II TheLaplace equacon and potencal fluid flow

Size: px
Start display at page:

Download "II TheLaplace equacon and potencal fluid flow"

Transcription

1 THE WAVE EQUATION (3) I Main Topics A The aplace equacon and fluid potencal B AssumpCons and boundary condicons of D small wave theory C SoluCon of the wave equacon D Energy in a wave E Shoaling of waves GG454 1 II Theaplace equacon and potencal fluid flow Consider a square which fluid is flowing across, with no fluid being stored or lost in the square Any increase in the velocity of fluid in the x- direccon (u) across the square must be matched by a decrease in velocity in the y- direccon (v) (1) u/dx = - v/ y () u/dx + v/ y = GG454 1

2 II Theaplace equacon and potencal fluid flow u x + v y = Suppose that the velocices can be given by parcal derivacves of a potencal funccon φ ( 3) u = φ x ( 4) v = φ y SubsCtuCng (3) and (4) into () yields the aplace equacon ( 4) φ x + φ y = ( 5) φ = GG454 3 II Theaplace equacon and potencal fluid flow φ x + φ y = φ x φ φ y φ φ x + φ y φ φ φ 1 φ x φ 5 x φ φ 3 φ 7 Δx Δx Δx Δx φ φ φ φ y φ 6 y φ φ 4 φ 8 Δy Δy Δy Δy φ If Δx = Δy, then φ + φ 1 + φ 3 Δx φ + φ 1 + φ 3 Δx + φ + φ + φ 4 = ( Δx) 4φ + φ 1 + φ + φ 3 + φ 4 = φ = φ 1 + φ + φ 3 + φ 4 4 = φ + φ 1 + φ 3 Δx = φ + φ + φ 4 Δy + φ + φ + φ 4 = ( Δy) So a funccon that sacsfies the aplace equacon has values that average those at nearest neighbors Assuming Δx = Δy GG454 4

3 III AssumpCons and boundary condicons of - D small wave theory A No geometry changes parallel to wave crest (- D assumpcon) B Wave amplitude is small relacve to wave length and water depth C Water is homogeneous, incompressible, and surface tension is nil. D The bo`om is not moving, is impermeable, and is horizontal E Pressure along air- sea interface is constant F The water surface has the form of a cosine wave η = Acos π x t = H cos π x t = wavelength T = wave period GG454 5 IV SoluCon of the wave equacon A General solucons π x (6) φ = H cosh gt ( d + y) π cosh πd sin π x πt H = wave height; = wavelength; d = water depth; C = wave speed; t = Cme; T = wave period (constant); x = horizontal posicon; y = verccal posicon 1 C = gt π tanh πd = CT 3 u = π H π ( d + y) cosh sinh πd 4 v = π H π ( d + y) sinh sinh πd 5 ζ = H π ( d + y) cosh sinh πd 6 ε = H π ( d + y) sinh sinh πd u = horizontal H parccle velocity amplitude* v = verccal H parccle velocity amplitude* ζ = horizontal H parccle displacement amplitude* ε = verccalh parccle displacement amplitude* *FuncCon of wave height, wave period, wavelength, water depth, and distance above bo`om (d+y) GG

4 IV SoluCon of the wave equacon A General solucons 1 C = gt π tanh πd = CT 3 u = π H π ( d + y) cosh sinh πd 4 v = π H π ( d + y) sinh sinh πd 5 ζ = H π ( d + y) cosh sinh πd 6 ε = H π ( d + y) sinh sinh πd B Deep- water solucons (d/ >.5) tanh(πd/) 1 1 C = gt π = CT = gt π 3 u = π H e π y 4 v = π H T e π y 5 ζ = H e π y 6 ε = H e π y * C and depend on T, not water depth d * Amplitudes decrease exponencally with depth (y<) * Wave base: y = - / (e - π =.4) GG454 7 IV SoluCon of the wave equacon A General solucons 1 C = gt π tanh πd = CT 3 u = π H π ( d + y) cosh sinh πd 4 v = π H π ( d + y) sinh sinh πd 5 ζ = H π ( d + y) cosh sinh πd 6 ε = H π ( d + y) sinh sinh πd B Shallow- water solucons (d/<.5) As ω!, cosh(ω)! tanh(ω)! ω 1 C = gd C = gd = CT = gdt 3 u = π H πd = π H πd = C H d = C A d 4 v = π H d + y d 5 ζ = H πd 6 ε = H d + y d * C and decrease as d decreases * v and ε! as y! - d * u and ζ do not change with y GG

