Determining neutrino masses from cosmology

Size: px
Start display at page:

Download "Determining neutrino masses from cosmology"

Transcription

1 Determining neutrino masses from cosmology Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia NuFact 2013, Beijing, August 19 24, 2013

2 The cosmic neutrino background... Embedding the standard model in FLRW cosmology necessarily leads to a thermal neutrino background (decoupling at T ~ 1 MeV). Fixed by weak interactions Present temperature: ( ) 4 T ν= 11 1/ 3 T γ =1.95K Number density per flavour: nν = 6 ζ (3) 3 3 T = 112 cm 4 π2 ν

3 The cosmic neutrino background: energy density... The present-day neutrino energy density depends on whether the neutrinos are relativistic or nonrelativistic. Relativistic (m << T): Photon energy density ( ) 7 π ρν = T ν= /3 3ρν ρ γ 0.68 ργ Nonrelativistic (m >> T ~ 10-4 ev): ρ ν =mν n ν ΛCDM (since Planck) mν 2 Ων, 0 h = >0.1 % h 94 ev 2 From neutrino oscillations mν > 0.05 ev Neutrino dark matter!

4 Detecting neutrino masses via free-streaming... For most of the observable history of the universe neutrinos have significant speeds. ev-mass neutrinos become nonrelativistic near γ decoupling. Even when nonrelativistic, neutrinos have large thermal motion. vthermal = ( ) Tν ev 50.4(1+ z) mν mν ν Avoid gravitational capture 1 ν Gravitational potential wells c 2 2 thermal 2 m Large-scale structure km s c ν CMB anistropies ( ) 8π v 1+ z ev 2π Free-streaming λ FS 4.2 h 1 Mpc ; k FS Ωm,0 mν λ FS scale: 3Ω H c ν c Non-clustering FS k k FS

5 Consider a neutrino and a cold dark matter particle encountering two gravitational potential wells of different sizes in an expanding universe: ν ν c Ψ c ν c c ν λ λ FS Ψ Some time later... Both CDM and neutrinos cluster c ν c ν Potential stays the same (during matter domination) c ν λ λ FS c c ν Only CDM clusters Potential decays Cosmological neutrino mass measurement is based on observing this freestreaming induced potential decay at λ<< λfs.

6 Large-scale matter distribution... 2 P (k )= δ(k ) Galaxy redshift surveys Replace some CDM with neutrinos Cluster abundance Lyman-α fν = Neutrino fraction ΔP Ω 8 f ν 8 ν Ωm P Ω ν h = 2 mν 94eV

7 CMB anisotropies... WMAP Planck ACT, SPT mν =1 1.2 ev mν =3 0.4 ev mν =0 ev Early ISW Effect (after photon decoupling) Uplifting in the acoustic oscillation phase Fixed total matter density Free H0 (sound horizon adjusted)

8 Observed CMB temperature fluctuation Sachs-Wolfe effect: Gravitational potential Redshift ΔT ΔT = +Ψ T observed T intrinsic Blueshift Ψ=0 Ψ CMB photon Observer

9 Observed CMB temperature fluctuation Sachs-Wolfe effect: Gravitational potential Redshift ΔT ΔT = +Ψ T observed T intrinsic Blueshift Ψ=0 Ψ Potential decay before γ decoupling: CMB photon ΔT T intrinsic acoustic oscillations Observer Ψ ΔT T observed

10 Observed CMB temperature fluctuation Sachs-Wolfe effect: Gravitational potential Redshift ΔT ΔT = +Ψ T observed T intrinsic Blueshift Ψ=0 Ψ CMB photon ΔT T intrinsic Potential decay before γ decoupling: Observer Ψ ΔT T observed acoustic oscillations Integrated Sachs-Wolfe effect (potential decay after γ decoupling): τ0 time Temperature Δ T ( n )= d τ e κ( τ) [ Ψ (τ, n (τ τ))+ Φ (τ, n ( τ τ))] 0 0 enhancement T ISW 0

11 Observed CMB temperature fluctuation Sachs-Wolfe effect: Gravitational potential Redshift ΔT ΔT = +Ψ T observed T intrinsic Blueshift Ψ=0 Ψ CMB photon Potential decay happens inδstandard ΛCDM T Ψ Potential decay before γ decoupling: cosmology anyway. T intrinsic Observer ΔT T observed Replacing some CDM with massive neutrinos simply causesacoustic the potentials oscillations to decay more on scales below the freestreaming scale. Integrated Sachs-Wolfe effect (potential decay after γ decoupling): τ0 time Temperature Δ T ( n )= d τ e κ( τ) [ Ψ (τ, n (τ τ))+ Φ (τ, n ( τ τ))] 0 0 enhancement T ISW 0

