Thomas A. A. Oliver, Graeme A. King, Michael N. R. Ashfold

Size: px
Start display at page:

Download "Thomas A. A. Oliver, Graeme A. King, Michael N. R. Ashfold"

Transcription

1 Electronic Supplementary Information for: Position Matters: Competing O H and N H Photodissociation Pathways in Hydroxy- and Methoxy- substituted Indoles Thomas A. A. Oliver, Graeme A. King, Michael N. R. Ashfold 1. Photoionisation Mass Spectrometry (a) 4-HI Ion TOF mass spectra obtained following excitation of jet cooled 4-HI at λ phot = (a) nm, (b) nm with Lyman-α radiation (c) nm and Lyman-α radiation. (b) 5-HI Ion TOF mass spectra obtained following excitation of jet cooled 5-HI at λ phot = (a) nm, (b) nm and Lyman-α. 1

2 (c) 4-MI Ion TOF mass spectrum obtained following excitation of jet cooled 4-MI at λ phot = nm. (d) 5-MI Ion TOF mass spectrum obtained following excitation of jet cooled 5-MI at λ phot = nm. 2

3 2. Resonance Enhanced Multiphoton Absorption Spectroscopy (a) 5-HI REMPI excitation spectrum of 5-HI between nm > λ > nm, with the 1 L b -S 0 origin features for both conformers indicated. (b) 5-MI REMPI excitation spectrum of jet-cooled 5-MI molecules between nm > λ > nm. 3

4 3. H(Rydberg) Atom Photofragment Translational Spectroscopy E int spectrum resulting from the photodissociation of the 4-HI (gauche) conformer at λ phot = nm. 4

5 4. Baseline subtraction of 4-MI E int spectra at λ phot = and nm The underlying featureless background was fitted to the side of a gaussian and subtracted from the respective raw E int spectrum (see main paper fig. 12). The peaks at E int = 0 cm -1 and 220 cm -1 were then each fitted to a gaussian, allowing us to deduce the relative integrated areas for λ phot = (a) nm and (b) nm. The ratio of the E int = 0 cm -1 /E int = 220 cm -1 peaks was deduced for (a) to be 1.2:1 and (b) 1.4:1. The peak intensities, however, show a marked difference in ratios: (a) = 1.69:1 and (b) 2.7:1. 5

6 5. Calculated normal mode wavenumbers (a) 4-HI and 4-HI-Oyl and 4-HI-Nyl radical products 4-HI ( X ~ 1 A ) 4-HI-Oyl ( X ~ 2 A ) 4-HI-Nyl ( X ~ 2 A ) Mode Sym. Harm. Anharm. Mode Sym. Harm. Anharm. Mode Sym. Harm. Anharm. ν 1 a' Disappearing Mode ν 1 a' ν 2 a' ν 1 a' Disappearing Mode ν 3 a' ν 2 a' ν 2 a' ν 4 a' ν 3 a' ν 4 a' ν 5 a' ν 4 a' ν 3 a' ν 6 a' ν 5 a' ν 5 a' ν 7 a' ν 6 a' ν 6 a' ν 8 a' ν 7 a' ν 8 a' ν 9 a' ν 8 a' ν 7 a' ν 10 a' ν 10 a' ν 10 a' ν 11 a' ν 9 a' ν 9 a' ν 12 a' ν 13 a' ν 11 a' ν 13 a' ν 11 a' Disappearing Mode ν 14 a' ν 12 a' ν 13 a' ν 15 a' ν 14 a' ν 12 a' ν 16 a' Disappearing Mode ν 14 a' ν 17 a' ν 15 a' ν 15 a' ν 18 a' ν 16 a' ν 16 a' ν 19 a' ν 17 a' ν 17 a' ν 20 a' ν 18 a' ν 18 a' ν 21 a' ν 19 a' ν 19 a' ν 22 a' ν 20 a' ν 22 a' ν 23 a' ν 21 a' ν 20 a' ν 24 a' ν 22 a' ν 21 a' ν 25 a' ν 23 a' ν 23 a' ν 26 a' ν 24 a' ν 24 a' ν 27 a' ν 25 a' ν 25 a' ν 28 a' ν 26 a' ν 26 a' ν 29 a' ν 27 a' ν 27 a' ν 30 a' ν 28 a' ν 28 a' ν 31 a' ν 29 a' ν 29 a' ν 32 a'' ν 30 a'' ν 30 a'' ν 33 a'' ν 31 a'' ν 31 a'' ν 34 a'' ν 32 a'' ν 32 a'' ν 35 a'' ν 33 a'' ν 33 a'' ν 36 a'' ν 35 a'' ν 35 a'' ν 37 a'' ν 34 a'' ν 34 a'' ν 38 a'' ν 36 a'' ν 36 a'' ν 39 a'' ν 37 a'' ν 37 a'' ν 40 a'' ν 38 a'' ν 38 a'' ν 41 a'' ν 39 a'' Disappearing Mode ν 42 a'' Disappearing Mode ν 39 a'' ν 43 a'' ν 40 a'' ν 40 a'' ν 44 a'' ν 41 a'' ν 41 a'' ν 45 a'' ν 42 a'' ν 42 a'' Calculated harmonic (harm.) and anharmonically (anharm.) corrected vibrational wavenumbers (in cm -1 ) at the DFT/B3LYP/6-311+G** level for 4-HI and the corresponding radicals arising from O H (4-HI-Oyl) or N H (4-HI-Nyl) bond fission. The parent modes are labelled according to Herzberg notation i, whereas the ordering of radical modes has been adjusted so as to map through from those of the parent molecule. 6