5 IV SoluCon of the wave equacon h`ps:// GG454 9 IV SoluCon of the wave equacon GG

6 V Energy in a wave A PotenCal energy in excess of stacc situacon per unit horizontal area 1 Express excess in terms of the potencal energy density ρgy z η E P = ρg ydx d( ) dy z dz ρg ydx d( ) dy z η dz = ρg ydx Integrate the energy density ρgy over the height range!η, and then average that over a wavelength to find average excess potencal energy per unit horizontal area E P = 1 η ( ρgydy ) dx = ρg 1 3 Now express this in terms of wave amplitude A η = Acos( π x ) E P = ρg 1 Acos π x η dx = ρg dx = ρg 1 η 1 π x A cos dy dz dx = ρg η η = mean squared displacement dx = ρg 1 A = ρg 4 A GG V Energy in a wave B KineCc energy in excess of stacc situacon per unit horizontal area 1 Express excess in terms of the kinecc energy density ρg velocity / E K = 1 ( ρ velocity dv ) = ρ z ( u + v ) dx dydz d SubsCtute expressions for u and v [see eqs. (3), (4), and (5)] and proceed as before by integracng verccally and then averaging horiztonally E K = ρ π T sinh( π H ) 1 Acos π x + ρ π 1 Asin π x T sinh( π H ) sinh π ( y + d) dydx d 3 A er considerable algebra (see Kundu (199) for guidance) E K = 1 ρgη = 1 4 ρga cosh π y + d dydx d GG

7 V Energy in a wave C Total energy in excess of stacc situacon per unit horizontal area 1 Horizontally averaged excess potencal energy and kinecc energy are equal E P = 1 ρgη = 1 4 ρga E K = 1 ρgη = 1 4 ρga Total horizontally averaged excess energy is evenly split between kinecc and potencal energy E total = E P + E K = ρgη = 1 ρga GG VI A shoaling wave A B C E total( 1) = E total = B ( B 1 1 ) ρga 1 A = 1 A 1 1 B 1 B ρga 1 As decreases, A increases As B decreases, A increases D Wave steepness = A/ = H/ E Waves get taller and steeper as they shoal because E K decreases and E P increases as water depth decreases (conservacon of energy) F Rule of thumb: waves break where (H/ ) = 1/7 tanh (πd/) 1 Map view of waves nearing shore GG

8 VI A shoaling wave h`ps:// GG Appendices GG

9 Hyperbolic FuncCons sinh( β ) = eβ e β = β + β 3 3! + β 5 5! + cosh( β ) = eβ + e β = 1+ β! + β 4 4! + tanh( β ) = sinh( β ) cosh( β ) = eβ e β e β + e β tanh( β ) = β β β 5 sinh kd cosh k d + y sinh kd sinh k d + y = = 15 + for β < π + e k( d+y) e k d+y = e k( d+y) e k d+y = ( d+y ) ek + e k( d+y) ( d+y ) ek e k( d+y) = ekd e ky + e kd e ky = ekd e ky e kd e ky GG Shallow water and deep water approximacons Shallow water Asβ, sinh β Asβ, cosh β Asβ, tanh β sinh cosh tanh = = 1 = β 1 β Deep water Asβ, sinh β Asβ, cosh β Asβ, tanh β sinh π cosh π tanh π e β e β GG

10 Shallow water and deep water approximacons Shallow water Asβ, tanh β As πd As πd As πd, As πd As πd, β, cosh πd 1, sinh πd πd cosh π d + y sinh πd 1 πd π d + y, sinh π d + y sinh π d + y sinh πd d + y d Deep water Asβ, tanh β As πd π, As πd, tanh( π ) cosh π d + y sinh πd e πd sinh π d + y sinh πd e πd GG References Kundu, P.K., 199, Fluid mechanics: Academic Press, San Diego, California, 638 p. GG454 1

