Incompressible Viscous Flows

Size: px
Start display at page:

Download "Incompressible Viscous Flows"

Transcription

1 Incompessible Viscous Flows F an incompessible fluid, the continuity equation and the Navie-Stokes equation ae given as v = 0, () + v v = P + ν t v Using a vect identity, Equation () may be estated as v. () v + t v v ( v) = ν v (3) Define vticity ω = v (4) and taking cul of (3) we find ω t ( v ω) = ν ω Noting that cul of gadient is zeo and ( v ω) = ( ω) v ( v) ω + ω v v ω. (5) (6) Equation (5) may be estated as t ω + v ω = ω v + ν ω (7) Equation (7) is the vticity tanspt equation. It shows that in addition to being convected and diffused, vticity is also geneated by the fist on the ight hand side of Equation (7) by a vtex stetching mechanism. Two-Dimensional Plane Flows F two dimensional flows in xy-plane as shown in Figue, let

2 i j k ψ ψ v = ( kψ) = = i j, (8) x y z y x 0 0 ψ y v V u x Figue. Schematics of plane flows in a Catesian codinate system. That is ψ u =, y ψ v =, (9) x and Equation () is satisfied. The nonzeo element of ω is ω Z v u = ω = x y = ψ. (0) Equation (7) in two-dimensional case educes to ω ω ω 4 + u + v = ν ω. () t x y Using (0), Equation () may be estated as ψ ψ ψ + ψ ψ = ν 4 ψ. () t y x x y

3 ψ + t ( ψ, ψ) 4 ( x, y) = ν ψ. (3) Equation (3) is the equivalent to the Navie-Stokes equation and contains a single unknown ψ. Plane Flows in a Cylindical Geomety Case (a) v z = 0 and v and v ae functions of and. y V v v x Figue. Schematics of plane flows in a pola codinate system. That is, F a plane flow in cylindical geomety as shown in Figue, let ( ψ( ) ) v =,. (4) e z ψ ψ v = e e, (5) ψ v =, ψ v = (6) 3

4 The nonzeo element of ω is given by ωz = ω = ψ (7) whee ψ ψ ψ = + (8) Equation (7) now becomes ω + v t ω + v ω = ν ω. (9) Using (7), Equation (9) may be estated as ψ ψ ψ + ψ t 4 ψ = ν ψ, (0) ψ + t ( ψ, ψ) 4 (, ) = ν ψ. () Equation () is the equation govening ψ (,) codinated system. in plane flows expessed in pola Case (b) v = 0, v and v z ae functions of and z. z v z V v Figue 3. Schematics of axisymmetic flows in a cylindical codinate system. 4

5 F an axisymmetic flow in cylindical codinates, let ψ v = e (, z) () That is ψ ψ v = e + e z, (3) z v z ψ =, v ψ =. (4) z The vticity define by Equation (4) now becomes v v z ψ ψ ω = v = e = e + (5) z z Thus, the only nonzeo component of vticity is given by ω = ω = E ψ, (6) whee ψ ψ ψ E ψ = +. (7) z Equation (7) may now be estated as ω t + v ω + v ω z v ω ( ω ) comp. z = ν e (8) Using (6) in (8) we find t ψ ψ ψ ( E ψ) ( E ψ) + ( E ψ) + E ψ = νe ψ 4 z z z (9) 5

6 t ( ) ( E ψ, ψ) E ψ 4 (, z) + ψ E z ψ = νe ψ (30) Equation (30) govens (, z) ψ in axisymmetic cylindical flows. Spheical Codinates Spheical codinate system is shown in Figue 4. Hee x = coscosϕ y = cossin ϕ z = sin (3) z ϕ y x Figue 4. Schematics of spheical codinate system. Conside the case when v ϕ = 0 and v and v ae only functions of and. Let (, ) eϕψ v =, (3) sin That is 6

7 ψ ψ v = e e (33) sin sin = ψ sin v, ψ v =. (34) sin The vticity equation will educe to t ( ) ( E ψ, ψ) E ψ + 4 sin (, ) E ψ ψ ψ + cos sin = νe sin ψ, (35) whee cot E = +. (36) Intinsic Codinates It is sometimes simple to wk with a codinate system, which is attached to the suface of evolution. F the body of evolution shown Figue 5, conside the unit vects n, s, e ϕ. F this system the metics ae Thus h = h, h h =, h = h (37) n = Φ = = ϕ 3 s = Φ Φ Φ n + s + eϕ (38) n s ϕ The steam function f axisymmetic flows may now be intoduced as That is ( s,n) ψ ψ ψ v = eϕ = n + s (39) s n v n ψ =, s v s ψ = (40) n 7

