Some integrals involving the Stieltjes constants: Part II. Donal F. Connon. 11 April 2011

Size: px
Start display at page:

Download "Some integrals involving the Stieltjes constants: Part II. Donal F. Connon. 11 April 2011"

Transcription

1 Soe itegral iolig the Stielte cotat: Part II Doal F. Coo April Abtract Soe ew itegral iolig the Stielte cotat are deeloped i thi paper. CONTENTS Page. Itroductio. A ueful forula for the Stielte cotat 3. A applicatio of the Abel-Plaa uatio forula 6 4. A faily of itegral repreetatio of the Stielte cotat 6 5. A applicatio of the alteratig Hurwitz zeta fuctio 35. Itroductio The Stielte cotat γ p ( x ) are the coefficiet of the Lauret expaio of the Hurwitz zeta fuctio ς (, x) about = (.) p ( ) ς(, x) = = + γ p ()( x ) ( + x) p! = p= p where γ ( x ) are ow a the geeralied Stielte cotat ad we hae [4] p (.) γ ( x) = ψ ( x) where ψ ( x) i the digaa fuctio. With x = equatio (.) reduce to the Riea zeta fuctio p ( ) ς() = + γ p ( ) p! p= p

2 A preiouly oted i [], uig (.) it i eaily ee that the differece of two Stielte cotat ay be repreeted by p p (.3) γ p( x) γ p( y) = ( ) li [ ς(, x) ς(, y )] p. A ueful forula for the Stielte cotat We recall Hae forula [3] for the Hurwitz zeta fuctio which i alid for all C except = (i thi for, it i alid i the liit a ) ( ) (.) ( ) ς (, x) = ( x ) = + = + ad differetiatio with repect to x gie u ( ) ς (, x) = x ( x+ = + = ) ad we the hae (.) ( ) log + ( x + ) ς (, x) = () x = + = ( x+ ) We ote that the partial deriatie coute i the regio where ς ( x, ) i aalytic ad hece we hae ς(, x) = ς(, x) x x Ealuatio of (.) at = reult i (.3) (, x) = ( ) ( ) log ( x+ ) ( ) + ς x = + = We ay write (.) a (.4) ( ) ς( +, x) = + γ( x)! = ad we hae the Maclauri expaio

3 (.5) where = + ( ) R ( x) ς (, x) = +! R x x + ( ) = ( ) (, ) ς = R( x) = R ( x) i referred to a the Deiger R fuctio, after Deiger [8] who itroduced it i 984. Differetiatig (.5) with repect to x gie u (.6) We ote that ς (, x) = x = + ( ) R ( x)! (, x) (, x) x ς = ς + ad, uig (.4), thi i equal to (.7) + ( ) = + γ ( x)! = + ad coparig the coefficiet of (.6) ad (.7) Charaborty, Kaeitu ad Kuzuai [] deduced the iportat idetity (.8) R x x + ( ) = ( ) (, ) ( ) x ς = γ x = Thi ay be copared with the ore failiar forula for the Stielte cotat where the liit i ealuated at = (.9) + ς x = ( ) (, ) = γ ( x) We ee fro (.3) that (.8) i equal to = ( ) log ( x + ) = + = 3

4 ad hece we eaily deduce that (.) γ ( x) = ( ) log ( x+ ) = = which wa preiouly obtaied i 7 i []. I [, Eq. (4.3.3)] we alo oted that R ( x) = γ ( x) i the equialet for for x > x t dt ( ) γ = ς x ς + + ( + ) ( + ) ( ) (, ) () but the uefule of thi iple idetity wa ot the fully appreciated by the author. The forula (.8) feature throughout the ret of thi paper where it i ued to iplify the deriatio of oe ow idetitie ad alo to produce oe ew oe. Rear (i) The equialet forula to (.5) a reported by Charaborty et al. [] did ot iclude the ter ; it ee to e that it hould be o icluded if oly to cocur with the aalyi preiouly carried out by Sitaraachadrarao [37] i 986 where he coidered the Maclauri erie for the Riea zeta fuctio (.) ( ) δ ς () + =! = where (.) δ = li log log xdx log = = + ( ) ( ) ς ()! Thi additioal ter of coure aihe whe equatio (.5) i differetiated with repect to x ad thu (.8) cotiue to reai alid. 4