7 (b) 4-MI and 4-MI-Nyl 4-MI( X ~ 1 A ) 4-MI-Nyl( X ~ 2 A ) Mode Sym. Harm. Anharm. Mode Sym. Harm. Anharm. ν 1 a' Disappearing Mode ν 2 a' ν 1 a' ν 3 a' ν 4 a' ν 4 a' ν 2 a' ν 5 a' ν 3 a' ν 6 a' ν 5 a' ν 7 a' ν 6 a' ν 8 a' ν 7 a' ν 9 a' ν 9 a' ν 10 a' ν 8 a' ν 11 a' ν 10 a' ν 12 a' ν 12 a' ν 13 a' ν 11 a' ν 14 a' ν 13 a' ν 15 a' ν 14 a' ν 16 a' Disappearing Mode ν 17 a' ν 16 a' ν 18 a' ν 15 a' ν 19 a' ν 17 a' ν 20 a' ν 18 a' ν 21 a' ν 19 a' ν 22 a' ν 20 a' ν 23 a' ν 22 a' ν 24 a' ν 21 a' ν 25 a' ν 23 a' ν 26 a' ν 24 a' ν 27 a' ν 25 a' ν 28 a' ν 26 a' ν 29 a' ν 27 a' ν 30 a' ν 28 a' ν 31 a' ν 29 a' ν 32 a' ν 30 a' ν 33 a' ν 31 a' ν 34 a' ν 32 a' ν 35 a' ν 33 a' ν 36 a' ν 34 a' ν 37 a'' ν 35 a'' ν 38 a'' ν 36 a'' ν 39 a'' ν 37 a'' ν 40 a'' ν 38 a'' ν 41 a'' ν 39 a'' ν 42 a'' ν 40 a'' ν 43 a'' ν 41 a'' ν 44 a'' ν 43 a'' ν 45 a'' ν 42 a'' ν 46 a'' ν 44 a'' ν 47 a'' ν 45 a'' ν 48 a'' ν 46 a'' ν 49 a'' Disappearing Mode ν 50 a'' ν 47 a'' ν 51 a'' ν 49 a'' ν 52 a'' ν 48 a'' ν 53 a'' ν 50 a'' ν 54 a'' ν 51 a'' Calculated harm. and anharm. corrected vibrational wavenumbers (in cm -1 ) at the DFT/B3LYP/6-311+G** level for 4-MI and the corresponding 4-MI-Nyl radical. Again labelled according to Herzberg notation i, and the ordering of radical modes has been adjusted so as to map through from those of the parent molecule. i G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules; van Nostrand: Princeton, NJ,