NUMERICAL SOLUTION OF THE 1- D DIFFUSION EQUATION (39)

NUMERICAL SOLUTION OF THE 1- D DIFFUSION EQUATION (39) 4/4/15 NUMERICAL SOLUTION OF THE 1- D DIFFUSION EQUATION (39) I Main Topics A MoCvaCon for using a numerical technique B Non- dimensionalizing the diffusion (heat flow) equacon C Finite- difference solucon

More information

II MoCvaCon SUBSIDENCE MECHANICS: HEAT FLOW ANALOG (38)

II MoCvaCon SUBSIDENCE MECHANICS: HEAT FLOW ANALOG (38) SUBSIDENCE MECHANICS: HEAT FLOW ANALOG (38) I Main Topics A MoCvaCon: Why invescgate heat flow? B Development of 1-D heat flow equacon as analog for consolidacon C Finite-difference interpretacon of heat

More information

2. Theory of Small Amplitude Waves

2. Theory of Small Amplitude Waves . Theory of Small Amplitude Waves.1 General Discussion on Waves et us consider a one-dimensional (on -ais) propagating wave that retains its original shape. Assume that the wave can be epressed as a function

More information

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory 13.021 Marine Hydrodynamics, Fall 2004 Lecture 19 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. Water Waves 13.021 - Marine Hydrodynamics Lecture 19 Exact (nonlinear) governing

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 190 1987 006 Introduction to Marine Hydrodynamics (NA35) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering Shanghai Jiao Tong University

More information

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory 13.021 Marine Hydrodynamics Lecture 19 Copyright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 19 Water Waves Exact (nonlinear) governing equations

More information

Lecture 4. Laminar Premixed Flame Configura6on 4.- 1

Lecture 4. Laminar Premixed Flame Configura6on 4.- 1 Lecture 4 Laminar Premixed Flame Configura6on 4.- 1 Bunsen Burner Classical device to generate a laminar premixed flame Gaseous fuel enters into the mixing chamber, into which air is entrained Velocity

More information

13.42 LECTURE 2: REVIEW OF LINEAR WAVES

13.42 LECTURE 2: REVIEW OF LINEAR WAVES 13.42 LECTURE 2: REVIEW OF LINEAR WAVES SPRING 2003 c A.H. TECHET & M.S. TRIANTAFYLLOU 1. Basic Water Waves Laplace Equation 2 φ = 0 Free surface elevation: z = η(x, t) No vertical velocity at the bottom

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

Chapter 4 Water Waves

Chapter 4 Water Waves 2.20 Marine Hdrodnamics, Fall 2018 Lecture 15 Copright c 2018 MIT - Department of Mechanical Engineering, All rights reserved. Chapter 4 Water Waves 2.20 - Marine Hdrodnamics Lecture 15 4.1 Exact (Nonlinear)

More information

Figure 1: Surface waves

Figure 1: Surface waves 4 Surface Waves on Liquids 1 4 Surface Waves on Liquids 4.1 Introduction We consider waves on the surface of liquids, e.g. waves on the sea or a lake or a river. These can be generated by the wind, by

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

Review and Remember from Exam 1

Review and Remember from Exam 1 Review and Remember from Exam 1 Units How to convert units (Get the 1 the right way up) Always carry units around in problems! Your answer to a ques-on should always include units! Use dimensional analysis

More information

Models of ocean circulation are all based on the equations of motion.

Models of ocean circulation are all based on the equations of motion. Equations of motion Models of ocean circulation are all based on the equations of motion. Only in simple cases the equations of motion can be solved analytically, usually they must be solved numerically.

More information

Wave-Body Interaction Theory (Theory of Ship Waves) Lecture Notes for Graduate Course

Wave-Body Interaction Theory (Theory of Ship Waves) Lecture Notes for Graduate Course Wave-Body Interaction Theory (Theory of Ship Waves) Lecture Notes for Graduate Course ( April 018 ) Lab of Seakeeping & Floating-Body Dynamics in Waves Dept of Naval Architecture & Ocean Engineering Osaka

