLUTION OF LARGE LYAPUNOV EQUATIONS V. SIMONCINI AND V. DRUSKIN Abstract. The numerical solution of large-scale continuous-time Lyapunov matrix

More information

On the numerical solution of large-scale linear matrix equations. V. Simoncini

On the numerical solution of large-scale linear matrix equations. V. Simoncini On the numerical solution of large-scale linear matrix equations V. Simoncini Dipartimento di Matematica, Università di Bologna (Italy) valeria.simoncini@unibo.it 1 Some matrix equations Sylvester matrix

More information

ADAPTIVE RATIONAL KRYLOV SUBSPACES FOR LARGE-SCALE DYNAMICAL SYSTEMS. 1. Introduction. The time-invariant linear system

ADAPTIVE RATIONAL KRYLOV SUBSPACES FOR LARGE-SCALE DYNAMICAL SYSTEMS. 1. Introduction. The time-invariant linear system ADAPTIVE RATIONAL KRYLOV SUBSPACES FOR LARGE-SCALE DYNAMICAL SYSTEMS V. DRUSKIN AND V. SIMONCINI Abstract. The rational Krylov space is recognized as a powerful tool within Model Order Reduction techniques

More information

Valeria Simoncini and Daniel B. Szyld. Report October 2009

Valeria Simoncini and Daniel B. Szyld. Report October 2009 Interpreting IDR as a Petrov-Galerkin method Valeria Simoncini and Daniel B. Szyld Report 09-10-22 October 2009 This report is available in the World Wide Web at http://www.math.temple.edu/~szyld INTERPRETING

More information

EXTENDED KRYLOV SUBSPACE FOR PARAMETER DEPENDENT SYSTEMS

EXTENDED KRYLOV SUBSPACE FOR PARAMETER DEPENDENT SYSTEMS EXTENDED KRYLOV SUBSPACE FOR PARAMETER DEPENDENT SYSTEMS V. SIMONCINI Abstract. The Extended Krylov Subspace has recently received considerable attention as a powerful tool for matrix function evaluations

More information

Bounds for the Matrix Condition Number

Bounds for the Matrix Condition Number Bounds for the Matrix Condition Number CIME-EMS School, Exploiting Hidden Structure in Matrix Computations. Algorithms and Applications Cetraro 22-26 June 2015 Sarah W. Gaaf Joint work with Michiel Hochstenbach

More information

APPROXIMATION OF THE LINEAR THE BLOCK SHIFT-AND-INVERT KRYLOV SUBSPACE METHOD

APPROXIMATION OF THE LINEAR THE BLOCK SHIFT-AND-INVERT KRYLOV SUBSPACE METHOD Journal of Applied Analysis and Computation Volume 7, Number 4, November 2017, 1402 1416 Website:http://jaac-online.com/ DOI:10.11948/2017085 APPROXIMATION OF THE LINEAR COMBINATION OF ϕ-functions USING

More information

EXTENDED KRYLOV SUBSPACE FOR PARAMETER DEPENDENT SYSTEMS

EXTENDED KRYLOV SUBSPACE FOR PARAMETER DEPENDENT SYSTEMS EXTENDED KRYLOV SUBSPACE FOR PARAMETER DEPENDENT SYSTEMS V. SIMONCINI Abstract. The Extended Krylov Subspace has recently received considerable attention as a powerful tool for matrix function evaluations

More information

Iterative solvers for saddle point algebraic linear systems: tools of the trade. V. Simoncini

Iterative solvers for saddle point algebraic linear systems: tools of the trade. V. Simoncini Iterative solvers for saddle point algebraic linear systems: tools of the trade V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The problem

More information

Comparing Leja and Krylov approximations of large scale matrix exponentials

Comparing Leja and Krylov approximations of large scale matrix exponentials Comparing Leja and Krylov approximations of large scale matrix exponentials L. Bergamaschi 1, M. Caliari 2, A. Martínez 2, and M. Vianello 2 1 Dept. of Math. Methods and Models, University of Padova, berga@dmsa.unipd.it