5 Rear (ii) We ote fro (.8) that with = R ( x) = (, x) ( x) ( ) x ς = γ = ψ x = or equialetly (, x) ( x) x ς = ψ ad itegratio the reult i (.3) ς (, t) ς () = log Γ ( t) We hae Legedre duplicatio forula for the gaa fuctio [38, p.7] log Γ ( t) = log Γ ( t) + log Γ t+ + (t) log logπ ad ubtitutig (.3) gie u ς (, t) ς (, t) ς = +, t+ ς () + (t) log logπ ad with t = / we obtai ς, = ς () + logπ We recall the idetity [3] ς, = [ ] ς ( ) ad differetiatio reult i o that ς, = [ ] ς ( ) + ς( ) log ς, = ς()log = log 5

6 Thi the gie u the well-ow reult (.4) ς () = log( π ) ad hece we hae obtaied Lerch idetity [7] i a ery direct aer without the eed to reort to the fuctioal equatio for the Riea zeta fuctio (.5) ς (, t) = log Γ( t) log( π ) Rear (iii) It hould be oted that the Stielte cotat γ referred to i Eq. (.5) of Deiger paper [8] hould be icreaed by a factor of (thi differece arie becaue Deiger [8, p.74] eployed a differet defiitio i the Lauret expaio of the Hurwitz zeta fuctio; thi alue wa alo icoitetly eployed i Eq. (.6) of the paper by Charaborty et al. []). 3. A applicatio of the Abel-Plaa uatio forula Adachi [] ha recetly reported that the Herite itegral for the Hurwitz zeta fuctio ay be deried fro the Abel-Plaa uatio forula [38, p.9] f( ix) f( ix) (3.) f ( ) = f() + f( x) dx+ i x e π = dx which applie to fuctio which are aalytic i the right-had plae ad atify the π coergece coditio li e y f( x+ iy) = uiforly o ay fiite iteral of x. y Deriatio of the Abel-Plaa uatio forula are gie i [39, p.45] ad [4, p.8]. The Herite itegral for the Hurwitz zeta fuctio ay be deried a follow. Lettig f ( ) = ( + u) we obtai (3.) u u ( u+ ix) ( uix) x ( u) e π = + ς (, u) = = + + i dx The, otig that iθ iθ ( u + ix) ( u ix) = ( re ) ( re ) 6

7 iθ iθ = r [ e e ] (3..) u+ ix u ix = x u)) iu ( + x) ( ) ( ) i( ta ( / / we ay write (3.) a Herite itegral for the Hurwitz zeta fuctio ς ( u, ) (3.3) u u i( ta ( x/ u)) / x ( u + x ) ( e π ) ς (, u) = + + dx Differetiatig (3.) with repect to u (3.4) ( ) ( ) x e π u u + ix u ix ς (, u) = u i dx u We ote that if f ( ) = g( ) the the Leibiz differetiatio forula reult i o that (3.5) ( + ) ( + ) ( ) f = g + + g () () ( ) () ( + ) ( ) f () = ( + ) g () ad hece we obtai ς (, u) = ()log u() log u + u u = i( ) ( + ) ( u ix)log ( u+ ix) ( u+ ix)log ( uix) dx x ( u + x )( e π ) ad coparig thi with (.8) we readily obtai the itegral forula origially obtaied by Coffey [7] i 7 for the Stielte cotat (3.6) γ ( u) = log u log u+ i x u + ( u + x )( e π ) + ( u ix)log ( u+ ix) ( u+ ix)log ( uix) dx Thi deriatio i lightly ore direct tha the oe origially proided by Coffey [7] (ad i alo ipler tha y preiou proof i []). Che [3] ha recetly how that for u > ad > 7

8 (3.7) uy e y i( xy ) dy i[ = Γ () ( u + x ) ta ( x/ u)] / ad hece we hae uig Herite itegral (3.3) u u 4 uy (, ) = + + i( ) x Γ( ) e π ς u dx e y xy dy uy x Γ u u 4 i( xy ) = + + e y dy dx ( ) e π Uig Legedre relatio [39, p.] i( xt) t (3.7.) dx = + = coth π x t e e t t thi reult i u u uy ς (, u) = + + e y + dy y Γ( ) e y With the ubtitutio = y thi becoe (3.8) u u u u = + + e + d Γ( ) e ς (, ) which i reported i [38, p.9] a beig alid for Re () >. With (3.9) u = we hae ς () = + + e + Γ e d ( ) which i alo reported i [38, p.] a beig alid for Re () >. We ay write (3.7) a Γ() Γ ( + ) uy uy e y i( xy ) dy = e y i( xy ) dy 8