More information

On Vertical Variations of Wave-Induced Radiation Stress Tensor

On Vertical Variations of Wave-Induced Radiation Stress Tensor Archives of Hydro-Engineering and Environmental Mechanics Vol. 55 (2008), No. 3 4, pp. 83 93 IBW PAN, ISSN 1231 3726 On Vertical Variations of Wave-Induced Radiation Stress Tensor Włodzimierz Chybicki

More information

Chapter 1 EM April Table of Contents. Page. Irregular Waves...II-1-59

Chapter 1 EM April Table of Contents. Page. Irregular Waves...II-1-59 Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 30 April 2002 Table of Contents Page II-1-1. II-1-2. II-1-3. Introduction...II-1-1 Regular Waves...II-1-3 a. Introduction...II-1-3 b. Definition

More information

Kelvin Helmholtz Instability

Kelvin Helmholtz Instability Kelvin Helmholtz Instability A. Salih Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram November 00 One of the most well known instabilities in fluid

More information

Nonlinear Wave Theory

Nonlinear Wave Theory Nonlinear Wave Theory Weakly Nonlinear Wave Theory (WNWT): Stokes Expansion, aka Mode Coupling Method (MCM) 1) Only applied in deep or intermediate depth water ) When truncated at a relatively high order,

More information

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS)

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS) The shallow water equations Lecture 8 (photo due to Clark Little /SWNS) The shallow water equations This lecture: 1) Derive the shallow water equations 2) Their mathematical structure 3) Some consequences

More information

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25 1/25 Rogue Waves Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy 18 January 2019 2/25 What is a rogue wave Mechanisms causing rogue waves Where rogue waves have been reported Modelling

More information

then the substitution z = ax + by + c reduces this equation to the separable one.

then the substitution z = ax + by + c reduces this equation to the separable one. 7 Substitutions II Some of the topics in this lecture are optional and will not be tested at the exams. However, for a curious student it should be useful to learn a few extra things about ordinary differential

More information

The dependence of the cross-sectional shape on the hydraulic resistance of microchannels

The dependence of the cross-sectional shape on the hydraulic resistance of microchannels 3-weeks course report, s0973 The dependence of the cross-sectional shape on the hydraulic resistance of microchannels Hatim Azzouz a Supervisor: Niels Asger Mortensen and Henrik Bruus MIC Department of

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

Lecture: Wave-induced Momentum Fluxes: Radiation Stresses

Lecture: Wave-induced Momentum Fluxes: Radiation Stresses Chapter 4 Lecture: Wave-induced Momentum Fluxes: Radiation Stresses Here we derive the wave-induced depth-integrated momentum fluxes, otherwise known as the radiation stress tensor S. These are the 2nd-order

More information

Math 132 Information for Test 2

Math 132 Information for Test 2 Math 13 Information for Test Test will cover material from Sections 5.6, 5.7, 5.8, 6.1, 6., 6.3, 7.1, 7., and 7.3. The use of graphing calculators will not be allowed on the test. Some practice questions

More information

/01/04: Morrison s Equation SPRING 2004 A. H. TECHET

/01/04: Morrison s Equation SPRING 2004 A. H. TECHET 3.4 04/0/04: orrison s Equation SPRING 004 A.. TECET. General form of orrison s Equation Flow past a circular cylinder is a canonical problem in ocean engineering. For a purely inviscid, steady flow we

More information

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt).

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt). Calculus II - Problem Solving Drill 4: Calculus for Parametric Equations Question No. of 0 Instructions: () Read the problem and answer choices carefully () Work the problems on paper as. Find dy/dx where

More information

The hydrostatic equilibrium

The hydrostatic equilibrium Chapter 10 The hydrostatic equilibrium 10.1 The force on the infinitesimal parcel Now we will compute the total force acting on an infinitesimal parcel of fluid at rest. Consider a rectangular parallelepiped

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

Aalborg Universitet. Lecture Notes for the Course in Water Wave Mechanics Andersen, Thomas Lykke; Frigaard, Peter Bak. Publication date: 2007

Aalborg Universitet. Lecture Notes for the Course in Water Wave Mechanics Andersen, Thomas Lykke; Frigaard, Peter Bak. Publication date: 2007 Aalborg Universitet Lecture Notes for the Course in Water Wave Mechanics Andersen, Thomas Lykke; Frigaard, Peter Bak Publication date: 2007 Document Version Publisher's PDF, also known as Version of record

