Vibrational-Rotational Spectroscopy. Spectroscopy

Size: px
Start display at page:

Download "Vibrational-Rotational Spectroscopy. Spectroscopy"

Transcription

1 Applied Spectroscopy Vibrational-Rotational Spectroscopy Recommended Reading: Banwell and McCash Section 3.2, 3.3 Atkins Section 6.2

2 Harmonic oscillator vibrations have the exact selection rule: and the energy spacing is constant, the same for all energy levels: v = ± ~ ν = G(v + ) G(v) = ~ ν This would give rise to very boring spectra, since the lines for all possible vibrational transitions would lie at the same energy (or wavenumber of frequency) This does not occur for two reasons ) No molecule is a perfect Harmonic Oscillator; as discussed before we must use an anharmonic potential as a better representation of the true molecular potential (e.g. Morse potential) ( ) = ~ ν 2 ~ ν χ ( n ) ~ νn n+ = G(n + ) G n 0 0 e + so transitions shift to lower energy as n increases

3 2) Absorption or Emission of light MUST be accompanied by a change in angular momentum of the molecule because of the gain/loss of the photon s angular momentum. All vibrational spectra MUST be Vibration-Rotation Spectra and the rotational component for the transition must obey the usual rotational selection rule J = ±. IR spectrum of CO 2 In Solution: Low resolution, see two absorption bands In Gas Phase: High resolution Rotational fine structure

4 Relative energies of transitions E rot < E vib < E el

5 The Born-Oppenheimer Approximation Typical rotational energies for a diatomic molecule are of the order of to 0 cm -, while the separation of the vibrational energy levels are typically 000 to 5000 cm -. Since the energies of the two motions are so different we can assume, as a first approximation, that the rotational and vibrational motions of the diatomic molecule are independent of each other. This is an example of the Born-Oppenheimer approximation, and is equivalent to assuming that the combined rotational-vibrational energy of the molecule is simply the sum of the separate energies. Etotal = Erot + Evib Joules or ε total = εrot + εvib We have already derived expressions for the rotational and vibrational energies of the molecule and ( J + ) + DJ 2 ( J ) 2 εrot = F (J) = BJ + 2 ε ~ G(n) n ν n χ ~ vib = = + + e ν 2 2 cm -

6 The Born-Oppenheimer Approximation Another way to understand the Born-Oppenheimer Approx is to consider typical times involved in rotational and vibrational motions. Rotational Motion: Rotational Constants B are of the order of - 00 cm -. Taking B =.0 cm - gives I = 2.8 x 0-47 kg.m 2 and E(J = ) = 3.97 x 0-23 J. Since E = ½ Iω 2 this gives ω =.7 x 0-2 rad.s - = 2.7 x 0 rot.s -. Vibrational Motion: Vibrational energies are typically cm -. Taking 2000 cm - gives a vibrational frequency of 6.0 x 0 3 s -. This shows that the rotational and vibrational motions take place on significantly different time scales, (the above example shows 222 vibrations occurring during a single rotation of the molecule). So it is a good approximation to assume that these motions are decoupled and, to a first approximation, do not influence each other.

7 3 Energy level diagram of a diatomic molecule showing the n = 0 and n = vibrational energy levels and associated rotational states. J = 2 n = 0 Note this diagram is not to scale. - The vibrational states are typically cm - apart while the rotational levels have typical separations of - 00 cm - J = ( 2χ ) ~ ν e cm n = 0 P 3 P 2 P Q 0 Q Q 2 cm -

8 Spectral Branches The appearance of the vibration-rotation spectrum of a diatomic molecule can then be discussed in terms of the combined vibration rotation term S(n,J). S ( n, J) = G(n) + F(J) If we ignore the centrifugal distortion then S 2 e ( n, J) = n + ~ ν - n + χ ~ ν + BJ( J ) vib. term + anharm term + rot. term When a vibrational transition occurs n n+ it must be accompanied by a change in the rotational state in order to conserve angular momentum so J J ± (Note that in some cases J = 0 is allowed) The transitions then fall into three groups called branches of the spectrum. Designating the rotational quantum numbers in the n = 0 state as J and in the n = state as J then an analytical expression for the spectrum may be obtained by applying the selection rules to the energy levels. Considering the n = 0 to n = transition: εj,v ( 2 ) + B( J' J'' )( J' + J'' ) cm = εj',n= εj'',n= 0 = ~ ν χe +