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Lecture 8. Assumed knowledge

Lecture 8. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Citation Laser Chemistry, 1999, v. 19 n. 1-4, p Creative Commons: Attribution 3.0 Hong Kong License

Citation Laser Chemistry, 1999, v. 19 n. 1-4, p Creative Commons: Attribution 3.0 Hong Kong License Title Short-time photodissociation dynamics of 1-chloro-2-iodoethane from resonance Raman spectroscopy Author(s) Zheng, X; Phillips, DL Citation Laser Chemistry, 1999, v. 19 n. 1-4, p. 71-74 Issued Date

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

Vibration-Rotation Spectrum of HCl

Vibration-Rotation Spectrum of HCl HCl report.pb 1 Vibration-Rotation Spectrum of HCl Introduction HCl absorbs radiation in the infrared portion of the spectrum which corresponds to the molecule changing its vibrational state. A concommitant

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

( )( s 1

( )( s 1 Chemistry 362 Dr Jean M Standard Homework Problem Set 6 Solutions l Calculate the reduced mass in kg for the OH radical The reduced mass for OH is m O m H m O + m H To properly calculate the reduced mass

More information

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results.

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results. Chapter 11: Measurement and data processing and analysis 11.1 Uncertainty and error in measurement and results All measurement has a limit of precision and accuracy, and this must be taken into account

More information

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI Page 1 Page 2 infrared and raman spectroscopy concepts and applications infrared and raman spectroscopy

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients CHM 3411 - Physical Chemistry II Chapter 12 - Supplementary Material 1. Einstein A and B coefficients Consider two singly degenerate states in an atom, molecule, or ion, with wavefunctions 1 (for the lower

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

Quote from Eugene Paul Wigner

Quote from Eugene Paul Wigner Quote from Eugene Paul Wigner See also: Current Science, vol. 69, no. 4, 25 August 1995, p. 375 From the preface to his book on group theory: Wigner relates a conversation with von Laue on the use of group

More information

Studies on the photodissociation and symmetry of SO 2 D

Studies on the photodissociation and symmetry of SO 2 D JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 20 22 MAY 2003 Studies on the photodissociation and symmetry of SO 2 D Limin Zhang, a) Zhong Wang, Jiang Li, Feng Wang, Shilin Liu, Shuqin Yu, and Xingxiao

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Lecture 10 Diatomic Vibration Spectra Harmonic Model Chemistry II: Introduction to Molecular Spectroscopy Prof. Mangala Sunder Department of Chemistry and Biochemistry Indian Institute of Technology, Madras Lecture 10 Diatomic Vibration Spectra Harmonic

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

Vibrational-Rotational Spectroscopy. Spectroscopy

Vibrational-Rotational Spectroscopy. Spectroscopy Applied Spectroscopy Vibrational-Rotational Spectroscopy Recommended Reading: Banwell and McCash Section 3.2, 3.3 Atkins Section 6.2 Harmonic oscillator vibrations have the exact selection rule: and the

More information

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy Unit 11 Instrumentation Mass, Infrared and NMR Spectroscopy Spectroscopic identification of organic compounds Qualitative analysis: presence but not quantity (i.e. PEDs) Quantitative analysis: quantity

More information

5.3 Rotational Raman Spectroscopy General Introduction

5.3 Rotational Raman Spectroscopy General Introduction 5.3 Rotational Raman Spectroscopy 5.3.1 General Introduction When EM radiation falls on atoms or molecules, it may be absorbed or scattered. If λis unchanged, the process is referred as Rayleigh scattering.

More information

Topic 2.11 ANALYTICAL TECHNIQUES. High Resolution Mass Spectrometry Infra-red Spectroscopy

Topic 2.11 ANALYTICAL TECHNIQUES. High Resolution Mass Spectrometry Infra-red Spectroscopy Topic 2.11 ANALYTICAL TECHNIQUES High Resolution Mass Spectrometry Infra-red Spectroscopy HIGH RESOLUTION MASS SPECTROMETRY The technique of mass spectrometry was used in Unit 1 to: a) determine the relative

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy In this part of the course we will look at the kind of spectroscopy which uses light to excite the motion of atoms. The forces required to move atoms are smaller than those required

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

Asymmetry of Peaks in the XPS of Polymers

Asymmetry of Peaks in the XPS of Polymers Asymmetry of Peaks in the XPS of Polymers When a photon is absorbed by a material, the energy transferred may cause the excitation of both the electronic and atomic structure of the compounds on the surface.