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

z k, z C, (1.1) , for k 2. j! j=0

z k, z C, (1.1) , for k 2. j! j=0 ON THE CONVERGENCE OF KRYLOV SUBSPACE METHODS FOR MATRIX MITTAG-LEFFLER FUNCTIONS IGOR MORET AND PAOLO NOVATI Abstract. In this paper we analyze the convergence of some commonly used Krylov subspace methods

More information

RD-Rational Approximations of the Matrix Exponential

RD-Rational Approximations of the Matrix Exponential RD-Rational Approximations of the Matrix Exponential I. MORET 1 and P. NOVATI 2 Abstract. 1 Dipartimento di Matematica e Informatica Università degli Studi di Trieste, Via Valerio 12/1 34127, Trieste,

More information

Order reduction numerical methods for the algebraic Riccati equation. V. Simoncini

Order reduction numerical methods for the algebraic Riccati equation. V. Simoncini Order reduction numerical methods for the algebraic Riccati equation V. Simoncini Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it 1 The problem Find X

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

CONVERGENCE ANALYSIS OF THE EXTENDED KRYLOV SUBSPACE METHOD FOR THE LYAPUNOV EQUATION

CONVERGENCE ANALYSIS OF THE EXTENDED KRYLOV SUBSPACE METHOD FOR THE LYAPUNOV EQUATION CONVERGENCE ANALYSIS OF THE EXTENDED KRYLOV SUBSPACE METHOD FOR THE LYAPUNOV EQUATION L. KNIZHNERMAN AND V. SIMONCINI Abstract. The Extended Krylov Subspace Method has recently arisen as a competitive

More information

Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection

Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection GAMM-Mitteilungen, 28/3/2012 Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection Stefan Güttel 1, 1 University of Oxford, Mathematical Institute, 24 29 St Giles,

More information

The ReLPM Exponential Integrator for FE Discretizations of Advection-Diffusion Equations

The ReLPM Exponential Integrator for FE Discretizations of Advection-Diffusion Equations The ReLPM Exponential Integrator for FE Discretizations of Advection-Diffusion Equations Luca Bergamaschi 1, Marco Caliari 2, and Marco Vianello 3 1 Dip.to di Met. e Mod. Mat. per le Scienze Appl., Università

More information

C M. A two-sided short-recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching

C M. A two-sided short-recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching M A C M Bergische Universität Wuppertal Fachbereich Mathematik und Naturwissenschaften Institute of Mathematical Modelling, Analysis and Computational Mathematics (IMACM) Preprint BUW-IMACM 16/08 Marcel

More information

Computational methods for large-scale matrix equations and application to PDEs. V. Simoncini

Computational methods for large-scale matrix equations and application to PDEs. V. Simoncini Computational methods for large-scale matrix equations and application to PDEs V. Simoncini Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it 1 Some matrix equations Sylvester

More information

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization General Tools for Solving Large Eigen-Problems

More information

LARGE SPARSE EIGENVALUE PROBLEMS

LARGE SPARSE EIGENVALUE PROBLEMS LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization 14-1 General Tools for Solving Large Eigen-Problems

More information

u(t) = Au(t), u(0) = B, (1.1)

u(t) = Au(t), u(0) = B, (1.1) ADAPTIVE TANGENTIAL INTERPOLATION IN RATIONAL KRYLOV SUBSPACES FOR MIMO MODEL REDUCTION V. DRUSKIN, V. SIMONCINI, AND M. ZASLAVSKY Abstract. Model reduction approaches have shown to be powerful techniques

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 35, pp. 8-28, 29. Copyright 29,. ISSN 68-963. MONOTONE CONVERGENCE OF THE LANCZOS APPROXIMATIONS TO MATRIX FUNCTIONS OF HERMITIAN MATRICES ANDREAS