12 CMB anisotropies... WMAP Planck ACT, SPT mν =1 1.2 ev mν =3 0.4 ev mν =0 ev Early ISW Effect (after photon decoupling) Uplifting in the acoustic oscillation phase Fixed total matter density Free H0 (sound horizon adjusted)

13 Present constraints...

14 Post-Planck... Ade et al.[planck] 2013 ΛCDM+neutrino mass (7 parameters) 95% C.L. upper limits WMAP (9 years) W9 + ACT Planck + WMAP Polarisation Planck + WP + ACT ℓ > SPT ℓ > 2000 mν <0.66 ev Best CMB-only bound (95 % C.L.)

15 Post-Planck... Ade et al.[planck] 2013 ΛCDM+neutrino mass (7 parameters) 95% C.L. upper limits WMAP (9 years) W9 + ACT Planck + WMAP Polarisation Planck + WP + ACT ℓ > SPT ℓ > 2000 mν <0.66 ev (95 % C.L.) Best CMB-only bound W7+ matter power spectrum + HST H 0 Planck + WP + (ACT ℓ > SPT ℓ > 2000) + baryon acoustic oscillations mν <0.25 ev (95 % C.L.) Best minimal bound Formally similar to the pre-planck best minimal bound, but arguably less prone to issues of nonlinearities.

16 Matter power spectrum vs BAO... 3 k P(k ) Linear 2 <1 2π Nonlinear 3 k P (k ) 2 >1 2π Galaxy redshift surveys Replace some CDM with neutrinos Lyman-α fν = Neutrino fraction ΔP Ω 8 f ν 8 ν Ωm P Ω ν h = 2 mν 94eV

17 Matter power spectrum (normalised to smooth spectrum) Matter power spectrum = Shape Baryon acoustic oscillations = Location of oscillatory features 1-loop (nonlinear) Time RG (nonlinear) N-body (nonlinear) HaloFit (nonlinear) Linear theory Pietroni 2008

18 In a nutshell... Formally, the best minimal (7-parameter) upper bound on Σ mν is still hovering around 0.3 ev post-planck. The bound has however become more robust against uncertainties: Less nonlinearities in BAO than in the matter power spectrum. Does not rely on local measurement of the Hubble parameter... or on the choice of lightcurve fitters for the Supernova Ia data. Dependence on cosmological model used for inference?

19 Model dependence: parameter degeneracies... We do not measure the neutrino mass per se, but rather its indirect effect on the clustering statistics of the CMB/large-scale structure. It is not impossible that other cosmological parameters could give rise to similar effects (within measurement errors/cosmic variance). mν =0 ev mν =1.2 ev

20 Model dependence: parameter degeneracies... We do not measure the neutrino mass per se, but rather its indirect effect on the clustering statistics of the CMB/large-scale structure. It is not impossible that other cosmological parameters could give rise to similar effects (within measurement errors/cosmic variance). mν =0 ev mν =1.2 ev Tweak H0

21 Model dependence: parameter degeneracies... We do not measure the neutrino mass per se, but rather its indirect effect on the clustering statistics of the CMB/large-scale structure. It is not impossible that other cosmological parameters could give rise to similar effects (within measurement errors/cosmic variance). mν =0 ev mν =1.2 ev Tweak H0 and ωdm Imagine what might happen if we drop spatial flatness, or vary the dark energy EoS, etc. too...

22 Post-Planck... Ade et al.[planck] 2013 ΛCDM+neutrino mass (7 parameters) 95% C.L. upper limits WMAP (9 years) W9 + ACT Planck + WMAP Polarisation Planck + WP + ACT ℓ > SPT ℓ > 2000 mν <0.66 ev (95 % C.L.) Best CMB-only bound W7+ matter power spectrum + HST H 0 Planck + WP + (ACT ℓ > SPT ℓ > 2000) + baryon acoustic oscillations mν <0.25 ev (95 % C.L.) Best minimal bound Dropping assumption of spatial flatness: mν <0.32 ev Other extensions?? (95 % C.L.)