More information

Making Waves in Multivariable Calculus

Making Waves in Multivariable Calculus Making Waves in Multivariable Calculus J. B. Thoo Yuba College 2014 CMC3 Fall Conference, Monterey, Ca This presentation

More information

Monday, 6 th October 2008

Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns 1/19 Class test next week... MA211 Lecture 9: 2nd order differential eqns 2/19 This morning

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Theory of Ship Waves (Wave-Body Interaction Theory) Quiz No. 2, April 25, 2018

Theory of Ship Waves (Wave-Body Interaction Theory) Quiz No. 2, April 25, 2018 Quiz No. 2, April 25, 2018 (1) viscous effects (2) shear stress (3) normal pressure (4) pursue (5) bear in mind (6) be denoted by (7) variation (8) adjacent surfaces (9) be composed of (10) integrand (11)

More information

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface.

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface. 5.2.1 Capillary Pressure: The Young-Laplace Equation Vapor Fo Fs Fs Fi Figure 5.1 Origin of surface tension at liquid-vapor interface. Liquid 1 5.2.1 Capillary Pressure: The Young-Laplace Equation Figure

More information

Spacetime and 4 vectors

Spacetime and 4 vectors Spacetime and 4 vectors 1 Minkowski space = 4 dimensional spacetime Euclidean 4 space Each point in Minkowski space is an event. In SR, Minkowski space is an absolute structure (like space in Newtonian

More information

Classical Mechanics Lecture 23

Classical Mechanics Lecture 23 Classical Mechanics Lecture 23 Toda s Concept: Harmonic Waves Mechanics Lecture 23, Slide 1 Your comments are ver important to us... Your comments are still ver important to us... So, the tension in a

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

MATH Non-Euclidean Geometry Exercise Set #9 Solutions

MATH Non-Euclidean Geometry Exercise Set #9 Solutions MATH 6118-090 Non-Euclidean Geometry Exercise Set #9 Solutions 1. Consider the doubly asymptotic triangle AMN in H where What is the image of AMN under the isometry γ 1? Use this to find the hyperbolic

More information

Traveling Harmonic Waves

Traveling Harmonic Waves Traveling Harmonic Waves 6 January 2016 PHYC 1290 Department of Physics and Atmospheric Science Functional Form for Traveling Waves We can show that traveling waves whose shape does not change with time

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

1 Curvilinear Coordinates

1 Curvilinear Coordinates MATHEMATICA PHYSICS PHYS-2106/3 Course Summary Gabor Kunstatter, University of Winnipeg April 2014 1 Curvilinear Coordinates 1. General curvilinear coordinates 3-D: given or conversely u i = u i (x, y,

More information

THE PHYSICS OF WAVES CHAPTER 1. Problem 1.1 Show that Ψ(x, t) = (x vt) 2. is a traveling wave.

THE PHYSICS OF WAVES CHAPTER 1. Problem 1.1 Show that Ψ(x, t) = (x vt) 2. is a traveling wave. CHAPTER 1 THE PHYSICS OF WAVES Problem 1.1 Show that Ψ(x, t) = (x vt) is a traveling wave. Show thatψ(x, t) is a wave by substitutioninto Equation 1.1. Proceed as in Example 1.1. On line version uses Ψ(x,

More information

MIDTERM 1. Name-Surname: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts Total. Overall 115 points.

MIDTERM 1. Name-Surname: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts Total. Overall 115 points. Name-Surname: Student No: Grade: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts 1 2 3 4 5 6 7 8 Total Overall 115 points. Do as much as you can. Write your answers to all of the questions.