8 8 z n e φ s φ Figue 5. Schematics of intinsic codinate systems. The vticity is now given as ψ = ψ + ψ = = ϕ E s s n n e v ω (4) whee + = s s n n E. (4) Note that in tems of and z, E is given by (7) as z E + =. (43)

9 Plane Stagnation Flows Conside a steady plane stagnation flow shown in Figue. F steady plane flow the Navie-Stokes equation educes to ( ψ, ψ) = ν ψ 4 (x, y) () ψ ψ ψ ψ = ν y x x y 4 ψ () y x Figue. Schematics of plane stagnation flow. Potential stagnation plane flow is descibed by U = ax, V = ay, ψ = axy. (3) We look f a solution of the fm Then ( y) ψ = xf. (4) u = xf, v = f, ψ = xf (5) Using (4) and (5), equation () becomes 9

10 ( 4 ) x xf f ff x = νf (6) ( 4) f f ff = νf. (7) Integating (7) we find That is f ff = νf + c (8) The bounday conditions ae: At y = 0, u = 0, v = 0 (9) At lage y, Equations in (3) holds. (0) ( 0) f ( 0) 0 f = =, () As y f ay () Using () we find Thus c = a (3) ff = νf a (4) f + Intoducing a change of vaiable (Schlichting,960) a η = y, f = aνϕ( η), (5) ν Equation (4) may be estated as ϕ + ϕϕ ϕ + = 0 (6) subject to bounday conditions ( 0 ) = φ ( 0) = 0 φ, (7) 0

11 as η ϕ = (8) Gaphical epesentation of the numeical solution is shown in Figue. Additional details of the solution ae discussed by Schlichting (960). Accdingly, At η =. 4, = u U ϕ, = φ ( η) (9) Hence, the bounday laye thickness is given by ν δ =.4 (0) a.6. Φ" Φ 0.8 Φ'=u/U η = a ν y Figue. Schematics of plane stagnation flow solutions.

12 Axisymmetic Stagnation Flow Potential axisymmetic stagnation flow is descibed as V = a, V z = az, ψ = a z. () The steady state Navie-Stokes equation f axisymmetic flows is given as whee ψ z ψ ψ 4 ( E ψ) + ( E ψ) + E ψ = νe ψ z z, () v z ψ =, v ψ =, (3) z E = +. (4) z Simila to the plane flow case we look f a solution of the fm with () z ψ = f, (5) v z = f, v = f, E ψ = f. (6) Using (5) and (6), Equation () educes to f ( 4) ( f ) f ( f ) f ( f ) = ν f (7) ff + νf"" = 0 (8) The bounday conditions ae v = v 0 at z = 0 ; ψ = a z as z (9) z = ( 0) = f ( 0) 0, f ( ) = a f = ψ = a z as z (30)

13 Integating (8) we find c (3) f ff = νf + F equation (3) to be valid at lage z, Intoducing a change of vaiables c = a a ξ = z, f = aνφ( ξ) (3) ν Equation (3) becomes subject to φ + φφ φ + = 0 (33) φ ( 0 ) = φ ( 0) = 0, ( ) = φ (34) The numeical solutions of the flow filed ae vey simila to the plane stagnation flow case shown in Figue with a slightly fulle velocity pofile. The details of the numeical solution ae discussed by Schlichting (960). 3

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

Fluid flow in curved geometries: Mathematical Modeling and Applications

Fluid flow in curved geometries: Mathematical Modeling and Applications Fluid flow in cuved geometies: Mathematical Modeling and Applications D. Muhammad Sajid Theoetical Plasma Physics Division PINSTECH, P.O. Niloe, PAEC, Islamabad Mach 01-06, 010 Islamabad, Paistan Pesentation

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

Applied Aerodynamics

Applied Aerodynamics Applied Aeodynamics Def: Mach Numbe (M), M a atio of flow velocity to the speed of sound Compessibility Effects Def: eynolds Numbe (e), e ρ c µ atio of inetial foces to viscous foces iscous Effects If