23 Discrepancies potentially resolved by neutrino physics??

24 Planck discrepancies with other observations... Hubble parameter H0: Planck-inferred value lower than local HST measurement. Alleviated by postulating Neff > 3? Small-scale RMS fluctuation σ8: Planck CMB prefers a higher value than galaxy cluster count and galaxy shear from CFHTLens. Planck SZ clusters 0.3 σ 8 (Ωm / 0.27) =0.782± CFHTLens galaxy shear σ 8 (Ωm /0.27) =0.774±0.04 Ade et al. [Planck collaboration] 2013 Heymans et al. 2013

25 A neutrino solution?? My take: These discrepancies are most likely due to poorly understood nonlinearities. Cluster counts are particularly difficult to model. But at face value a sterile neutrino solution is possible. CMB+all (ΛCDM+ΔNeff+ms 8-parameter model) Δ N eff =0.61±0.30 ms =(0.41±0.13) ev Hamann & Hasenkamp 2013 also Wyman et al. 2013

26 A neutrino solution?? 68% and 95% contours CMB+all Reactor anomaly LSND CMB only Hamann & Hasenkamp 2013 also Wyman et al. 2013

27 Future sensitivities... (Planck is not the end of the story!!)

28 ESA Euclid mission selected for implementation... Launch planned for year lifetime deg2 (>1/3 of the sky) Galaxies and clusters out to z~2 Photo-z for 1 billion galaxies Spectro-z for 50 million galaxies Optimised for weak gravitational lensing (cosmic shear)

29 Expected sensitivity... A 7-parameter forecast: Hamann, Hannestad & Y3W 2012 Most optimistic c = CMB (Planck); g = Euclid galaxy clustering s = Euclid cosmic shear; x = Euclid shear-galaxy cross Σmν potentially detectable at 5σ+ with Planck+Euclid (assuming nonlinearities to be completely under control)

30 Expected sensitivity... A 7-parameter forecast: Hamann, Hannestad & Y3W 2012 Moderate 2σ+ detection (only shear nonlinearities under control) Very pessimistic No knowledge of nonlinearities Most optimistic c = CMB (Planck); g = Euclid galaxy clustering s = Euclid cosmic shear; x = Euclid shear-galaxy cross Σmν potentially detectable at 5σ+ with Planck+Euclid (assuming nonlinearities to be completely under control)

31 Summary... Precision cosmological observables can be used to measure the absolute neutrino mass scale based on the effect of neutrino free-streaming. Existing precision cosmological data already provide strong constraints on the neutrino mas sum. No significant formal improvement between the best pre-planck and postplanck upper bounds (at least not for the minimal 7-parameter model). But the post-planck bound is arguably more robust. There are outstanding discrepancies between Planck and measurements from HST, clusters, and cosmic shear. Taken at face value these discrepancies can be resolved by new neutrino physics (although not necessarily the same physics in all cases...). But personally I'd take it cum grano salis.

Neutrino properties from cosmology

Neutrino properties from cosmology Neutrino properties from cosmology Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia Rencontres de Moriond EW 2014, La Thuile, March 15 22, 2014 The concordance flat ΛCDM model... The

More information

Neutrino Mass Limits from Cosmology

Neutrino Mass Limits from Cosmology Neutrino Physics and Beyond 2012 Shenzhen, September 24th, 2012 This review contains limits obtained in collaboration with: Emilio Ciuffoli, Hong Li and Xinmin Zhang Goal of the talk Cosmology provides

More information

Neutrinos and cosmology

Neutrinos and cosmology Neutrinos and cosmology Yvonne Y. Y. Wong RWTH Aachen LAUNCH, Heidelberg, November 9--12, 2009 Relic neutrino background: Temperature: 4 T,0 = 11 Origin of density perturbations? 1 /3 T CMB, 0=1.95 K Number

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

Measuring Neutrino Masses and Dark Energy

Measuring Neutrino Masses and Dark Energy Huitzu Tu UC Irvine June 7, 2007 Dark Side of the Universe, Minnesota, June 5-10 2007 In collaboration with: Steen Hannestad, Yvonne Wong, Julien Lesgourgues, Laurence Perotto, Ariel Goobar, Edvard Mörtsell

More information

The State of Tension Between the CMB and LSS

The State of Tension Between the CMB and LSS The State of Tension Between the CMB and LSS Tom Charnock 1 in collaboration with Adam Moss 1 and Richard Battye 2 Phys.Rev. D91 (2015) 10, 103508 1 Particle Theory Group University of Nottingham 2 Jodrell