9 P and R Spectral Branches We now have three cases to consider J = -, J = + and J = 0 which can occur in some molecules. Case : P Branch, J = - that is J'' = J'+ or J' - J'' = -; hence ( 2χ ) B( J' + ) cm J' 0,, 2, Κ εj,n = ~ ν e = This corresponds to a vibrational transition in which the rotational energy of the molecule decreases by one unit of angular momentum spectral lines at ~ ν 2B, ~ ν 4B, Κ cm with an intensity distribution reflecting (I) the population of the rotational levels and (2) the magnitude of the J J- transition moment Case 2: R Branch, J = + that is J' = J + or J' - J'' = +; hence ( 2χ ) + B( J'' + ) cm J'' 0,, 2, Κ εj,n = ~ ν e = This corresponds to a vibrational transition in which the rotational energy of the molecule decreases by one unit of angular momentum spectral lines at ~ ν( - 2χ ) ~ ( ) e + 2B, ν - 2χe + 4B, Κ cm again, with an intensity distribution reflecting (I) the population of the rotational levels and (2) the magnitude of the J J+ transition moment.

10 These two expressions may be combined into a single expression ( 2 ) + 2Bm cm - m = ±, ± 2, 3, Κ ε ~ ~ J,n = νspect = ν χe ± where positive values of m correspond to J = + transitions while negative values of m correspond to J = - transitions. Case 3: Q Branch, J = 0 that is J'' = J or J' - J'' = 0; hence εj,n ( 2 ) = ~ ν χe cm The frequency ν 0 = ν (-2χ e ) is the band origin or band centre The Q-branch is usually not observed in diatomic molecules.

11 3 J'' = 2 n = 0 3 J' = 2 n = 0 separation = 2B 0 ( ) 2χ ~ ν e cm separation = 2B P 3 P 2 P Q 0 Q Q 2 separation = 4B cm -

12 Vibration Rotation Spectra

13 Vibration Rotation Spectrum of CO Fundamental transition n =. Note second band, centred at 200 cm - due to the % of 3 CO. First overtone n = 2.

14

15 Vibration Rotation Spectrum of CO Recall from Rotation Spectroscopy that the maximum population level occurs at a J value of kt - And since m = J+ we see 2Bhc 2 that at the maxima in the P and R branches The maximum intensity values are at ~ νmax.int = 2 ( χ ) ± 2B + ~ ν -2 kt m = ± + 2Bhc e 2 kt 2Bhc The separation between the maxima is: 8kTB ν ~ = + 2B hc or since B is small compared with ~ ν we can write 2 ( ~ ) - ~ 8kTB hc ν ν = B = cm hc 8kT Can estimate rotational constant B from the vibrational spectrum.

16 Combination Differences In general the rotational constant B of a vibrationally excited state is slightly smaller than the rotational constant of the ground vibrational state B 0, because the vibration causes a more extended bond in the upper state. As a result, in the anharmonic oscillator: (i) the Q band, if it exists, consists of a series of closely spaced lines (ii) the lines of the R branch converge slightly as J increases and (iii) those of the P branch diverge. We can quantify this as follows:

17 The ground vibrational state n = 0, has a rotational constant B 0 and therefore its term values are ~ ν χ ~ ν S ( 0,J) = - e + B J( J + ) The first excited vibrational state n =, has a rotational constant B and its terms are 3 ( ) ~ ν 9χ ~ S,J e ν = - + BJ( J + ) 2 4 The P-branch of the fundamental vibration now becomes P ( J) = S(,J ) S( 0,J) = ~ ν( - 2χ ) ( B + B ) J + ( B B ) J 2 ~ ν Note that since B 0 is always greater than B the last term will always be negative, showing that lines in the P-branch diverge as J increases. Similarly, the R-branch of the fundamental vibration is ( J) = S(,J + ) S( 0,J) = ~ ν( - 2χ ) + ( B + B )( J + ) + ( B B )( J ) 2 ~ νr e Again because the last term is always negative, the lines in the R-branch will tend to converge as J increases e 0 0