More information

v t + fu = 1 p y w t = 1 p z g u x + v y + w

v t + fu = 1 p y w t = 1 p z g u x + v y + w 1 For each of the waves that we will be talking about we need to know the governing equators for the waves. The linear equations of motion are used for many types of waves, ignoring the advective terms,

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004

Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004 13.01 ydrodynamics for Ocean Engineers Prof. A.. Techet Fall 004 Morrison s Equation 1. General form of Morrison s Equation Flow past a circular cylinder is a canonical problem in ocean engineering. For

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

Salmon: Introduction to ocean waves

Salmon: Introduction to ocean waves 3 Many waves In the previous lecture, we considered the case of two basic waves propagating in one horizontal dimension. However, Proposition #2 lets us have as many basic waves as we want. Suppose we

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

for 2 1/3 < t 3 1/3 parametrizes

for 2 1/3 < t 3 1/3 parametrizes Solution to Set 4, due Friday April 1) Section 5.1, Problem ) Explain why the path parametrized by ft) = t, t 1 ) is not smooth. Note this is true more specifically if the interval of t contains t = 1

More information

Classical Mechanics Lecture 23

Classical Mechanics Lecture 23 Classical Mechanics Lecture 23 Toda s Concept: Harmonic Waves Mechanics Lecture 23, Slide 1 Your comments are ver important to us... Your comments are still ver important to us... So, the tension in a

More information

PHYSICS 126 Fall 2010 Midterm 1

PHYSICS 126 Fall 2010 Midterm 1 PHYSICS 16 Fall 010 Midterm 1 Name: SOLUTIONS Student ID: Section Number: Closed book with one sheet of notes and a calculator. Answer the questions in spaces provided on each sheet. If you run out of

More information

GG303 Lecture 15 10/6/09 1 FINITE STRAIN AND INFINITESIMAL STRAIN

GG303 Lecture 15 10/6/09 1 FINITE STRAIN AND INFINITESIMAL STRAIN GG303 Lecture 5 0609 FINITE STRAIN AND INFINITESIMAL STRAIN I Main Topics on infinitesimal strain A The finite strain tensor [E] B Deformation paths for finite strain C Infinitesimal strain and the infinitesimal

More information

M.Sc. in Meteorology. Numerical Weather Prediction

M.Sc. in Meteorology. Numerical Weather Prediction M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. In this section

More information

Math 115 HW #5 Solutions

Math 115 HW #5 Solutions Math 5 HW #5 Solutions From 29 4 Find the power series representation for the function and determine the interval of convergence Answer: Using the geometric series formula, f(x) = 3 x 4 3 x 4 = 3(x 4 )

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Sixth Term Examination Papers 9475 MATHEMATICS 3

Sixth Term Examination Papers 9475 MATHEMATICS 3 Sixth Term Examination Papers 9475 MATHEMATICS 3 Morning WEDNESDAY 26 JUNE 2013 Time: 3 hours Additional Materials: Answer Booklet Formulae Booklet INSTRUCTIONS TO CANDIDATES Please read this page carefully,

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Central concepts: Phase velocity: velocity with which surfaces of constant phase move Group velocity: velocity with which slow

More information

Department of Architecture & Civil Engineering ( ) 2 2a. L = 65 2 ρπa4 L. + asinα = 3aθ 2. ( ) = a 1 cos( θ ρπa4 L.

Department of Architecture & Civil Engineering ( ) 2 2a. L = 65 2 ρπa4 L. + asinα = 3aθ 2. ( ) = a 1 cos( θ ρπa4 L. MODE ANSWER age: 1 QUESTION Mass of tube = ρπ 3a ( ) ( a) Moment of inertia of tube = ρπ 3 Mass of bar = ρπa Moment of inertia of bar = = 5ρπa ( 3a) 4 a ( ) 4 ρπ ( a )4 = 1 3 ρπa4 Horizontal displacement

More information

Notes on Nearshore Physical Oceanography. Falk Feddersen SIO

Notes on Nearshore Physical Oceanography. Falk Feddersen SIO Notes on Nearshore Physical Oceanography Falk Feddersen SIO May 22, 2017 Contents 1 Review of Linear Surface Gravity Waves 5 1.1 Definitions..................................... 5 1.2 Potential Flow...................................

More information

Lecture 7: Oceanographic Applications.

Lecture 7: Oceanographic Applications. Lecture 7: Oceanographic Applications. Lecturer: Harvey Segur. Write-up: Daisuke Takagi June 18, 2009 1 Introduction Nonlinear waves can be studied by a number of models, which include the Korteweg de

More information

Hyperbolic functions

Hyperbolic functions Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Derivatives of Hyperbolic functions What you need to know already: Basic rules of differentiation, including

More information

Behavior and Sensitivity of Phase Arrival Times (PHASE)

Behavior and Sensitivity of Phase Arrival Times (PHASE) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Behavior and Sensitivity of Phase Arrival Times (PHASE) Emmanuel Skarsoulis Foundation for Research and Technology Hellas

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

Tutorial Exercises: Geometric Connections

Tutorial Exercises: Geometric Connections Tutorial Exercises: Geometric Connections 1. Geodesics in the Isotropic Mercator Projection When the surface of the globe is projected onto a flat map some aspects of the map are inevitably distorted.