More information

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat Analyzing the CMB Brightness Fluctuations (predicted) 1 st rarefaction Power = Average ( / ) 2 of clouds of given size scale 1 st compression 2 nd compression (deg) Fourier analyze WMAP image: Measures

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

Massive neutrinos and cosmology

Massive neutrinos and cosmology Massive neutrinos and cosmology Yvonne Y. Y. Wong RWTH Aachen Theory colloquium, Padova, November 18, 2009 Relic neutrino background: Temperature: 4 T,0 = 11 Origin of density perturbations? 1 /3 T CMB,

More information

Implications of cosmological observables for particle physics: an overview

Implications of cosmological observables for particle physics: an overview Implications of cosmological observables for particle physics: an overview Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia TAUP 2015, Torino, September 7 11, 2015 The concordance

More information

Neutrinos in Cosmology (IV)

Neutrinos in Cosmology (IV) Neutrinos in Cosmology (IV) Sergio Pastor (IFIC Valencia) Cinvestav 8-12 June 2015 Outline Prologue: the physics of (massive) neutrinos IntroducBon: neutrinos and the history of the Universe Basics of

More information

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 NEUTRINO COSMOLOGY ν e ν µ ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 OUTLINE A BRIEF REVIEW OF PRESENT COSMOLOGICAL DATA BOUNDS ON THE NEUTRINO MASS STERILE NEUTRINOS WHAT IS TO COME

More information

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino Stefano Gariazzo University and INFN, Torino gariazzo@to.infn.it http://personalpages.to.infn.it/~gariazzo/ Light sterile neutrinos with pseudoscalar interactions in cosmology Based on [JCAP 08 (2016)

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland Neutrino Mass & the Lyman-α Forest Kevork Abazajian University of Maryland INT Workshop: The Future of Neutrino Mass Measurements February 9, 2010 Dynamics: the cosmological density perturbation spectrum

More information

H 0 is Undervalued BAO CMB. Wayne Hu STSCI, April 2014 BICEP2? Maser Lensing Cepheids. SNIa TRGB SBF. dark energy. curvature. neutrinos. inflation?

H 0 is Undervalued BAO CMB. Wayne Hu STSCI, April 2014 BICEP2? Maser Lensing Cepheids. SNIa TRGB SBF. dark energy. curvature. neutrinos. inflation? H 0 is Undervalued BICEP2? 74 Maser Lensing Cepheids Eclipsing Binaries TRGB SBF SNIa dark energy curvature CMB BAO neutrinos inflation? Wayne Hu STSCI, April 2014 67 The 1% H 0 =New Physics H 0 : an end

More information

Steen Hannestad Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark

Steen Hannestad Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark E-mail: sth@phys.au.dk In recent years precision cosmology has become an increasingly powerful probe of particle

More information

Dark Radiation from Particle Decay

Dark Radiation from Particle Decay Dark Radiation from Particle Decay Jörn Kersten University of Hamburg Based on Jasper Hasenkamp, JK, JCAP 08 (2013), 024 [arxiv:1212.4160] Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay

More information

Cosmological neutrinos

Cosmological neutrinos Cosmological neutrinos Yvonne Y. Y. Wong CERN & RWTH Aachen APCTP Focus Program, June 15-25, 2009 2. Neutrinos and structure formation: the linear regime Relic neutrino background: Temperature: 4 T,0 =

More information

How many neutrino species are there?

How many neutrino species are there? How many neutrino species are there? Jan Hamann 6. Kosmologietag, Bielefeld 5-6 May 2011 Radiation content of the Universe Microwave background Neutrino background standard model expectation: [Mangano

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

First Cosmology Results from Planck. Alessandro Melchiorri University of Rome La Sapienza On behalf of the Planck collaboration

First Cosmology Results from Planck. Alessandro Melchiorri University of Rome La Sapienza On behalf of the Planck collaboration First Cosmology Results from Planck Alessandro Melchiorri University of Rome La Sapienza On behalf of the Planck collaboration Planck Collaboration 300+ names Planck Core-Team (a fraction of it) Planck

More information

Highlights from Planck 2013 cosmological results Paolo Natoli Università di Ferrara and ASI/ASDC DSU2013, Sissa, 17 October 2013

Highlights from Planck 2013 cosmological results Paolo Natoli Università di Ferrara and ASI/ASDC DSU2013, Sissa, 17 October 2013 Highlights from Planck 2013 cosmological results Paolo Natoli Università di Ferrara and ASI/ASDC DSU2013, Sissa, 17 October 2013 On behalf of the Planck collaboration Fluctuation and GW generator Fluctuation