9 ad we hae the liit li i( ) li i( ) Γ() Γ ( + ) uy uy e y xy dy = e y xy dy uy e i( xy) = li dy Γ ( + ) y We hae the well-ow itegral (rigorou deriatio of which are cotaied i [3, p.85] ad [6, p.7]) (3.) ta ( x / u) ad hece we ee that uy e i( xy) = dy y uy li e y i( xy ) dy = Γ() howig that Che reult i alid for. For copletee we preet aother proof of (3.7). Uig the defiitio of the gaa fuctio we hae zy Γ e y dy = z () ad with z = u± ix we obtai uy e y xy i xy dy = u+ ix Γ [co( ) i( )] ( ) ( ) uy e y xy + i xy dy = uix Γ [co( ) i( )] ( ) ( ) Thi gie u uy i e y xy dy = u+ ix uix Γ i( ) ( ) ( ) ( ) 9

10 uy e y xy dy = u+ ix + uix Γ co( ) ( ) ( ) ( ) The, otig (3..) we obtai ad uy e y i( xy) dy i[ t = Γ () ( u + x ) uy e y co( xy) dy a ( x/ u)] / co[ t = Γ () ( u + x ) a ( x/ u)] / We hae fro (3.8) (3.) Γ() (, ) = + u u u ς u e d e ad we coider the liit a. With iple algebra we ay write u u u u ς( u, ) = ς( u, ) ς(, u) + u = ς(, u) ς(, u) + u ( u ) u + ad we hae ( ) (, ) (, ) u u u ς u ς u u Γ() ς (, u) =Γ ( + ) + u Taig the liit a we ee that u u li Γ( ) ς(, u) = ς (, u) + u logu+ u ad hece we obtai (3.) u e ς (, u) + u log u+ u = + e d

11 Uig Lerch idetity (.5), it ay be ee that thi i equialet to Biet firt forula for l og Γ( u) [39, p.49] (3.3) uy e log Γ ( u) = u log u u+ log( π ) + dy y + e y y We ote Alexeiewy theore [38, p.3] (3.4) t log Γ ( udu ) = t( t) + tlog( π ) log G( + t) + tlog Γ( t) where Gx ( ) i the Bare double gaa fuctio Γ ( x) / Gx ( ) = defied, iter alia, by the Weiertra caoical product [38, p.5] (3.5) G x x x x x x x x ( + ) = ( π) exp ( γ + + ) exp + = ad we ote that G() = G() =. Hece itegratig (3.3) reult i t e log G( + t) = tlog Γ ( t) + t t t log t + d (3.6) ( ) 4 e ad with t = we iediately obtai e d + = e 4 Subtractig thi fro (3.6) reult i t e e log G( + t) = tlog Γ ( t) + ( t ) t t log t+ + d (3.7) ( ) 4 e It ay be poible eploy Prighei artifice with thi itegral (a wa eployed i [39, p.49]). We obtai by differetiatig (3.)

12 ta ( x e π x/ u) ς (, u) = u log u u+ d x ad differetiatig thi with repect to u gie u x ς (, u) = log u dx u u u + x e π x ( )( ) Sice fro (.8) (, u) ( ) u ς = γ u we obtai x γ ( u) = logu dx u u x e π x ( + )( ) ad ice γ ( u) ( = ψ u ) thi i equialet to x ψ ( u) = logu dx u u x e π a reported i [39, p.5]. Siilarly, we hae o that x ( + )( ) + (, u) u log u ulog u u x e π ( u x ) ( x u) log ta / ς = + dx ς (, ) = log log u u u u u x xlog ( u + x ) ta ( u/ x) πx x ( )( ) π u x e ( u x )( e ) πx + + ( u + x )( e ) π dx + dx + 4u dx The uig (, u) = γ () u we obtai u ς =