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Qualifying Examination

Qualifying Examination Summer 24 Day. Monday, September 5, 24 You have three hours to complete this exam. Work all problems. Start each problem on a All problems are 2 points. Please email any electronic files in support of

More information

Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials

Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials L. Bergamaschi 1,M.Caliari 2,A.Martínez 2, and M. Vianello 2 1 Dept. of Math. Methods and Models, University of Padova berga@dmsa.unipd.it

More information

Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties. V. Simoncini

Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties. V. Simoncini Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties V. Simoncini Dipartimento di Matematica, Università di ologna valeria@dm.unibo.it 1 Outline

More information

Computational methods for large-scale matrix equations and application to PDEs. V. Simoncini

Computational methods for large-scale matrix equations and application to PDEs. V. Simoncini Computational methods for large-scale matrix equations and application to PDEs V. Simoncini Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it 1 Some matrix

More information

Solutions for Math 225 Assignment #4 1

Solutions for Math 225 Assignment #4 1 Solutions for Math 225 Assignment #4 () Let B {(3, 4), (4, 5)} and C {(, ), (0, )} be two ordered bases of R 2 (a) Find the change-of-basis matrices P C B and P B C (b) Find v] B if v] C ] (c) Find v]

More information

Computational methods for large-scale matrix equations: recent advances and applications. V. Simoncini

Computational methods for large-scale matrix equations: recent advances and applications. V. Simoncini Computational methods for large-scale matrix equations: recent advances and applications V. Simoncini Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

More information

Iterative Methods for Linear Systems of Equations

Iterative Methods for Linear Systems of Equations Iterative Methods for Linear Systems of Equations Projection methods (3) ITMAN PhD-course DTU 20-10-08 till 24-10-08 Martin van Gijzen 1 Delft University of Technology Overview day 4 Bi-Lanczos method

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

RECURSION RELATIONS FOR THE EXTENDED KRYLOV SUBSPACE METHOD

RECURSION RELATIONS FOR THE EXTENDED KRYLOV SUBSPACE METHOD RECURSION RELATIONS FOR THE EXTENDED KRYLOV SUBSPACE METHOD CARL JAGELS AND LOTHAR REICHEL Abstract. The evaluation of matrix functions of the form f(a)v, where A is a large sparse or structured symmetric

More information

Implementation of exponential Rosenbrock-type integrators

Implementation of exponential Rosenbrock-type integrators Implementation of exponential Rosenbrock-type integrators Marco Caliari a,b, Alexander Ostermann b, a Department of Pure and Applied Mathematics, University of Padua, Via Trieste 63, I-35121 Padova, Italy

More information

MATH 5640: Functions of Diagonalizable Matrices

MATH 5640: Functions of Diagonalizable Matrices MATH 5640: Functions of Diagonalizable Matrices Hung Phan, UMass Lowell November 27, 208 Spectral theorem for diagonalizable matrices Definition Let V = X Y Every v V is uniquely decomposed as u = x +

More information

Exponential integrators for semilinear parabolic problems

Exponential integrators for semilinear parabolic problems Exponential integrators for semilinear parabolic problems Marlis Hochbruck Heinrich-Heine University Düsseldorf Germany Innsbruck, October 2004 p. Outline Exponential integrators general class of methods

More information

Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method

Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method Antti Koskela KTH Royal Institute of Technology, Lindstedtvägen 25, 10044 Stockholm,

More information

DEFLATED RESTARTING FOR MATRIX FUNCTIONS

DEFLATED RESTARTING FOR MATRIX FUNCTIONS DEFLATED RESTARTING FOR MATRIX FUNCTIONS M. EIERMANN, O. G. ERNST AND S. GÜTTEL Abstract. We investigate an acceleration technique for restarted Krylov subspace methods for computing the action of a function

More information

Structured Preconditioners for Saddle Point Problems

Structured Preconditioners for Saddle Point Problems Structured Preconditioners for Saddle Point Problems V. Simoncini Dipartimento di Matematica Università di Bologna valeria@dm.unibo.it. p.1/16 Collaborators on this project Mario Arioli, RAL, UK Michele