18 In molecules where the Q-branch exists, we find ( J) = S(,J ) S( 0,J) = ~ ν( - 2χ ) + ( B + B ) J( J ) ~ νq e 0 + We can determine the rotational constants individually using the method of Combination Differences. A technique widely used in all branches of spectroscopy to determine information about a particular state. It involves setting up expressions for the difference in wavenumbers of transitions to a common state. From diagram we see that the transitions ~ ν R ( J ) and ~ ν P ( J + ) have a common upper state and from the above equations we see that ( J ) ~ ( J + ) = 4B J + ~ ν R ν P 0 2

19 Therefore a plot of the combination difference ~ ν R ~ ( J ) ν ( J + ) P against J+/2 should be a straight line of slope 4B 0, so the rotational constant of the n= 0 state can be determined. Any deviation from a straight line can be attributed to centrifugal distortion so it can also be investigated. Similarly, we can look at transitions originating from a common ground state. For example ~ ν R ( J) ~ and ν P ( J) have a common lower state, their combination difference gives ( J) ~ ( J) = 4B J + ~ ν R ν P A plot of this combination difference against (J+/2) gives a straight line of slope 4B, so the rotational constant of the n = vibrational state can be determined. When applied to the vib-rot spectra of H 35 Cl this technique gives B 0 = cm - and B =0.36 cm -. 2

20

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017 Molecular spectroscopy Multispectral imaging (FAFF 00, FYST9) fall 017 Lecture prepared by Joakim Bood joakim.bood@forbrf.lth.se Molecular structure Electronic structure Rotational structure Vibrational

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Molecular energy levels and spectroscopy

Molecular energy levels and spectroscopy Molecular energy levels and spectroscopy 1. Translational energy levels The translational energy levels of a molecule are usually taken to be those of a particle in a three-dimensional box: n x E(n x,n

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients CHM 3411 - Physical Chemistry II Chapter 12 - Supplementary Material 1. Einstein A and B coefficients Consider two singly degenerate states in an atom, molecule, or ion, with wavefunctions 1 (for the lower

More information

( )( s 1

( )( s 1 Chemistry 362 Dr Jean M Standard Homework Problem Set 6 Solutions l Calculate the reduced mass in kg for the OH radical The reduced mass for OH is m O m H m O + m H To properly calculate the reduced mass

More information

Principles of Molecular Spectroscopy

Principles of Molecular Spectroscopy Principles of Molecular Spectroscopy What variables do we need to characterize a molecule? Nuclear and electronic configurations: What is the structure of the molecule? What are the bond lengths? How strong

More information

Workshop 4: Diatomic molecule vibrational and rotational spectra CH351 Physical Chemistry, Fall 2004

Workshop 4: Diatomic molecule vibrational and rotational spectra CH351 Physical Chemistry, Fall 2004 Workshop 4: Diatomic molecule vibrational and rotational spectra CH35 Physical Chemistry, Fall 004 http://quantum.bu.edu/courses/ch35/pltl/4.pdf Last updated Monday, November 9, 004 6:59:3-05:00 Copyright

More information

6.05 Computational Raman Spectroscopy

6.05 Computational Raman Spectroscopy 2nd/3rd year Physical Chemistry Practical Course, Oxford University 6.05 Computational Raman Spectroscopy (5 points) Raman spectra are obtained by irradiating a sample with very intense monochromatic radiation,

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave

More information

An Aside: Application of Rotational Motion. Vibrational-Rotational Spectroscopy

An Aside: Application of Rotational Motion. Vibrational-Rotational Spectroscopy An Aside: Application of Rotational Motion Vibrational-Rotational Spectroscopy Rotational Excited States of a Diatomic Molecule are Significantly Populated at Room Temperature We can estimate the relative