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium Physics and Chemistry of the Interstellar Medium Sun Kwok The University of Hong Kong UNIVERSITY SCIENCE BOOKS Sausalito, California * Preface xi The Interstellar Medium.1.1 States of Matter in the ISM

More information

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) INTRODUCTION THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in the

More information

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine We have already seen that molecules can rotate and bonds can vibrate with characteristic energies, each energy being associated with a particular

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

Types of Molecular Vibrations

Types of Molecular Vibrations Important concepts in IR spectroscopy Vibrations that result in change of dipole moment give rise to IR absorptions. The oscillating electric field of the radiation couples with the molecular vibration

More information

VIBRATION-ROTATION SPECTRUM OF CO

VIBRATION-ROTATION SPECTRUM OF CO Rice University Physics 332 VIBRATION-ROTATION SPECTRUM OF CO I. INTRODUCTION...2 II. THEORETICAL CONSIDERATIONS...3 III. MEASUREMENTS...8 IV. ANALYSIS...9 April 2011 I. Introduction Optical spectroscopy

More information

Saligenin-Water Clusters Revealed by Mid- and Far-Infrared Spectroscopy

Saligenin-Water Clusters Revealed by Mid- and Far-Infrared Spectroscopy Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Fingerprints of Inter- and Intramolecular Hydrogen Bonding in Saligenin-Water Clusters

More information

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography Lecture 11 IR Theory Next Class: Lecture Problem 4 due Thin-Layer Chromatography This Week In Lab: Ch 6: Procedures 2 & 3 Procedure 4 (outside of lab) Next Week in Lab: Ch 7: PreLab Due Quiz 4 Ch 5 Final

More information

Chemistry 213 Practical Spectroscopy

Chemistry 213 Practical Spectroscopy Chemistry 213 Practical Spectroscopy Dave Berg djberg@uvic.ca Elliott 314 A course in determining structure by spectroscopic methods Different types of spectroscopy afford different information about molecules

More information

Introduction to Molecular Vibrations and Infrared Spectroscopy

Introduction to Molecular Vibrations and Infrared Spectroscopy hemistry 362 Spring 2017 Dr. Jean M. Standard February 15, 2017 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

More information

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO BASIC INFORMATION Spectroscopy uses light to analyze substances or products by describing the energy transfer between light and

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

ISOMERISATION: FIRST APPLICATION

ISOMERISATION: FIRST APPLICATION Laser Chem., 1999, Vol. 19, pp. 45-49 Reprints available directly from the publisher Photocopying permitted by license only (C) 1999 OPA (Overseas Publishers Association) N.V. Published by license under

More information

CHEM Chapter 12 Infrared and Mass Spec (homework). Stafford. S18

CHEM Chapter 12 Infrared and Mass Spec (homework). Stafford. S18 Exhibit 12-4 The following question(s) refer to the mass spectrum shown below. 1. Refer to Exhibit 12-4. This compound contains C, H, and one other atom. Identify the other atom from the mass spectrum

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Supplementary information

Supplementary information Matthias Heger, Tina Scharge, and Martin A. Suhm Institute of Physical Chemistry, Georg-August-Universität, Tammannstraße 6, 37077 Göttingen, Germany. E-mail: msuhm@gwdg.de Current address: Gesellschaft

More information

The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY

The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY 1. Mass spectrometry: SPECTROSCOPIC TECHNIQUES - A technique capable of identifying the presence of various mass segments of organic molecules.