More information

On the Superlinear Convergence of MINRES. Valeria Simoncini and Daniel B. Szyld. Report January 2012

On the Superlinear Convergence of MINRES. Valeria Simoncini and Daniel B. Szyld. Report January 2012 On the Superlinear Convergence of MINRES Valeria Simoncini and Daniel B. Szyld Report 12-01-11 January 2012 This report is available in the World Wide Web at http://www.math.temple.edu/~szyld 0 Chapter

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Efficient Wavefield Simulators Based on Krylov Model-Order Reduction Techniques

Efficient Wavefield Simulators Based on Krylov Model-Order Reduction Techniques 1 Efficient Wavefield Simulators Based on Krylov Model-Order Reduction Techniques From Resonators to Open Domains Rob Remis Delft University of Technology November 3, 2017 ICERM Brown University 2 Thanks

More information

Linköping University Post Print. A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces

Linköping University Post Print. A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces Linöping University Post Print A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces Lars Eldén and Valeria Simoncini N.B.: When citing this wor, cite the original article.

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Block Krylov Space Solvers: a Survey

Block Krylov Space Solvers: a Survey Seminar for Applied Mathematics ETH Zurich Nagoya University 8 Dec. 2005 Partly joint work with Thomas Schmelzer, Oxford University Systems with multiple RHSs Given is a nonsingular linear system with

More information

Shift-Invert Lanczos Method for the Symmetric Positive Semidefinite Toeplitz Matrix Exponential

Shift-Invert Lanczos Method for the Symmetric Positive Semidefinite Toeplitz Matrix Exponential Shift-Invert Lanczos Method for the Symmetric Positive Semidefinite Toeplitz Matrix Exponential Hong-Kui Pang and Hai-Wei Sun, Department of Mathematics, University of Macau, Macao, China SUMMARY The Lanczos

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 26, No. 3, pp. 765 781 c 2005 Society for Industrial and Applied Mathematics QUADRATURE RULES BASED ON THE ARNOLDI PROCESS DANIELA CALVETTI, SUN-MI KIM, AND LOTHAR REICHEL

More information

MULTIGRID ARNOLDI FOR EIGENVALUES

MULTIGRID ARNOLDI FOR EIGENVALUES 1 MULTIGRID ARNOLDI FOR EIGENVALUES RONALD B. MORGAN AND ZHAO YANG Abstract. A new approach is given for computing eigenvalues and eigenvectors of large matrices. Multigrid is combined with the Arnoldi

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

IDR(s) Master s thesis Goushani Kisoensingh. Supervisor: Gerard L.G. Sleijpen Department of Mathematics Universiteit Utrecht

IDR(s) Master s thesis Goushani Kisoensingh. Supervisor: Gerard L.G. Sleijpen Department of Mathematics Universiteit Utrecht IDR(s) Master s thesis Goushani Kisoensingh Supervisor: Gerard L.G. Sleijpen Department of Mathematics Universiteit Utrecht Contents 1 Introduction 2 2 The background of Bi-CGSTAB 3 3 IDR(s) 4 3.1 IDR.............................................

More information

Krylov methods for the computation of matrix functions

Krylov methods for the computation of matrix functions Krylov methods for the computation of matrix functions Jitse Niesen (University of Leeds) in collaboration with Will Wright (Melbourne University) Heriot-Watt University, March 2010 Outline Definition

More information

Krylov Space Solvers

Krylov Space Solvers Seminar for Applied Mathematics ETH Zurich International Symposium on Frontiers of Computational Science Nagoya, 12/13 Dec. 2005 Sparse Matrices Large sparse linear systems of equations or large sparse

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Recent computational developments in Krylov Subspace Methods for linear systems. Valeria Simoncini and Daniel B. Szyld

Recent computational developments in Krylov Subspace Methods for linear systems. Valeria Simoncini and Daniel B. Szyld Recent computational developments in Krylov Subspace Methods for linear systems Valeria Simoncini and Daniel B. Szyld A later version appeared in : Numerical Linear Algebra w/appl., 2007, v. 14(1), pp.1-59.