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

6.2 Polyatomic Molecules

6.2 Polyatomic Molecules 6.2 Polyatomic Molecules 6.2.1 Group Vibrations An N-atom molecule has 3N - 5 normal modes of vibrations if it is linear and 3N 6 if it is non-linear. Lissajous motion A polyatomic molecule undergoes a

More information

4. Molecular spectroscopy. Basel, 2008

4. Molecular spectroscopy. Basel, 2008 4. Molecular spectroscopy Basel, 008 4.4.5 Fluorescence radiation The excited molecule: - is subject to collisions with the surrounding molecules and gives up energy by decreasing the vibrational levels

More information

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2)

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Obtaining fundamental information about the nature of molecular structure is one of the interesting aspects of molecular

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

Model for vibrational motion of a diatomic molecule. To solve the Schrödinger Eq. for molecules, make the Born- Oppenheimer Approximation:

Model for vibrational motion of a diatomic molecule. To solve the Schrödinger Eq. for molecules, make the Born- Oppenheimer Approximation: THE HARMONIC OSCILLATOR Features Example of a problem in which V depends on coordinates Power series solution Energy is quantized because of the boundary conditions Model for vibrational motion of a diatomic

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 XIV 67 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate,

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine

Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine Experiment 6: Vibronic Absorption Spectrum of Molecular Iodine We have already seen that molecules can rotate and bonds can vibrate with characteristic energies, each energy being associated with a particular

More information

NORTH CAROLINA STATE UNIVERSITY Department of Chemistry. Physical Chemistry CH437 Problem Set #4 Due Date: September 22, 2015

NORTH CAROLINA STATE UNIVERSITY Department of Chemistry. Physical Chemistry CH437 Problem Set #4 Due Date: September 22, 2015 NORTH CAROLINA STATE UNIVERSITY Department of Chemistry Name Physical Chemistry CH437 Problem Set #4 Due Date: September 22, 2015 Using a Fourier Transform Infra-red (FTIR) spectrometer we can obtain sufficiently

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Vibrational spectroscopy, 017 Uwe Burghaus, Fargo, ND, USA CHEM761 Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states... microwave

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

CHAPTER 13 LECTURE NOTES

CHAPTER 13 LECTURE NOTES CHAPTER 13 LECTURE NOTES Spectroscopy is concerned with the measurement of (a) the wavelengths (or frequencies) at which molecules absorb/emit energy, and (b) the amount of radiation absorbed at these

More information

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy No. 1 of 10 1. Internal vibration modes of a molecule containing N atoms is made up of the superposition of 3N-(5 or 6) simple

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Rotational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Rotational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Rotational spectroscopy, 2017 Uwe Burghaus, Fargo, ND, USA Atomic spectroscopy (part I) Absorption spectroscopy Bohr model QM of H atom (review) Atomic spectroscopy (part II) Visualization of wave functions

More information

Physical Chemistry II Laboratory

Physical Chemistry II Laboratory Kuwata Spring 2003 Physical Chemistry II Laboratory The Rovibrational Spectra of H 35 Cl and H 37 Cl Using FTIR Write-Up Due Date: Thursday, April 17 (You may record spectra and write your reports in teams

More information

The Vibrational-Rotational Spectrum of HCl

The Vibrational-Rotational Spectrum of HCl CHEM 332L Physical Chemistry Lab Revision 2.2 The Vibrational-Rotational Spectrum of HCl In this experiment we will examine the fine structure of the vibrational fundamental line for H 35 Cl in order to

More information

Chem120a : Exam 3 (Chem Bio) Solutions

Chem120a : Exam 3 (Chem Bio) Solutions Chem10a : Exam 3 (Chem Bio) Solutions November 7, 006 Problem 1 This problem will basically involve us doing two Hückel calculations: one for the linear geometry, and one for the triangular geometry. We