More information

Structure in the CMB

Structure in the CMB Cosmic Microwave Background Anisotropies = structure in the CMB Structure in the CMB Boomerang balloon flight. Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

More information

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 NEUTRINO COSMOLOGY n e n m n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 LIMITS ON THE PROPERTIES OF LIGHT NEUTRINOS FROM COSMOLOGICAL DATA THE MASS OF THE ACTIVE SPECIES BOUNDS ON OTHER

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

Implications of cosmological observations on neutrino and axion properties

Implications of cosmological observations on neutrino and axion properties Implications of cosmological observations on neutrino and axion properties Elena Giusarma Elba XIII Workshop Based on works in collabora6on with: E. Di Valen6no, M. La?anzi, A. Melchiorri, O. Mena arxiv:1403.4852

More information

Thermal Axion Cosmology

Thermal Axion Cosmology Thermal Axion Cosmology 19th June 2015, Santander Eleonora Di Valentino Institut d Astrophysique de Paris Axions The most elegant and promising solution of the so-called strong CP problem in Quantum Chromodynamics

More information

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum The Cosmic Microwave Background Part II Features of the Angular Power Spectrum Angular Power Spectrum Recall the angular power spectrum Peak at l=200 corresponds to 1o structure Exactly the horizon distance

More information

Neutrinos in the era of precision Cosmology

Neutrinos in the era of precision Cosmology Neutrinos in the era of precision Cosmology Marta Spinelli Rencontres du Vietnam Quy Nhon - 21 July 2017 The vanilla model: -CDM (Late times) cosmological probes Supernovae Ia standard candles fundamental

More information

Cosmological observables and the nature of dark matter

Cosmological observables and the nature of dark matter Cosmological observables and the nature of dark matter Shiv Sethi Raman Research Institute March 18, 2018 SDSS results: power... SDSS results: BAO at... Planck results:... Planck-SDSS comparison Summary

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Planck 2015 parameter constraints

Planck 2015 parameter constraints Planck 2015 parameter constraints Antony Lewis On behalf of the Planck Collaboration http://cosmologist.info/ CMB temperature End of inflation Last scattering surface gravity+ pressure+ diffusion Observed

More information

Planck constraints on neutrinos. Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration

Planck constraints on neutrinos. Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration Planck constraints on neutrinos Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration The Cosmic Neutrino Background (CnB) The presence of a background of relic neutrinos is

More information

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

COSMIC MICROWAVE BACKGROUND ANISOTROPIES COSMIC MICROWAVE BACKGROUND ANISOTROPIES Anthony Challinor Institute of Astronomy & Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K. a.d.challinor@ast.cam.ac.uk 26

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect The Outtakes CMB Transfer Function Testing Inflation Weighing Neutrinos Decaying Neutrinos Testing Λ Testing Quintessence Polarization Sensitivity SDSS Complementarity Secondary Anisotropies Doppler Effect

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

NEUTRINO PROPERTIES FROM COSMOLOGY

NEUTRINO PROPERTIES FROM COSMOLOGY NEUTRINO PROPERTIES FROM COSMOLOGY Cosmology 2018 in Dubrovnik 26 October 2018 OKC, Stockholm University Neutrino cosmology BOOKS: Lesgourgues, Mangano, Miele, Pastor, Neutrino Cosmology, Cambridge U.Press,

More information

Warm dark matter with future cosmic shear data

Warm dark matter with future cosmic shear data Workshop CIAS Meudon, Tuesday, June 7, 2011 Warm dark matter with future cosmic shear data Katarina Markovic (University Observatory Munich) markovic@usm.lmu.de in collaboration with Jochen Weller and

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Dark Radiation and Inflationary Freedom

Dark Radiation and Inflationary Freedom Dark Radiation and Inflationary Freedom Based on [SG et al., JCAP 1504 (2015) 023] [Di Valentino et al., PRD 91 (2015) 123505] Stefano Gariazzo University of Torino, INFN of Torino http://personalpages.to.infn.it/~gariazzo/

More information

What do we really know about Dark Energy?