More information

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple Global Jounal of Pue and Applied Mathematics. ISSN 0973-1768 Volume 12, Numbe 4 2016, pp. 3315 3325 Reseach India Publications http://www.ipublication.com/gjpam.htm Tansfomation of the Navie-Stokes Equations

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

Exercise sheet 8 (Modeling large- and small-scale flows) 8.1 Volcanic ash from the Eyjafjallajökull

Exercise sheet 8 (Modeling large- and small-scale flows) 8.1 Volcanic ash from the Eyjafjallajökull Execise sheet 8 (Modeling lage- and small-scale flows) last edited June 18, 2018 These lectue notes ae based on textbooks by White [13], Çengel & al.[16], and Munson & al.[18]. Except othewise indicated,

More information

dq 1 (5) q 1 where the previously mentioned limit has been taken.

dq 1 (5) q 1 where the previously mentioned limit has been taken. 1 Vecto Calculus And Continuum Consevation Equations In Cuvilinea Othogonal Coodinates Robet Maska: Novembe 25, 2008 In ode to ewite the consevation equations(continuit, momentum, eneg) to some cuvilinea

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

4.4 Buoyant plume from a steady heat source

4.4 Buoyant plume from a steady heat source 1 Notes on 1.63 Advanced Envionmental Fluid Mechanics Instucto: C. C. Mei, 22 ccmei@mit.edu, 1 617 253 2994 Octobe 25, 22 4-4 buoyplum.tex 4.4 Buoyant plume fom a steady heat souce [Refeence]: Gebhat,

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aeodynamics I UNIT B: Theoy of Aeodynamics ROAD MAP... B-1: Mathematics fo Aeodynamics B-2: Flow Field Repesentations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis AE301

More information

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden Applied Mathematical Sciences, Vol. 7, 13, no. 7, 335-348 Mathematical Model of Magnetometic Resistivity Sounding fo a Conductive Host with a Bulge Ovebuden Teeasak Chaladgan Depatment of Mathematics Faculty

More information

1 Similarity Analysis

1 Similarity Analysis ME43A/538A/538B Axisymmetic Tubulent Jet 9 Novembe 28 Similaity Analysis. Intoduction Conside the sketch of an axisymmetic, tubulent jet in Figue. Assume that measuements of the downsteam aveage axial

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

Vector Calculus Identities

Vector Calculus Identities The Coope Union Depatment of Electical Engineeing ECE135 Engineeing Electomagnetics Vecto Analysis Mach 8, 2012 Vecto Calculus Identities A B B A A B C B C A C A B A B C B A C C A B fg f g + g f fg f G

More information

Conservative Averaging Method and its Application for One Heat Conduction Problem

Conservative Averaging Method and its Application for One Heat Conduction Problem Poceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER THERMAL ENGINEERING and ENVIRONMENT Elounda Geece August - 6 (pp6-) Consevative Aveaging Method and its Application fo One Heat Conduction Poblem

More information

A Most Useful Device of Studying Electrode Processes: The Rotating Disk Electrode

A Most Useful Device of Studying Electrode Processes: The Rotating Disk Electrode A Most Useful Device of Studying Electode Pocesses: The Rotating Disk Electode the theoetical basis Soma Vesztegom Laboatoy of Electochemisty & Electoanalytical Chemisty Eötvös Loánd Univesity of Budapest

More information

Axisymmetric Stokes Flow past a Swarm of Porous Cylindrical Shells

Axisymmetric Stokes Flow past a Swarm of Porous Cylindrical Shells Jounal of Applied Fluid Mechanics Vol. 9 No. pp. 957-963 06. Available online at www.jafmonline.net ISSN 735-357 EISSN 735-365. Axisymmetic Stokes Flow past a Swam of Poous Cylindical Shells S. Deo and

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

The Combined Effect of Chemical reaction, Radiation, MHD on Mixed Convection Heat and Mass Transfer Along a Vertical Moving Surface

The Combined Effect of Chemical reaction, Radiation, MHD on Mixed Convection Heat and Mass Transfer Along a Vertical Moving Surface Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-966 Vol. 5, Issue (Decembe ), pp. 53 53 (Peviously, Vol. 5, Issue, pp. 63 6) Applications and Applied Mathematics: An Intenational Jounal (AAM)

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

π(x, y) = u x + v y = V (x cos + y sin ) κ(x, y) = u y v x = V (y cos x sin ) v u x y

π(x, y) = u x + v y = V (x cos + y sin ) κ(x, y) = u y v x = V (y cos x sin ) v u x y F17 Lectue Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V φ = uî + vθˆ is a constant. In 2-D, this velocit

More information

8 Separation of Variables in Other Coordinate Systems

8 Separation of Variables in Other Coordinate Systems 8 Sepaation of Vaiables in Othe Coodinate Systems Fo the method of sepaation of vaiables to succeed you need to be able to expess the poblem at hand in a coodinate system in which the physical boundaies

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30.

Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30. Reading Assignment Read Chaptes 29 and 30. Poblem Desciption fo Homewok #9 In this homewok, you will solve the inhomogeneous Laplace s equation to calculate the electic scala potential that exists between

More information

2. Plane Elasticity Problems

2. Plane Elasticity Problems S0 Solid Mechanics Fall 009. Plane lasticity Poblems Main Refeence: Theoy of lasticity by S.P. Timoshenko and J.N. Goodie McGaw-Hill New Yok. Chaptes 3..1 The plane-stess poblem A thin sheet of an isotopic

More information

In the previous section we considered problems where the

In the previous section we considered problems where the 5.4 Hydodynamically Fully Developed and Themally Developing Lamina Flow In the pevious section we consideed poblems whee the velocity and tempeatue pofile wee fully developed, so that the heat tansfe coefficient

More information

A new class of exact solutions of the Navier Stokes equations for swirling flows in porous and rotating pipes

A new class of exact solutions of the Navier Stokes equations for swirling flows in porous and rotating pipes Advances in Fluid Mechanics VIII 67 A new class of exact solutions of the Navie Stokes equations fo swiling flows in poous and otating pipes A. Fatsis1, J. Stathaas2, A. Panoutsopoulou3 & N. Vlachakis1

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineeing 41 Intoductoy Nuclea Engineeing Lectue 16 Nuclea eacto Theoy III Neuton Tanspot 1 One-goup eacto Equation Mono-enegetic neutons (Neuton Balance) DD φφ aa φφ + ss 1 vv vv is neuton speed

More information

1) Consider an object of a parabolic shape with rotational symmetry z

1) Consider an object of a parabolic shape with rotational symmetry z Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Mechanics (Stömningsläa), 01-06-01, kl 9.00-15.00 jälpmedel: Students may use any book including the tetbook Lectues on Fluid Dynamics.

More information

A Method of Solving Compressible Navier Stokes Equations in Cylindrical Coordinates Using Geometric Algebra

A Method of Solving Compressible Navier Stokes Equations in Cylindrical Coordinates Using Geometric Algebra Pepints www.pepints.og NOT PEER-REVIEWED Posted: 8 Decembe 08 Aticle A Method of Solving ompessible Navie Stokes Equations in ylindical oodinates Using Geometic Algeba Tey E. Moschandeou,, * London Intenational

More information

A Cross Section surface tension viscosity σ U 2 10 inertia gravity gd

A Cross Section surface tension viscosity σ U 2 10 inertia gravity gd .5 Final Exam 005 SOLUTION Question U A Coss Section Photo emoved fo copyight easons. Souce: Figue 7l in Clanet, C. "Dynamics and stability of wate bells." J. Fluid Mech 40 (00): -47. R d Tooidal im U

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

Lecture 10. Vertical coordinates General vertical coordinate

Lecture 10. Vertical coordinates General vertical coordinate Lectue 10 Vetical coodinates We have exclusively used height as the vetical coodinate but thee ae altenative vetical coodinates in use in ocean models, most notably the teainfollowing coodinate models

More information

MONTE CARLO SIMULATION OF FLUID FLOW

MONTE CARLO SIMULATION OF FLUID FLOW MONTE CARLO SIMULATION OF FLUID FLOW M. Ragheb 3/7/3 INTRODUCTION We conside the situation of Fee Molecula Collisionless and Reflective Flow. Collisionless flows occu in the field of aefied gas dynamics.