More information

Vibrational states of molecules. Diatomic molecules Polyatomic molecules

Vibrational states of molecules. Diatomic molecules Polyatomic molecules Vibrational states of molecules Diatomic molecules Polyatomic molecules Diatomic molecules V v 1 v 0 Re Q Birge-Sponer plot The solution of the Schrödinger equation can be solved analytically for the

More information

Vibration-Rotation Spectrum of HCl

Vibration-Rotation Spectrum of HCl HCl report.pb 1 Vibration-Rotation Spectrum of HCl Introduction HCl absorbs radiation in the infrared portion of the spectrum which corresponds to the molecule changing its vibrational state. A concommitant

More information

INFRARED ABSORPTION SPECTROSCOPY. References: See relevant sections in undergraduate text. Learn from your instructor how to use the spectrometer.

INFRARED ABSORPTION SPECTROSCOPY. References: See relevant sections in undergraduate text. Learn from your instructor how to use the spectrometer. INFRARED ABSORPTION SPECTROSCOPY References: See relevant sections in undergraduate text Background: Learn from your instructor how to use the spectrometer. Know definitions of the following and their

More information

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible.

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Physical Chemistry Lab II Name: KEY CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Constants: c = 3.00 10 8 m/s h = 6.63 10-34 J s 1 Hartree = 4.36 10-18

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Vibrational spectroscopy, 017 Uwe Burghaus, Fargo, ND, USA CHEM761 Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states... by microwave

More information

2. Infrared spectroscopy

2. Infrared spectroscopy 2. Infrared spectroscopy 2-1Theoretical principles An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer.

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

Introduction to Molecular Vibrations and Infrared Spectroscopy

Introduction to Molecular Vibrations and Infrared Spectroscopy hemistry 362 Spring 2017 Dr. Jean M. Standard February 15, 2017 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 208 Dr Jean M Standard March 9, 208 Name KEY Physical Chemistry II Exam 2 Solutions ) (4 points) The harmonic vibrational frequency (in wavenumbers) of LiH is 4057 cm Based upon this

More information

Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled)

Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled) Varberg and Kuwata Chemistry 312 Spring 28 Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled) Meet for lab on Thursday, April

More information

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor A Quantum Mechanical Model for the Vibration and Rotation of Molecules Harmonic Oscillator Rigid Rotor Degrees of Freedom Translation: quantum mechanical model is particle in box or free particle. A molecule

More information

Advanced Chemistry 2008

Advanced Chemistry 2008 Advanced Chemistry 008 Vibration - Rotation Spectrum of a Diatomic Molecule Analysis of the Fundamental Bands of the H 9 Br and H 8 Br Molecules 0 The vibration-rotation spectrum of the HBr molecule in

More information

5.3 Rotational Raman Spectroscopy General Introduction

5.3 Rotational Raman Spectroscopy General Introduction 5.3 Rotational Raman Spectroscopy 5.3.1 General Introduction When EM radiation falls on atoms or molecules, it may be absorbed or scattered. If λis unchanged, the process is referred as Rayleigh scattering.

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

Lecture 7: Electronic Spectra of Diatomics

Lecture 7: Electronic Spectra of Diatomics Lecture 7: Electronic Spectra of Diatomics. Term symbols for diatomic molecules Fortrat parabola, (Symmetric Top). Common molecular models for diatomics 3. Improved treatments 4. Quantitative absorption

More information

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 3 February 06 Modern Physics IV Lecture 4 Agenda Administrative

More information

Vibronic Spectra of Diatomic Molecules and the Birge-Sponer Extrapolation

Vibronic Spectra of Diatomic Molecules and the Birge-Sponer Extrapolation Vibronic Spectra of Diatomic Molecules and the Birge-Sponer Extrapolation George M Shalhoub Department of Chemistry LaSalle University Philadelphia, PA 9 shalhoub@lasalleedu and Theresa Julia Zielinski

More information

Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY

Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY Professor Angelo R. Rossi http://homepages.uconn.edu/rossi Department of Chemistry, Room CHMT215 The University of Connecuticut

More information

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

van Quantum tot Molecuul

van Quantum tot Molecuul 10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based

More information

What dictates the rate of radiative or nonradiative excited state decay?