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy 12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure

More information

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2)

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Obtaining fundamental information about the nature of molecular structure is one of the interesting aspects of molecular

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

Photodissociation of 1-bromo-2-butene, 4-bromo-1-butene, and cyclopropylmethyl bromide at 234 nm studied using velocity map imaging

Photodissociation of 1-bromo-2-butene, 4-bromo-1-butene, and cyclopropylmethyl bromide at 234 nm studied using velocity map imaging THE JOURNAL OF CHEMICAL PHYSICS 125, 144312 2006 Photodissociation of 1-bromo-2-butene, 4-bromo-1-butene, and cyclopropylmethyl bromide at 234 nm studied using velocity map imaging Kai-Chung Lau, Yi Liu,

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy Figure 12.1 - The electron-ionization, magneticsector mass spectrometer Representing the Mass Spectrum Base Peak Parent

More information

CHAPTER 13 LECTURE NOTES

CHAPTER 13 LECTURE NOTES CHAPTER 13 LECTURE NOTES Spectroscopy is concerned with the measurement of (a) the wavelengths (or frequencies) at which molecules absorb/emit energy, and (b) the amount of radiation absorbed at these

More information

Chemistry 21b Final Examination

Chemistry 21b Final Examination Chemistry 21b Final Examination Out: 11 March 2011 Due: 16 March 2011, 5 pm This is an open book examination, and so you may use McQuarrie or Harris and Bertolucci along with the posted Lecture Notes and

More information

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis Structure Determination How to determine what compound that you have? ne way to determine compound is to get an elemental analysis -basically burn the compound to determine %C, %H, %, etc. from these percentages

More information

Infrared spectroscopy Basic theory

Infrared spectroscopy Basic theory Infrared spectroscopy Basic theory Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 davide.ferri@psi.ch Importance of IR spectroscopy in catalysis IR Raman NMR XAFS UV-Vis EPR 0 200 400 600 800 1000

More information

Lecture 14 Organic Chemistry 1

Lecture 14 Organic Chemistry 1 CHEM 232 Organic Chemistry I at Chicago Lecture 14 Organic Chemistry 1 Professor Duncan Wardrop February 25, 2010 1 CHEM 232 Organic Chemistry I at Chicago Mass Spectrometry Sections: 13.24-13.25 2 Spectroscopy

More information

Molecular energy levels and spectroscopy

Molecular energy levels and spectroscopy Molecular energy levels and spectroscopy 1. Translational energy levels The translational energy levels of a molecule are usually taken to be those of a particle in a three-dimensional box: n x E(n x,n

More information

Hydrogen Bond Switching among Flavin and. Amino Acids Determines the Nature of Proton- Coupled Electron Transfer in BLUF.

Hydrogen Bond Switching among Flavin and. Amino Acids Determines the Nature of Proton- Coupled Electron Transfer in BLUF. Hydrogen Bond Switching among Flavin and Amino Acids Determines the Nature of Proton- Coupled Electron Transfer in BLUF Photoreceptors Tilo Mathes 1,2, Jingyi Zhu 1, Ivo H.M. van Stokkum 1, M.L. Groot

More information

DETECTION OF UNPAIRED ELECTRONS

DETECTION OF UNPAIRED ELECTRONS DETECTION OF UNPAIRED ELECTRONS There are experimental methods for the detection of unpaired electrons. One of the hallmarks of unpaired electrons in materials is interaction with a magnetic field. That

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Resonance-Enhanced Multiphoton Ionization Spectroscopy of Dipeptides

Resonance-Enhanced Multiphoton Ionization Spectroscopy of Dipeptides J. Phys. Chem. A 2000, 104, 6351-6355 6351 Resonance-Enhanced Multiphoton Ionization Spectroscopy of Dipeptides Rami Cohen, Beth Brauer, Eyal Nir, Louis Grace, and Mattanjah S. de Vries* Department of

More information

Determination of Absolute Product Branching Ratios in Mass Spectrometric Experiments: Detecting Acetyl Radicals at CH 2 CO +

Determination of Absolute Product Branching Ratios in Mass Spectrometric Experiments: Detecting Acetyl Radicals at CH 2 CO + 5200 J. Phys. Chem. 1996, 100, 5200-5204 Determination of Absolute Product Branching Ratios in Mass Spectrometric Experiments: Detecting Acetyl Radicals at CH 2 C + D. C. Kitchen, T. L. Myers, and L. J.