What do we really know about Dark Energy? What do we really know about Dark Energy? Ruth Durrer Département de Physique Théorique & Center of Astroparticle Physics (CAP) ESTEC, February 3, 2012 Ruth Durrer (Université de Genève ) Dark Energy ESTEC

More information

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on Observational cosmology: Large scale structure Filipe B. Abdalla Kathleen Lonsdale Building G.22 http://zuserver2.star.ucl.ac.uk/~hiranya/phas3136/phas3136 Large Scale Structure After these lectures, you

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 9, sections 9.4 and 9.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Modern Cosmology Solutions 4: LCDM Universe

Modern Cosmology Solutions 4: LCDM Universe Modern Cosmology Solutions 4: LCDM Universe Max Camenzind October 29, 200. LCDM Models The ansatz solves the Friedmann equation, since ȧ = C cosh() Ωm sinh /3 H 0 () () ȧ 2 = C 2 cosh2 () sinh 2/3 () (

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

Thermal axion cosmology and inflationary freedom

Thermal axion cosmology and inflationary freedom Thermal axion cosmology and inflationary freedom 10th September 2016 NOW Eleonora Di Valentino Institut d Astrophysique de Paris Axions The most elegant and promising solution of the so-called strong CP

More information

Physical Cosmology 18/5/2017

Physical Cosmology 18/5/2017 Physical Cosmology 18/5/2017 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2017 Summary If we consider perturbations in a pressureless

More information

Modern Cosmology / Scott Dodelson Contents

Modern Cosmology / Scott Dodelson Contents Modern Cosmology / Scott Dodelson Contents The Standard Model and Beyond p. 1 The Expanding Universe p. 1 The Hubble Diagram p. 7 Big Bang Nucleosynthesis p. 9 The Cosmic Microwave Background p. 13 Beyond

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004 NeoClassical Probes in of the Dark Energy Wayne Hu COSMO04 Toronto, September 2004 Structural Fidelity Dark matter simulations approaching the accuracy of CMB calculations WMAP Kravtsov et al (2003) Equation

More information

Dark Matter and Cosmic Structure Formation

Dark Matter and Cosmic Structure Formation Dark Matter and Cosmic Structure Formation Prof. Luke A. Corwin PHYS 792 South Dakota School of Mines & Technology Jan. 23, 2014 (W2-2) L. Corwin, PHYS 792 (SDSM&T) DM & Cosmic Structure Jan. 23, 2014

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

Cosmology with the ESA Euclid Mission

Cosmology with the ESA Euclid Mission Cosmology with the ESA Euclid Mission Andrea Cimatti Università di Bologna Dipartimento di Astronomia On behalf of the Euclid Italy Team ESA Cosmic Vision 2015-2025 M-class Mission Candidate Selected in

More information

Planck. Ken Ganga. APC/CNRS/ University of Paris-Diderot

Planck. Ken Ganga. APC/CNRS/ University of Paris-Diderot Planck Ken Ganga APC/CNRS/ University of Paris-Diderot A Brief History of the Cosmos The CMB was emitted when the Universe was about 3 10-5 of its current age. 2 Planck/HFI Timeline The HFI builds on the

More information

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Nguyen Quynh Lan Hanoi National University of Education, Vietnam (University of Notre Dame, USA) Rencontres du Vietnam:

More information

arxiv: v1 [hep-ph] 7 Apr 2014

arxiv: v1 [hep-ph] 7 Apr 2014 Neutrino cosmology and PLANCK arxiv:1404.1740v1 [hep-ph] 7 Apr 2014 Submitted to: New J. Phys. Julien Lesgourgues 1 and Sergio Pastor 2 1 Institut de Théorie des Phénomènes Physiques, EPFL, CH-1015 Lausanne,

More information

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E FURTHER COSMOLOGY Book page 675-683 T H E M A K E U P O F T H E U N I V E R S E COSMOLOGICAL PRINCIPLE Is the Universe isotropic or homogeneous? There is no place in the Universe that would be considered

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

Future precision cosmology and neutrinos

Future precision cosmology and neutrinos Future precision cosmology and neutrinos Universitá di Roma Sapienza, Ple Aldo Moro 2, 00185, Rome, Italy E-mail: alessandro.melchiorri@uniroma1.it In the next decade future measurements of the Cosmic

More information

Observational Cosmology

Observational Cosmology The Cosmic Microwave Background Part I: CMB Theory Kaustuv Basu Course website: http://www.astro.uni-bonn.de/~kbasu/obscosmo CMB parameter cheat sheet 2 Make your own CMB experiment! Design experiment

More information

Weak gravitational lensing of CMB

Weak gravitational lensing of CMB Weak gravitational lensing of CMB (Recent progress and future prospects) Toshiya Namikawa (YITP) Lunch meeting @YITP, May 08, 2013 Cosmic Microwave Background (CMB) Precise measurements of CMB fluctuations