More information

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31,

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, th WSEAS Int. Conf. on APPLIED MATHEMATICS, Caio, Egypt, Decembe 9-3, 7 5 Magnetostatic Field calculations associated with thick Solenoids in the Pesence of Ion using a Powe Seies expansion and the Complete

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Exercise 4: Adimensional form and Rankine vortex. Example 1: adimensional form of governing equations

Exercise 4: Adimensional form and Rankine vortex. Example 1: adimensional form of governing equations Fluid Mechanics, SG4, HT9 Septembe, 9 Execise 4: Adimensional fom and Rankine votex Example : adimensional fom of govening equations Calculating the two-dimensional flow aound a cylinde (adius a, located

More information

Physics Tutorial V1 2D Vectors

Physics Tutorial V1 2D Vectors Physics Tutoial V1 2D Vectos 1 Resolving Vectos & Addition of Vectos A vecto quantity has both magnitude and diection. Thee ae two ways commonly used to mathematically descibe a vecto. y (a) The pola fom:,

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

arxiv: v1 [physics.flu-dyn] 21 Dec 2018

arxiv: v1 [physics.flu-dyn] 21 Dec 2018 1 axiv:1812.921v1 [physics.flu-dyn] 21 Dec 218 The cicula capillay jump Rajesh K. Bhagat 1, and P. F. Linden 2, 1 Depatment of Chemical Engineeing and Biotechnology, Univesity of Cambidge, Philippa Fawcett

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Computational Methods of Solid Mechanics. Project report

Computational Methods of Solid Mechanics. Project report Computational Methods of Solid Mechanics Poject epot Due on Dec. 6, 25 Pof. Allan F. Bowe Weilin Deng Simulation of adhesive contact with molecula potential Poject desciption In the poject, we will investigate

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

T x. T k x. is a constant of integration. We integrate a second time to obtain an expression for the temperature distribution:

T x. T k x. is a constant of integration. We integrate a second time to obtain an expression for the temperature distribution: ME 336 Fall 8 HW solution Poblem - The geneal fom of the heat diffusion equation is: T cp = ( T) + eg t - one-dimensional conduction (along the x - diection only): = ˆi and T = T( x) x - steady state conditions:

More information

Chapter 9 Dynamic stability analysis III Lateral motion (Lectures 33 and 34)

Chapter 9 Dynamic stability analysis III Lateral motion (Lectures 33 and 34) Pof. E.G. Tulapukaa Stability and contol Chapte 9 Dynamic stability analysis Lateal motion (Lectues 33 and 34) Keywods : Lateal dynamic stability - state vaiable fom of equations, chaacteistic equation

More information

Averaging method for nonlinear laminar Ekman layers

Averaging method for nonlinear laminar Ekman layers Unde consideation fo publication in J. Fluid Mech. 1 Aveaging method fo nonlinea lamina Ekman layes By A. A N D E R S E N 1, 2, B. L A U T R U P 3 A N D T. B O H R 1 1 The Technical Univesity of Denmak,

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

Application of homotopy perturbation method to the Navier-Stokes equations in cylindrical coordinates

Application of homotopy perturbation method to the Navier-Stokes equations in cylindrical coordinates Computational Ecology and Softwae 5 5(): 9-5 Aticle Application of homotopy petubation method to the Navie-Stokes equations in cylindical coodinates H. A. Wahab Anwa Jamal Saia Bhatti Muhammad Naeem Muhammad

More information

THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGERS BASED ON MINIMUM IRREVERSIBILITY CRITERIA

THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGERS BASED ON MINIMUM IRREVERSIBILITY CRITERIA THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGER BAED ON MINIMUM IRREVERIBILITY CRITERIA As. dd. ing. Adina GHEORGHIAN, Pof. d. ing. Alexandu DOBROVICECU, As. dd. ing. Andeea MARIN,.l. d. ing. Claudia

More information

Final Review of AerE 243 Class

Final Review of AerE 243 Class Final Review of AeE 4 Class Content of Aeodynamics I I Chapte : Review of Multivaiable Calculus Chapte : Review of Vectos Chapte : Review of Fluid Mechanics Chapte 4: Consevation Equations Chapte 5: Simplifications

More information

NUMERICAL SIMULATION OF FLUID FLOW IN ENCLOSED ROTATING FILTER AND DISK

NUMERICAL SIMULATION OF FLUID FLOW IN ENCLOSED ROTATING FILTER AND DISK VOL., NO. 9, SEPTEMBER 010 ISSN 1819-6608 ARPN Jounal of Engineeing and Applied Sciences 006-010 Asian Reseach Publishing Netwok (ARPN). All ights eseved. www.apnjounals.com NUMERICAL SIMULATION OF FLUID

More information

Solution of a Spherically Symmetric Static Problem of General Relativity for an Elastic Solid Sphere

Solution of a Spherically Symmetric Static Problem of General Relativity for an Elastic Solid Sphere Applied Physics eseach; Vol. 9, No. 6; 7 ISSN 96-969 E-ISSN 96-9647 Published by Canadian Cente of Science and Education Solution of a Spheically Symmetic Static Poblem of Geneal elativity fo an Elastic

More information

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc.