More information

Normal Modes of Vibration

Normal Modes of Vibration 1 of 5 2/29/2012 7:31 PM 1. 2. 3. 4. 5. Character Tables Normal Modes of Vibration Vibrational Spectroscopy Polarized Raman Bands Example: The Geometry of the Sulfur Dioxide Molecule Normal Modes of Vibration

More information

Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes *

Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes * OpenStax-CNX module: m34660 1 Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes * Jiebo Li Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

2. Infrared spectroscopy

2. Infrared spectroscopy 2. Infrared spectroscopy 2-1Theoretical principles An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer.

More information

Modeling the Rovibrationally Excited C 2 H 4 OH Radicals from the Photodissociation of 2-Bromoethanol at 193 nm

Modeling the Rovibrationally Excited C 2 H 4 OH Radicals from the Photodissociation of 2-Bromoethanol at 193 nm 4934 J. Phys. Chem. A 2010, 114, 4934 4945 Modeling the Rovibrationally Excited C 2 H 4 OH Radicals from the Photodissociation of 2-Bromoethanol at 193 nm B. J. Ratliff, C. C. Womack, X. N. Tang, W. M.

More information

Photodissociation spectroscopy and dynamics of CH 3 O and CD 3 O

Photodissociation spectroscopy and dynamics of CH 3 O and CD 3 O J. Phys. Chem. A 1997, 101, 6583-6592 6583 Photodissociation spectroscopy and dynamics of CH 3 O and CD 3 O David L. Osborn, David J. Leahy, and Daniel M. Neumark* Department of Chemistry, UniVersity of

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Molecular Dynamics Simulation of In Title to Professor Tohru Takenaka On the Retirement) Author(s) Oobatake, Motohisa; Machida, Katsun

Molecular Dynamics Simulation of In Title to Professor Tohru Takenaka On the Retirement) Author(s) Oobatake, Motohisa; Machida, Katsun Molecular Dynamics Simulation of In Title Spectra of Liquid Methane (Commemor to Professor Tohru Takenaka On the Retirement) Author(s) Oobatake, Motohisa; Machida, Katsun Citation Bulletin of the Institute

More information

Lowest Energy Vibrational Modes of Nine Naphthalene Derivatives; Experiment and Theory

Lowest Energy Vibrational Modes of Nine Naphthalene Derivatives; Experiment and Theory Lowest Energy Vibrational Modes of Nine Naphthalene Derivatives; Experiment and Theory Marie-Aline Martin-Drumel*, O. Pirali, Y. Loquais, C. Falvo, P. Parneix & Ph. Bréchignac ISMO, CNRS, University of

More information

Probing Bonding Using Infrared Spectroscopy Chem

Probing Bonding Using Infrared Spectroscopy Chem Probing Bonding Using Infrared Spectroscopy Chem 112-2011 INTRODUCTION First, watch the short video on how to record an infrared spectrum using an infrared spectrometer, linked at: http://employees.oneonta.edu/viningwj/chem112/labs/ir_video/ir_video_controller.swf

More information

WEBSITE DATA FOR CHAPTER 6

WEBSITE DATA FOR CHAPTER 6 66 WEBSITE DATA FOR CHAPTER 6 Spectroscopic Identification of Organic Compounds by Infared Spectroscopy I. INTRODUCTION NOTE. It should be pointed out that a reciprocal centimeter is not a unit of frequency.

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Photodissociative spectroscopy of the hydroxymethyl radical CH 2 OH in the 3s and 3p x states

Photodissociative spectroscopy of the hydroxymethyl radical CH 2 OH in the 3s and 3p x states JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 10 8 SEPTEMBER 2002 Photodissociative spectroscopy of the hydroxymethyl radical CH 2 OH in the 3s and 3p x states Lin Feng, Xin Huang, and Hanna Reisler Department

More information

Absorption photometry

Absorption photometry The light Absorption photometry Szilvia Barkó University of Pécs, Faculty of Medicines, Dept. Biophysics February 2011 Transversal wave E Electromagnetic wave electric gradient vector wavelength The dual

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

Photo-Dissociation Resonances of Jet-Cooled NO 2 by CW-CRDS

Photo-Dissociation Resonances of Jet-Cooled NO 2 by CW-CRDS Photo-Dissociation Resonances of Jet-Cooled NO 2 by CW-CRDS Patrick DUPRÉ Laboratoire de Physico-Chimie de l Atmosphère, Université du Littoral, Côte d Opale Dunkerque, France ISMS 22-26 June 2015 Patrick

More information

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY MAX DIEM Department of Chemistry City University of New York Hunter College A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

Layout. Introduction -! Why, o why? -! What & how?