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem matter : anything with equation of state w=0 more obvious contribution to matter: baryons (stars, planets, us!) and both Big Bang Nucleosynthesis and WMAP tell us that Ω baryons

More information

CMB Anisotropies and Fundamental Physics. Lecture II. Alessandro Melchiorri University of Rome «La Sapienza»

CMB Anisotropies and Fundamental Physics. Lecture II. Alessandro Melchiorri University of Rome «La Sapienza» CMB Anisotropies and Fundamental Physics Lecture II Alessandro Melchiorri University of Rome «La Sapienza» Lecture II CMB & PARAMETERS (Mostly Dark Energy) Things we learned from lecture I Theory of CMB

More information

Physical Cosmology 6/6/2016

Physical Cosmology 6/6/2016 Physical Cosmology 6/6/2016 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2016 CMB anisotropies The temperature fluctuation in

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL Thermalisation of Sterile Neutrinos Thomas Tram LPPC/ITP EPFL Outline Introduction to ev sterile neutrinos. Bounds from Cosmology. Standard sterile neutrino thermalisation. Thermalisation suppression by

More information

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501.

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501. CONSTRAINTS AND TENSIONS IN MG PARAMETERS FROM PLANCK, CFHTLENS AND OTHER DATA SETS INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS arxiv:1501.03119 1 Mustapha Ishak The University of Texas at Dallas Jason

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Nonparametric Inference and the Dark Energy Equation of State

Nonparametric Inference and the Dark Energy Equation of State Nonparametric Inference and the Dark Energy Equation of State Christopher R. Genovese Peter E. Freeman Larry Wasserman Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/ ~ genovese/

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

The South Pole Telescope. Bradford Benson (University of Chicago)

The South Pole Telescope. Bradford Benson (University of Chicago) The South Pole Telescope Bradford Benson (University of Chicago) 1 The South Pole Telescope Collaboration Funded By: Funded by: 2 The South Pole Telescope (SPT) 10-meter sub-mm quality wavelength telescope

More information

The Growth of Structure Read [CO 30.2] The Simplest Picture of Galaxy Formation and Why It Fails (chapter title from Longair, Galaxy Formation )

The Growth of Structure Read [CO 30.2] The Simplest Picture of Galaxy Formation and Why It Fails (chapter title from Longair, Galaxy Formation ) WMAP Density fluctuations at t = 79,000 yr he Growth of Structure Read [CO 0.2] 1.0000 1.0001 0.0001 10 4 Early U. contained condensations of many different sizes. Current large-scale structure t = t 0

More information

Current status of the ΛCDM structure formation model. Simon White Max Planck Institut für Astrophysik

Current status of the ΛCDM structure formation model. Simon White Max Planck Institut für Astrophysik Current status of the ΛCDM structure formation model Simon White Max Planck Institut für Astrophysik The idea that DM might be a neutral, weakly interacting particle took off around 1980, following a measurement

More information

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2 Physics 661 Particle Physics Phenomenology October 2, 2003 Evidence for theory: Hot Big Bang Model Present expansion of the Universe Existence of cosmic microwave background radiation Relative abundance

More information

MODERN COSMOLOGY LECTURE FYTN08

MODERN COSMOLOGY LECTURE FYTN08 1/43 MODERN COSMOLOGY LECTURE Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Lecture Updated 2015 2/43 3/43 1 2 Some problems with a simple expanding universe 3 4 5 6 7 8 9 Credit many

More information

Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Final Results

Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Final Results WMAP Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) HEP-GR Colloquium, DAMTP, Cambridge, January 30, 2012 1 used to be

More information

Theoretical developments for BAO Surveys. Takahiko Matsubara Nagoya Univ.

Theoretical developments for BAO Surveys. Takahiko Matsubara Nagoya Univ. Theoretical developments for BAO Surveys Takahiko Matsubara Nagoya Univ. Baryon Acoustic Oscillations Photons and baryons are strongly coupled by Thomson & Coulomb scattering before photon decoupling (z

More information

Can kinetic Sunyaev-Zel dovich effect be used to detect the interaction between DE and DM? Bin Wang Shanghai Jiao Tong University

Can kinetic Sunyaev-Zel dovich effect be used to detect the interaction between DE and DM? Bin Wang Shanghai Jiao Tong University Can kinetic Sunyaev-Zel dovich effect be used to detect the interaction between DE and DM? Bin Wang Shanghai Jiao Tong University Outline: The interaction model between DE&DM The ISW effect as a probe