What dictates the rate of radiative or nonradiative excited state decay? What dictates the rate of radiative or nonradiative excited state decay? Transitions are faster when there is minimum quantum mechanical reorganization of wavefunctions. This reorganization energy includes

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

Electronic transitions: Vibrational and rotational structure

Electronic transitions: Vibrational and rotational structure Electronic transitions: Vibrational and rotational structure An electronic transition is made up of vibrational bands, each of which is in turn made up of rotational lines Vibrational structure Vibrational

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Chapter IV: Electronic Spectroscopy of diatomic molecules

Chapter IV: Electronic Spectroscopy of diatomic molecules Chapter IV: Electronic Spectroscopy of diatomic molecules IV.2.1 Molecular orbitals IV.2.1.1. Homonuclear diatomic molecules The molecular orbital (MO) approach to the electronic structure of diatomic

More information

VIBRATION-ROTATION SPECTRUM OF CO

VIBRATION-ROTATION SPECTRUM OF CO Rice University Physics 332 VIBRATION-ROTATION SPECTRUM OF CO I. INTRODUCTION...2 II. THEORETICAL CONSIDERATIONS...3 III. MEASUREMENTS...8 IV. ANALYSIS...9 April 2011 I. Introduction Optical spectroscopy

More information

Lecture 8. Assumed knowledge

Lecture 8. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.8 Small-Molecule Spectroscopy and Dynamics Fall 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.76 Lecture

More information

Interaction of Molecules with Radiation

Interaction of Molecules with Radiation 3 Interaction of Molecules with Radiation Atoms and molecules can exist in many states that are different with respect to the electron configuration, angular momentum, parity, and energy. Transitions between

More information

Physical Chemistry I Fall 2016 Second Hour Exam (100 points) Name:

Physical Chemistry I Fall 2016 Second Hour Exam (100 points) Name: Physical Chemistry I Fall 2016 Second Hour Exam (100 points) Name: (20 points) 1. Quantum calculations suggest that the molecule U 2 H 2 is planar and has symmetry D 2h. D 2h E C 2 (z) C 2 (y) C 2 (x)

More information

Molecular Structure & Spectroscopy Friday, February 4, 2010

Molecular Structure & Spectroscopy Friday, February 4, 2010 Molecular Structure & Spectroscopy Friday, February 4, 2010 CONTENTS: 1. Introduction 2. Diatomic Molecules A. Electronic structure B. Rotation C. Vibration D. Nuclear spin 3. Radiation from Diatomic Molecules

More information

Radiative Transfer and Molecular Lines Sagan Workshop 2009

Radiative Transfer and Molecular Lines Sagan Workshop 2009 Radiative Transfer and Molecular Lines Sagan Workshop 2009 Sara Seager Trent Schindler Trent Schindler MIT Lecture Contents Overview of Equations for Planetary Atmospheres Radiative Transfer Thermal Inversions

More information

Brief introduction to molecular symmetry

Brief introduction to molecular symmetry Chapter 1 Brief introduction to molecular symmetry It is possible to understand the electronic structure of diatomic molecules and their interaction with light without the theory of molecular symmetry.

More information

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space.

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space. Spectral Resolution Spectral resolution is a measure of the ability to separate nearby features in wavelength space. R, minimum wavelength separation of two resolved features. Delta lambda often set to

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Determining the Normal Modes of Vibration

Determining the Normal Modes of Vibration Determining the ormal Modes of Vibration Introduction at the end of last lecture you determined the symmetry and activity of the vibrational modes of ammonia Γ vib 3 ) = A 1 IR, pol) + EIR,depol) the vibrational

More information

Spectroscopy for the Masses

Spectroscopy for the Masses Spectroscopy for the Masses Robert J. Le Roy, Scott Hopkins, William P. Power, Tong Leung, Jake Fisher and John Hepburn Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

More information

Chemistry 218 Spring Molecular Structure

Chemistry 218 Spring Molecular Structure Chemistry 218 Spring 2015-2016 Molecular Structure R. Sultan COURSE SYLLABUS Email: rsultan@aub.edu.lb Homepage: http://staff.aub.edu.lb/~rsultan/ Lectures: 12:30-13:45 T, Th. 101 Chemistry Textbook: P.