More information

Phys 239 Quantitative Physics Lecture 9

Phys 239 Quantitative Physics Lecture 9 Phys 239 Quantitative Physics Lecture 9 Water Waves While we re dealing with fluids, we may as well cover waves on water (really any fluid). While waves are simple introductory material in most physics

More information

Chapter 2. Deriving the Vlasov Equation From the Klimontovich Equation 19. Deriving the Vlasov Equation From the Klimontovich Equation

Chapter 2. Deriving the Vlasov Equation From the Klimontovich Equation 19. Deriving the Vlasov Equation From the Klimontovich Equation Chapter 2. Deriving the Vlasov Equation From the Klimontovich Equation 19 Chapter 2. Deriving the Vlasov Equation From the Klimontovich Equation Topics or concepts to learn in Chapter 2: 1. The microscopic

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Electrodynamics PHY712. Lecture 4 Electrostatic potentials and fields. Reference: Chap. 1 & 2 in J. D. Jackson s textbook.

Electrodynamics PHY712. Lecture 4 Electrostatic potentials and fields. Reference: Chap. 1 & 2 in J. D. Jackson s textbook. Electrodynamics PHY712 Lecture 4 Electrostatic potentials and fields Reference: Chap. 1 & 2 in J. D. Jackson s textbook. 1. Complete proof of Green s Theorem 2. Proof of mean value theorem for electrostatic

More information

Broadcast EncrypCon Amos Fiat & Moni Naor

Broadcast EncrypCon Amos Fiat & Moni Naor Broadcast EncrypCon Amos Fiat & Moni Naor Presented By Gayathri VS Outline q The Problem q Zero Message Schemes à Basic Scheme à 1- resilient Scheme based on 1- way funccon à 1- resilient Scheme based

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

SECOND-ORDER PARTIAL STANDING WAVE SOLUTION FOR A SLOPING BOTTOM

SECOND-ORDER PARTIAL STANDING WAVE SOLUTION FOR A SLOPING BOTTOM SECOND-ORDER PARTIAL STANDING WAVE SOLUTION FOR A SLOPING BOTTOM Meng-Syue Li Qingping Zou Yang-Yih Chen 3 and Hung-Chu Hsu This paper presents a second-order asymptotic solution in Lagrangian description

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu.50 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .50 Introduction to Seismology

More information

ME19a. SOLUTIONS. Oct. 6, Due Oct. 13

ME19a. SOLUTIONS. Oct. 6, Due Oct. 13 ME19a. OLUTION. Oct. 6, 29. Due Oct. 1 PROBLEM 5 The L-shaped gate shown in the figure can rotate about the hinge. As the water level rises the gate will automatically open when the water level rises to

More information

Sound waves

Sound waves Types of waves Sound waves Violin A 440Hz Guitar A 440Hz Piano A 220Hz Recorder A 880Hz Flute A 440Hz Rubens tube Earthquakes Mavericks, California Garrett McNamara surfs a 100ft wave! (January

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is. The Energy Balance Consider a volume Ω enclosing a mass M and bounded by a surface δω. δω At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations Chapter 3 Shallow Water Equations and the Ocean Over most of the globe the ocean has a rather distinctive vertical structure, with an upper layer ranging from 20 m to 200 m in thickness, consisting of

More information

Higher Orders Instability of a Hollow Jet Endowed with Surface Tension

Higher Orders Instability of a Hollow Jet Endowed with Surface Tension Mechanics and Mechanical Engineering Vol. 2, No. (2008) 69 78 c Technical University of Lodz Higher Orders Instability of a Hollow Jet Endowed with Surface Tension Ahmed E. Radwan Mathematics Department,