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Accurate evaluation of divided differences for polynomial interpolation of exponential propagators

Accurate evaluation of divided differences for polynomial interpolation of exponential propagators Computing 80, 189 201 (2007) DOI 10.1007/s00607-007-0227-1 Printed in The Netherlands Accurate evaluation of divided differences for polynomial interpolation of exponential propagators M. Caliari, Padua

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: More on Arnoldi Iteration; Lanczos Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 17 Outline 1

More information

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems Charles University Faculty of Mathematics and Physics DOCTORAL THESIS Iveta Hnětynková Krylov subspace approximations in linear algebraic problems Department of Numerical Mathematics Supervisor: Doc. RNDr.

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

Algorithms that use the Arnoldi Basis

Algorithms that use the Arnoldi Basis AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Arnoldi Methods Dianne P. O Leary c 2006, 2007 Algorithms that use the Arnoldi Basis Reference: Chapter 6 of Saad The Arnoldi Basis How to

More information

Structured Preconditioners for Saddle Point Problems

Structured Preconditioners for Saddle Point Problems Structured Preconditioners for Saddle Point Problems V. Simoncini Dipartimento di Matematica Università di Bologna valeria@dm.unibo.it p. 1 Collaborators on this project Mario Arioli, RAL, UK Michele Benzi,

More information

Recycling Bi-Lanczos Algorithms: BiCG, CGS, and BiCGSTAB

Recycling Bi-Lanczos Algorithms: BiCG, CGS, and BiCGSTAB Recycling Bi-Lanczos Algorithms: BiCG, CGS, and BiCGSTAB Kapil Ahuja Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH V. FABER, J. LIESEN, AND P. TICHÝ Abstract. Numerous algorithms in numerical linear algebra are based on the reduction of a given matrix

More information

RESIDUAL, RESTARTING AND RICHARDSON ITERATION FOR THE MATRIX EXPONENTIAL

RESIDUAL, RESTARTING AND RICHARDSON ITERATION FOR THE MATRIX EXPONENTIAL RESIDUAL, RESTARTING AND RICHARDSON ITERATION FOR THE MATRIX EXPONENTIAL MIKE A. BOTCHEV, VOLKER GRIMM, AND MARLIS HOCHBRUCK Abstract. A well-known problem in computing some matrix functions iteratively

More information

Ritz Value Bounds That Exploit Quasi-Sparsity

Ritz Value Bounds That Exploit Quasi-Sparsity Banff p.1 Ritz Value Bounds That Exploit Quasi-Sparsity Ilse Ipsen North Carolina State University Banff p.2 Motivation Quantum Physics Small eigenvalues of large Hamiltonians Quasi-Sparse Eigenvector

More information

Efficient Solution of Parabolic Equations by Krylov Approximation Methods

Efficient Solution of Parabolic Equations by Krylov Approximation Methods Efficient Solution of Parabolic Equations by Krylov Approximation Methods E. Gallopoulos and Y. Saad Abstract In this paper we take a new look at numerical techniques for solving parabolic equations by

More information

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Fakultät für Mathematik TU Chemnitz, Germany Peter Benner benner@mathematik.tu-chemnitz.de joint work with Heike Faßbender

More information

1. Introduction. Many applications in science and engineering require the evaluation of expressions of the form (1.1)

1. Introduction. Many applications in science and engineering require the evaluation of expressions of the form (1.1) ERROR ESTIMATION AND EVALUATION OF MATRIX FUNCTIONS VIA THE FABER TRANSFORM BERNHARD BECKERMANN AND LOTHAR REICHEL Abstract. The need to evaluate expressions of the form fa or fab, where f is a nonlinear