More information

Baryon Acoustic Oscillations Part I

Baryon Acoustic Oscillations Part I Baryon Acoustic Oscillations Part I Yun Wang (on behalf of the Euclid collaboration) ESTEC, November 17, 2009 Outline Introduction: BAO and galaxy clustering BAO as a standard ruler BAO as a robust dark

More information

Weighing the Giants:

Weighing the Giants: Weighing the Giants: Accurate Weak Lensing Mass Measurements for Cosmological Cluster Surveys Anja von der Linden Tycho Brahe Fellow DARK Copenhagen + KIPAC, Stanford IACHEC, May 14, 2014 1 Hello! Copenhagen

More information

Observational cosmology: the RENOIR team. Master 2 session

Observational cosmology: the RENOIR team. Master 2 session Observational cosmology: the RENOIR team Master 2 session 2014-2015 Observational cosmology: the RENOIR team Outline A brief history of cosmology Introduction to cosmological probes and current projects

More information

Rayleigh scattering:

Rayleigh scattering: Rayleigh scattering: blue sky thinking for future CMB observations arxiv:1307.8148; previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

Introduction to CosmoMC

Introduction to CosmoMC Introduction to CosmoMC Part I: Motivation & Basic concepts Institut de Ciències del Cosmos - Universitat de Barcelona Dept. de Física Teórica y del Cosmos, Universidad de Granada, 1-3 Marzo 2016 What

More information

Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos. Yasaman Farzan IPM, Tehran

Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos. Yasaman Farzan IPM, Tehran Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos Yasaman Farzan IPM, Tehran Outline Motivation for the KATRIN experiment Effect of neutrinos on cosmological scales and

More information

Polarization from Rayleigh scattering

Polarization from Rayleigh scattering Polarization from Rayleigh scattering Blue sky thinking for future CMB observations Previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

Correlations between the Cosmic Microwave Background and Infrared Galaxies

Correlations between the Cosmic Microwave Background and Infrared Galaxies Correlations between the Cosmic Microwave Background and Infrared Galaxies Brett Scheiner & Jake McCoy Based on work by Goto, Szapudi and Granett (2012) http://cdsads.u-strasbg.fr/abs/2012mnras.422l..77g

More information

WMAP 9-Year Results and Cosmological Implications: The Final Results

WMAP 9-Year Results and Cosmological Implications: The Final Results WMAP 9-Year Results and Cosmological Implications: The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) 17th Paris Cosmology Colloquium 2013 Observatoire de Paris, July 24, 2013 1 used

More information

Cosmology with CMB & LSS:

Cosmology with CMB & LSS: Cosmology with CMB & LSS: the Early universe VSP08 lecture 4 (May 12-16, 2008) Tarun Souradeep I.U.C.A.A, Pune, India Ω +Ω +Ω +Ω + Ω +... = 1 0 0 0 0... 1 m DE K r r The Cosmic Triangle (Ostriker & Steinhardt)

More information

AST4320: LECTURE 10 M. DIJKSTRA

AST4320: LECTURE 10 M. DIJKSTRA AST4320: LECTURE 10 M. DIJKSTRA 1. The Mass Power Spectrum P (k) 1.1. Introduction: the Power Spectrum & Transfer Function. The power spectrum P (k) emerged in several of our previous lectures: It fully

More information

Research Article Cosmic Dark Radiation and Neutrinos

Research Article Cosmic Dark Radiation and Neutrinos Advances in High Energy Physics Volume 213, Article ID 19147, 14 pages http://dx.doi.org/1.1155/213/19147 Research Article Cosmic Dark Radiation and Neutrinos Maria Archidiacono, 1 Elena Giusarma, 2 Steen

More information

Testing gravity on cosmological scales with the observed abundance of massive clusters

Testing gravity on cosmological scales with the observed abundance of massive clusters Testing gravity on cosmological scales with the observed abundance of massive clusters David Rapetti, KIPAC (Stanford/SLAC) In collaboration with Steve Allen (KIPAC), Adam Mantz (KIPAC), Harald Ebeling

More information

Licia Verde. Introduction to cosmology. Lecture 4. Inflation

Licia Verde. Introduction to cosmology. Lecture 4. Inflation Licia Verde Introduction to cosmology Lecture 4 Inflation Dividing line We see them like temperature On scales larger than a degree, fluctuations were outside the Hubble horizon at decoupling Potential

More information