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc. Numeical solution of diffusion mass tansfe model in adsoption systems Pof., D.Sc. Agenda Mass Tansfe Mechanisms Diffusion Mass Tansfe Models Solving Diffusion Mass Tansfe Models Paamete Estimation 2 Mass

More information

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

Handout: IS/LM Model

Handout: IS/LM Model Econ 32 - IS/L odel Notes Handout: IS/L odel IS Cuve Deivation Figue 4-4 in the textbook explains one deivation of the IS cuve. This deivation uses the Induced Savings Function fom Chapte 3. Hee, I descibe

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

6 Vector Operators. 6.1 The Gradient Operator

6 Vector Operators. 6.1 The Gradient Operator 6 Vecto Opeatos 6. The Gadient Opeato In the B2 couse ou wee intoduced to the gadient opeato in Catesian coodinates. Fo an diffeentiable scala function f(x,, z), we can define a vecto function though (

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Depatment of Mechanical Engineeing.5 Advanced Fluid Mechanics Poblem 6.1 This poblem is fom Advanced Fluid Mechanics Poblems by A.H. Shapio and A.A. Sonin The sketch shows a cicula beaing pad which

More information

Analytical evaluation of 3D BEM integral representations using complex analysis

Analytical evaluation of 3D BEM integral representations using complex analysis BIR Wokshop 5w5052 Moden Applications of Complex Vaiables: Modeling, Theoy and Computation Analytical evaluation of 3D BEM integal epesentations using complex analysis onia Mogilevskaya Depatment of Civil,

More information

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam Math 259 Winte 2009 Handout 6: In-class Review fo the Cumulative Final Exam The topics coveed by the cumulative final exam include the following: Paametic cuves. Finding fomulas fo paametic cuves. Dawing

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

Two Dimensional Inertial Flow of a Viscous Fluid in a Corner

Two Dimensional Inertial Flow of a Viscous Fluid in a Corner Applied Mathematical Sciences, Vol., 207, no. 9, 407-424 HIKARI Ltd, www.m-hikai.com https://doi.og/0.2988/ams.207.62282 Two Dimensional Inetial Flow of a Viscous Fluid in a Cone A. Mahmood and A.M. Siddiqui

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

Lecture 2 - Thermodynamics Overview

Lecture 2 - Thermodynamics Overview 2.625 - Electochemical Systems Fall 2013 Lectue 2 - Themodynamics Oveview D.Yang Shao-Hon Reading: Chapte 1 & 2 of Newman, Chapte 1 & 2 of Bad & Faulkne, Chaptes 9 & 10 of Physical Chemisty I. Lectue Topics:

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

Pressure Calculation of a Constant Density Star in the Dynamic Theory of Gravity

Pressure Calculation of a Constant Density Star in the Dynamic Theory of Gravity Pessue Calculation of a Constant Density Sta in the Dynamic Theoy of Gavity Ioannis Iaklis Haanas Depatment of Physics and Astonomy Yok Univesity A Petie Science Building Yok Univesity Toonto Ontaio CANADA

More information

One-Dimensional, Steady-State. State Conduction with Thermal Energy Generation

One-Dimensional, Steady-State. State Conduction with Thermal Energy Generation One-Dimensional, Steady-State State Conduction with Themal Enegy Geneation Implications of Enegy Geneation Involves a local (volumetic) souce of themal enegy due to convesion fom anothe fom of enegy in

More information

2D Problem for a Long Cylinder in the Fractional Theory of Thermoelasticity

2D Problem for a Long Cylinder in the Fractional Theory of Thermoelasticity 596 D Poblem fo a Long Cylinde in the Factional Theoy of Themoelasticity Abstact In this manuscipt, we solve an asymmetic D poblem fo a long cylinde. The suface is assumed to be taction fee and subjected

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information