13 (3.8) xlog ( u + x ) ta ( x/ u) πx πx ) dx γ ( u) = logu log u+ dxu ( + )( ) ( + )( u u x e u x e It ay be oted that Shail [36, p.799] ade referece to thee eeigly itractable itegral i. We hae the well-ow Hurwitz forula for the Fourier expaio of the Hurwitz zeta fuctio ς ( t, ) a reported i Titcharh treatie π co πt π i πt ς (,) t = Γ( )i + co = ( π) = ( π) where Re ( ) < ad < t. I, Boudelha howed that thi forula alo applie i the regio Re ( ) <. It ay be oted that whe t = thi reduce to Riea fuctioal equatio for ς ( ). Ufortuately, it appear that (.8) caot be applied to Hurwitz forula for the Fourier expaio of the Hurwitz zeta fuctio becaue thi would reult i dierget erie. Thi howeer ay gie a idicatio of Raaua erroeou thiig i thi area a exeplified i Berdt boo, Raaua Noteboo, Part I [8, p.]. It i itructie to coider the origial deriatio of the forula for the Stielte cotat which wa deried by Stielte hielf. Thi i recorded i a letter dated Jue 885 fro Stielte to Herite [3] ad the proof proceed a follow: Fro (3.9) we hae x ς ( + ) = + e + x Γ ( + ) e x x dx x x e = + e + x x Γ ( + ) dx e x o that (3.9) x = + e x x Γ ( + ) e x dx x ς ( + ) = e x Γ ( + ) e x x dx 3

14 Uig the Maclauri expaio x log x =! = we ee that a ς ( + ) = Γ ( + )! = where x log a = e xd x e x x. Let () tx ( ) x F t = e log xdx. We hae Γ () = e log xdx ad with x tx thi becoe We write F ( ) t ( ) tx Γ = + a () t e ( log x log t) dx ( ) tx F t = e (log x+ log tlog t) dx ad we the hae = Γ t = ( ) ( ) ()log t (3.) ( ) log t tx ( ) Γ () = e log x = t dx We hae the uatio r r ( ) log t tx ( ) Γ () = e log x = t= t dx t= x ( r+ ) x e e = log x e x dx ad the right-had ide ay be writte a a + f ( r) g ( r) where 4

15 (3.) (3.) ( r+ ) x () = log x e x g r e xdx x ( r+ ) x e e f() r = log xdx x x where we ote that li g ( r) =. Now treatig r a a cotiuou ariable we obtai r log ( r + ) r + ( ) () = ( + ) = () Γ () = f r F r ad ice f () = we hae by itegratio (3.3) o f r + + ( ) () r = () Γ () = + log ( ) r + ( r+ ) x ( ) log log ( r+ ) a e log xdx ( ) () x e x = Γ = = + r log log ( ) log ( ) log r+ r+ r = ( ) () Γ = = + Therefore lettig r we obtai a r + ( ) log log r = ( ) Γ ()li r = = + ice (3.4) where + + li log ( r+ ) log r =. Thi ay be writte a r a C = C Γ = ( ) ( ) () r + log log r = li r = + Eq. (3.4) reid u of the Cauchy product of two erie 5

16 ( ) a C Γ () = ( )!!! = = = where ( ) Γ () Γ ( + ) =.! = We hae fro (3.9) (3.5) x ς ( + ) Γ ( + ) = e x e x dx x ad we ote fro (.4) that ( ) ς( + ) =! = γ ad we coclude that (3.6) γ r + log log r = C = li r = + A ore direct deriatio of (3.6) i gie, iter alia, by Boha ad Fröberg []. 4. A faily of itegral repreetatio of the Stielte cotat With a iew to utiliig (.8), we firt of all differetiate (3.8) with repect to u u u ς (, u) = u e + d u Γ( ) e u to gie ad differetiatig thi tie with repect to (with the aitace of (3.5)) gie u (4.) ( ) u ς ( u, ) = ( ) log u( ) log u F (, e ) + d u u e = where, for coeiece, we hae deigated F (, ) a (4.) F (,) = = Γ() Γ ( + ) 6