More information

Nonlinear Programming Algorithms Handout

Nonlinear Programming Algorithms Handout Nonlinear Programming Algorithms Handout Michael C. Ferris Computer Sciences Department University of Wisconsin Madison, Wisconsin 5376 September 9 1 Eigenvalues The eigenvalues of a matrix A C n n are

More information

ILAS 2017 July 25, 2017

ILAS 2017 July 25, 2017 Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad Department of Computer Science and Engineering University of Minnesota ILAS 217 July 25, 217 Large eigenvalue

More information

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering A short course on: Preconditioned Krylov subspace methods Yousef Saad University of Minnesota Dept. of Computer Science and Engineering Universite du Littoral, Jan 19-3, 25 Outline Part 1 Introd., discretization

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Research Article MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple Right-Hand Sides

Research Article MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple Right-Hand Sides Mathematical Problems in Engineering, Article ID 357874, 6 pages http://dx.doi.org/10.1155/2014/357874 Research Article MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 16-02 The Induced Dimension Reduction method applied to convection-diffusion-reaction problems R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft

More information

An Arnoldi Gram-Schmidt process and Hessenberg matrices for Orthonormal Polynomials

An Arnoldi Gram-Schmidt process and Hessenberg matrices for Orthonormal Polynomials [ 1 ] University of Cyprus An Arnoldi Gram-Schmidt process and Hessenberg matrices for Orthonormal Polynomials Nikos Stylianopoulos, University of Cyprus New Perspectives in Univariate and Multivariate

More information

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota 15th Copper Mountain Conference Mar. 28, 218 First: Joint work with

More information

Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data

Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data Zdeněk Strakoš Academy of Sciences and Charles University, Prague http://www.cs.cas.cz/

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 41, pp. 159-166, 2014. Copyright 2014,. ISSN 1068-9613. ETNA MAX-MIN AND MIN-MAX APPROXIMATION PROBLEMS FOR NORMAL MATRICES REVISITED JÖRG LIESEN AND

More information

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems AMSC 663-664 Final Report Minghao Wu AMSC Program mwu@math.umd.edu Dr. Howard Elman Department of Computer

More information

Three-Dimensional Transient Electromagnetic Modeling Using Rational Krylov Methods

Three-Dimensional Transient Electromagnetic Modeling Using Rational Krylov Methods Geophys. J. Int. (0000) 000, 000 000 Three-Dimensional Transient Electromagnetic Modeling Using Rational Krylov Methods Ralph-Uwe Börner, Oliver G. Ernst, and Stefan Güttel Saturday 26 th July, 2014 SUMMARY

More information

Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods

Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods Lars Eldén Department of Mathematics Linköping University, Sweden Joint work with Valeria Simoncini February 21 Lars Eldén

More information

SOLVING ILL-POSED LINEAR SYSTEMS WITH GMRES AND A SINGULAR PRECONDITIONER

SOLVING ILL-POSED LINEAR SYSTEMS WITH GMRES AND A SINGULAR PRECONDITIONER SOLVING ILL-POSED LINEAR SYSTEMS WITH GMRES AND A SINGULAR PRECONDITIONER LARS ELDÉN AND VALERIA SIMONCINI Abstract. Almost singular linear systems arise in discrete ill-posed problems. Either because

More information

Krylov subspace projection methods

Krylov subspace projection methods I.1.(a) Krylov subspace projection methods Orthogonal projection technique : framework Let A be an n n complex matrix and K be an m-dimensional subspace of C n. An orthogonal projection technique seeks

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

ANALYSIS OF SOME KRYLOV SUBSPACE APPROXIMATIONS TO THE MATRIX EXPONENTIAL OPERATOR

ANALYSIS OF SOME KRYLOV SUBSPACE APPROXIMATIONS TO THE MATRIX EXPONENTIAL OPERATOR ANALYSIS OF SOME KRYLOV SUBSPACE APPROXIMATIONS TO THE MATRIX EXPONENTIAL OPERATOR Y. SAAD Abstract. In this note we present a theoretical analysis of some Krylov subspace approximations to the matrix

More information