More information

Chapter 8 Problem Solutions

Chapter 8 Problem Solutions Chapter 8 Problem Solutions 1. The energy needed to detach the electron from a hydrogen atom is 13.6 ev, but the energy needed to detach an electron from a hydrogen molecule is 15.7 ev. Why do you think

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy In this part of the course we will look at the kind of spectroscopy which uses light to excite the motion of atoms. The forces required to move atoms are smaller than those required

More information

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger PHYS 402, Atomic and Molecular Physics Spring 2017, final exam, solutions 1. Hydrogenic atom energies: Consider a hydrogenic atom or ion with nuclear charge Z and the usual quantum states φ nlm. (a) (2

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

Lecture 18 Long Wavelength Spectroscopy

Lecture 18 Long Wavelength Spectroscopy Lecture 18 Long Wavelength Spectroscopy 1. Introduction. The Carriers of the Spectra 3. Molecular Structure 4. Emission and Absorption References Herzberg, Molecular Spectra & Molecular Structure (c. 1950,

More information

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Closed book exam, only pencils and calculators permitted. You may bring and use one 8 1/2 x 11" paper with anything on it. No Computers. Put all of your

More information

Atomic Spectroscopy II

Atomic Spectroscopy II Applied Spectroscopy Atomic Spectroscopy II Multielectron Atoms Recommended Reading: Banwell And McCash Chapter 5 The Building-Up (aufbau) Principle How do the electrons in multi-electron atoms get distributed

More information

SIMPLE QUANTUM SYSTEMS

SIMPLE QUANTUM SYSTEMS SIMPLE QUANTUM SYSTEMS Chapters 14, 18 "ceiiinosssttuu" (anagram in Latin which Hooke published in 1676 in his "Description of Helioscopes") and deciphered as "ut tensio sic vis" (elongation of any spring

More information

Spectroscopy Applied to Selected Examples

Spectroscopy Applied to Selected Examples Spectroscopy Applied to Selected Examples Radial Velocities Exoplanets λ obs λ rest λ rest = Δλ λ rest v c for z

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a. SPECTROSCOPY Readings in Atkins: Justification 13.1, Figure 16.1, Chapter 16: Sections 16.4 (diatomics only), 16.5 (omit a, b, d, e), 16.6, 16.9, 16.10, 16.11 (omit b), 16.14 (omit c). Exercises 16.3a,

More information

obtained in Chapter 14 to this case requires that the E1 approximation

obtained in Chapter 14 to this case requires that the E1 approximation Chapter 15 The tools of time-dependent perturbation theory can be applied to transitions among electronic, vibrational, and rotational states of molecules. I. Rotational Transitions Within the approximation

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Experiment 4 INFRARED SPECTROSCOPY

Experiment 4 INFRARED SPECTROSCOPY Experiment INFRARED SPECTROSCOPY Infrared (IR) spectroscopy is one tool for the study of molecular structure. In the case of diatomic molecules, one can extract bond lengths and bond force constants from

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

The Iodine Spectrum. and

The Iodine Spectrum. and The Iodine Spectrum George Long Department of Chemistry Indiana University of Pennsylvania Indiana, PA 15705 grlong@grove.iup.edu and Department of Chemistry, Medical Technology, and Physics Monmouth University

More information

eigenvalues eigenfunctions

eigenvalues eigenfunctions Born-Oppenheimer Approximation Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity) a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

Symmetry: Translation and Rotation

Symmetry: Translation and Rotation Symmetry: Translation and Rotation The sixth column of the C 2v character table indicates the symmetry species for translation along (T) and rotation about (R) the Cartesian axes. y y y C 2 F v (x) T x

More information