17 ad we ote that F (, ) = F(, ) =. We eploy the otatio ( = F ) (, ). F F ( ) (, ) = (, ) ad The uig (.8) (, u) ( ) () u u ς = γ = we hae thu deteried that for (4.3) γ ( ) u ( u) log u log u F (, ) e ( ) = u + e d ad, i particular, for we hae a faily of itegral repreetatio of the Stielte cotat + ( ) ( ) u (4.4) γ = γ () = F (, ) e d + e ad for = we obtai () F (, ) e d e γ = + + We hall iitially coider the firt two deriatie of repect to reult i F (, ) = log ψ ( ) ( ) + + Γ + F (, ). Differetiatig (4.) with ad o we hae = ψ Γ ( + ) [ log ( ) ] (4.5) F (, ) = F(, )log [ ψ () ] Sice ψ ( ) = ψ ( + ) we ee that li ψ ( ) = ad hece we deduce that (4.6) F (, ) = 7

18 With = i (4.3) we hae u γ ( u) = + logu e u + e d or equialetly, ice ψ ( u) = γ ( u), we obtai the well-ow itegral (4.7) ψ u ( u) = + logu e u + e d Thi itegral, which appear i [38, p.6], ay be eaily erified by differetiatig Biet firt forula for lo g Γ( u) [39, p.49], which we aw aboe i (3.3). We ow coider the ecod deriatie [ ψ ] F (, ) = F (, ) ψ () + F (, )log () = F (, ) ψ ( ) + F (, ) log ψ( ) log + ψ ( ) ad we hae the liit F F F (,) = li (,) ψ () ψ () log li (,) ψ() ψ ( + ) li F (, ) ψ ( ) ψ ( ) log = ψ ( + ) = li F (, ) ψ ( ) ψ ( ) log Sice F(, ) = thi gie u ψ ( + ) = li F (, ) log + ad we therefore obtai (4.8) F (, ) = ( γ + log ) Referrig bac to (4.3) we hae with = ( ) log u () log (, ) u γ u = u u F e d + e 8

19 ad ubtitutig (4.8) thi becoe ( ) log u log ( γ log ) u γ u = u u + e d + e Uig (4.7) we obtai (4.9) u ( u) = logu log u+ ( u) logu e log u + u + e γ ψ γ d ad for u = we hae (4.) γ = γ + γ e log + e d ( ) u ( ) Sice ( u) e log d we hae () e log d ad, i particular, we Γ = ee that Γ () = γ = e log d. Hece we ay write (4.) a (4.) γ γ γ Γ = = + e log e d We ote that e = = + e e e with the reult that e log d = e log d + e log d e e = e log dγ e We the ee that (4..) γ =γ e e log d 9

20 a preiouly deteried by Coppo [7] i 999. Haig obtaied itegral for γ ad γ, we ow coider the geeral cae for γ. We will approach thi by referece to the (expoetial) coplete Bell polyoial, the aliet feature of which are uaried i the attached Appedix. It i well ow that [34] d dx f ( x) f ( x) () () ( ) (4.) e = e Y ( f ( x), f ( x),..., f ( x) ) where the (expoetial) coplete Bell polyoial Y ( x,..., x ) are defied by Y = ad for! x x x (4.3) Y( x,..., x) =... π!!...!!!! ( ) where the u i tae oer all partitio π ( ) of, i.e. oer all et of iteger that = 3 uch For exaple, with which reult i = we ee that the oly poibility i = ad = Y( x ) = x With =, we ee that the poible outcoe are ( = ad = ) ad ( = ad =) which reult i Y ( x, x ) = x + x Suppoe that h ( x) = h( x) g( x) ad let f ( x) = log h( x). We ee that h ( x) f ( x) = = g( x ) hx ( ) ad the uig (4.) aboe we hae d dx log h( x) () ( ) (4.4) hx ( ) = e = hxy ( ) ( gx ( ), g ( x),..., g ( x) ) d dx