Layout. Introduction -! Why, o why? -! What & how? Gas Phase IR spectroscopy: towards large biomolecules & far-ir wavelengths Anouk M. Rijs Layout Introduction -! Why, o why? -! What & how? Experimental methods -! Cooling methods -! Why cooling -! Supersonic

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

ADSORPTION ON NANOSURFACES: A DETAILED LOOK AT METAL CLUSTERS USING INFRARED SPECTROSCOPY

ADSORPTION ON NANOSURFACES: A DETAILED LOOK AT METAL CLUSTERS USING INFRARED SPECTROSCOPY ADSORPTION ON NANOSURFACES: A DETAILED LOOK AT METAL CLUSTERS USING INFRARED SPECTROSCOPY Mark B. Knickelbein Metal Cluster Group, Chemistry Division Argonne National Laboratory A technique known as infrared

More information

BioMolecular Optical Spectroscopy:

BioMolecular Optical Spectroscopy: BioMolecular Optical Spectroscopy: Part 1: Infrared and Raman Vibrational Spectra Background Special Lectures for Chem 344 Fall, 2007 im Keiderling University of Illinois at Chicago tak@uic.edu Vibrational

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups 1 The Electromagnetic Spectrum Infrared Spectroscopy I. Physics Review Frequency, υ (nu), is the number of wave cycles that

More information

eigenvalues eigenfunctions

eigenvalues eigenfunctions Born-Oppenheimer Approximation Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity) a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r

More information

USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY

USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY Proceedings of the South Dakota Academy of Science, Vol. 79 (2000) 63 USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY Deanna L. Donohoue, Gary W. Earl and Arlen Viste Department

More information

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma Vibrational Spectroscopy A rough definition of spectroscopy is the study of the interaction of matter with energy (radiation in the electromagnetic spectrum). A molecular vibration is a periodic distortion

More information

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty?

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty? Howdy Folks. Homework Due by 5PM September 20 (next class) 5-Problems Every Week due 1 week later. Does everyone have a topic that has been approved by the faculty? Practice your presentation as I will

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible.

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Physical Chemistry Lab II Name: KEY CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Constants: c = 3.00 10 8 m/s h = 6.63 10-34 J s 1 Hartree = 4.36 10-18

More information

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy No. 1 of 10 1. Internal vibration modes of a molecule containing N atoms is made up of the superposition of 3N-(5 or 6) simple

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Chapter 12- Structure Determination: Mass Spectrometry and Infrared Spectroscopy Ashley Piekarski, Ph.D. Determining the Structure of an Organic Compound The analysis of the outcome of a reac=on requires

More information

1 Which of the following cannot be used to detect alcohol in a breathalyser test? Fractional distillation. Fuel cell. Infrared spectroscopy

1 Which of the following cannot be used to detect alcohol in a breathalyser test? Fractional distillation. Fuel cell. Infrared spectroscopy 1 Which of the following cannot be used to detect alcohol in a breathalyser test? Fractional distillation Fuel cell Infrared spectroscopy Reduction of dichromate(vi) ions 2 Propanal, H 3 H 2 HO, and propanone,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Water Dynamics in Cytoplasm-like Crowded Environment Correlates with the Conformational Transition of the Macromolecular Crowder Pramod Kumar Verma,, Achintya Kundu,, Jeong-Hyon

More information

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech LECTURE NOTES Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE Geoffrey A. Blake Fall term 2016 Caltech Acknowledgment Part of these notes are based on lecture notes from the

More information