More information

Brief Notes on Differential Equations

Brief Notes on Differential Equations Brief Notes on Differential Equations (A) Searable First-Order Differential Equations Solve the following differential equations b searation of variables: (a) (b) Solution ( 1 ) (a) The ODE becomes d and

More information

ANALYTIC SOLUTION FOR THE FORCED MEAN CROSS-SHORE FLOW IN THE SURF ZONE

ANALYTIC SOLUTION FOR THE FORCED MEAN CROSS-SHORE FLOW IN THE SURF ZONE ANALYTIC SOLUTION FOR THE FORCED MEAN CROSS-SHORE FLOW IN THE SURF ZONE Thomas C. Lippmann 1, Assoc. MASCE Analytical solutions to the forced horizontal momentum equations are found for the local vertical

More information

Figure 1. adiabatically. The change in pressure experienced by the parcel is. dp = -ρ o gξ

Figure 1. adiabatically. The change in pressure experienced by the parcel is. dp = -ρ o gξ 6. Internal waves Consider a continuously stratified fluid with ρ o (z) the vertical density profile. z p' ξ p ρ ρ ο (z) Figure 1. Figure by MIT OpenCourseWare. At a point P raise a parcel of water by

More information

Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 4. Potential Flows part 2 Introduction Topics of Module 1 Problems of interest Chapter 1 Hydrostatics Chapter 2 Floating stability Chapter 2 Constant

More information

Unit - 7 Vibration of Continuous System

Unit - 7 Vibration of Continuous System Unit - 7 Vibration of Continuous System Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Continuous systems are tore which

More information

arxiv: v1 [physics.flu-dyn] 28 Mar 2017

arxiv: v1 [physics.flu-dyn] 28 Mar 2017 J. Indones. Math. Soc. (MIHMI) Vol., No. (006), pp. 4 57. arxiv:703.09445v [physics.flu-dyn 8 Mar 07 LINEAR THEORY FOR SINGLE AND DOUBLE FLAP WAVEMAKERS W.M. Kusumawinahyu, N. Karjanto and G. Klopman Abstract.

More information

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3)

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3) Diff. Eqns. Problem Set 6 Solutions. Solve the boundary-value problems or else show that no solutions exist. a y + y 6y, y, y 4 b y + 9y x + e x, y, yπ a Assuming y e rx is a solution, we get the characteristic

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

be the top, respectively the bottom of the closed rectangle R, and we define the Banach spaces

be the top, respectively the bottom of the closed rectangle R, and we define the Banach spaces Existence of nonlinear waves of small amplitude To check that we can apply the Crandall-abinowitz theorem in the present setting, we let T = {(q, p) : q [ π, π], p = 0}, B = {(q, p) : q [ π, π], p = },

More information

Salmon: Introduction to ocean waves

Salmon: Introduction to ocean waves 9 The shallow-water equations. Tsunamis. Our study of waves approaching the beach had stopped at the point of wave breaking. At the point of wave breaking, the linear theory underlying Propositions #1

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Theorem. In terms of the coordinate frame, the Levi-Civita connection is given by:

Theorem. In terms of the coordinate frame, the Levi-Civita connection is given by: THE LEVI-CIVITA CONNECTION FOR THE POINCARÉ METRIC We denote complex numbers z = x + yi C where x, y R. Let H 2 denote the upper half-plane with the Poincaré metric: {x + iy x, y R, y > 0} g = dz 2 y 2

More information

Modified Serre Green Naghdi equations with improved or without dispersion

Modified Serre Green Naghdi equations with improved or without dispersion Modified Serre Green Naghdi equations with improved or without dispersion DIDIER CLAMOND Université Côte d Azur Laboratoire J. A. Dieudonné Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com

More information

Differential equations of mass transfer

Differential equations of mass transfer Differential equations of mass transfer Definition: The differential equations of mass transfer are general equations describing mass transfer in all directions and at all conditions. How is the differential

More information

Chapter 4. Gravity Waves in Shear. 4.1 Non-rotating shear flow

Chapter 4. Gravity Waves in Shear. 4.1 Non-rotating shear flow Chapter 4 Gravity Waves in Shear 4.1 Non-rotating shear flow We now study the special case of gravity waves in a non-rotating, sheared environment. Rotation introduces additional complexities in the already

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information