21 A a ariatio of (4.4) aboe, uppoe that ( x) = ( x)[ g( x) + α] where α i idepedet of x ad let f ( x) = log ( x ). We ee that ( x) f ( x) = = g( x) + α x ( ) ad ( + ) ( + ) f x g x ( ) = ( ) for ad therefore we obtai d dx log ( x) () ( ) (4.5) ( x) = e = ( x) Y ( g( x) + α, g ( x),..., g ( x )) d dx = ad therefore we obtai We ote fro (4.8) aboe that F (, ) F(, )log [ ψ () ] ( ) () ( ) (4.6) F (, ) = F(, ) Y ( log ψ( ), ψ ( ),..., ψ ( ) ) We aw i (4.3) aboe that (4.7) γ ( ) u ( u) log u log u F (, ) e ( ) = u + e d ad hece we deduce that (4.8) + () ( ) γ F Y( ψ ψ ψ ) e d e = ( ) = (, ) log ( ), ( ),..., ( ) + Pria facie, it i quite rearable that thi liit actually exit coiderig that the digaa fuctio ad all of it deriatie dierge at =. It i how i Appedix A that Y( x+ α, x,..., x) = α Y( x,..., x) = ad we the deterie that d dx (4.9) ( ) ( ) ( ( ), () ( ),..., ( x = x α Y ) g x g x g ( x) ) = Now, referrig bac to (4.5), we ee that with g ( ) = log ψ ( )

22 (4.9.) ( ) (, ) (, ) log ( ( ), () ( ),..., ( F = F Y ) ψ ψ ψ ( ) ) ad thu we hae (4.) γ = ( ) u ( u) = log u log u Y( ) F(, )log e d u = + e = where, for coeiece, we deote Y ( ) a () ( ) ( ψ ψ ψ ) Y ( ) = Y ( ), ( ),..., ( ) ad we ote that Y ( ) i idepedet of the itegratio ariable. We ow adopt a lightly differet approach o a to eliiate all of the apparetly ( troubleoe factor ψ ) () i the liit a. To thi ed we write (4.) i the equialet for F (,) = = Γ() Γ ( + ) ad firt of all we eploy the Leibiz differetiatio forula to obtai d d F (, ) = [ ] = Γ ( + ) We ee that d ( ) d Γ ( + ) = Γ ( + ) ψ + ad applyig (4.4) we deterie that d d Γ ( + ) Γ ( + ) (4.) ( () ( = Y ( ), ( ),..., ) ψ + ψ + ψ ( + ) ) We alo hae [ ] = log + log

23 o that F (, ) = ( log + ( )log ) Y ( + ) ( ) Γ + = where, a before, we deote () ( ) ( ψ ψ ψ ) Y ( + ) = Y ( + ), ( + ),..., ( + ) Whe = thi becoe () ( F(, ) = ( )log Y (), (),..., () = ) ( ψ ψ ψ ) = ( )log Y (), (),..., () = Uig the eleetary bioial idetity [9, p.57] ( ) = () ( ) ( ψ ψ ψ ) thi becoe = log (), (),..., () = () ( ) Y ( ψ ψ ψ ) We therefore coclude that (4.) γ u u u ( ) = log log u () ( ) u + ( ) Y ( ψ(), ψ (),..., ψ () ) log e d = + e ad (4.3) () ( ) γ = ( ) Y ( ψ(), ψ (),..., ψ () ) log e d = + e We ote that 3

24 ( log e d ) =Γ () ad fro (A.6) we hae ( ) Γ () =Y ψ(), ψ (),..., ψ () ( ) () ( ) We will ee i (A.9) that for ( = iplie a alue of ) (4.4) Y ( x,..., x ) Y ( x,..., x ) = δ =, ad hece we ay eliiate the factor of ½ i the itegrad of (4.) to obtai (4.5) γ u u u ( ) = log log u () ( ) u + ( ) Y ( ψ(), ψ (),..., ψ () ) log = e e d (4.6) () ( ) γ = ( ) Y ( ψ(), ψ (),..., ψ () ) log = e e d or equialetly for = Y e d ( ) (), (),..., () log e = () ( ) (4.7) γ ( ψ ψ ψ ) We could alo repreet thi i ter of the partial expoetial Bell polyoial but thi oly ee to add a extra layer of coplexity. With the ubtitutio t = e i (4.7) we obtai (4.8) ( ) () ( ) t γ = ( ) Y ψ(), ψ (),..., ψ () log [log(/ t)] = + dt t log t ( ) () ( ) = ( ) Y ψ(), ψ (),..., ψ () log [log(/ t )] = + + dt t log t 4

25 Sice ( ) log ( log(/ t)) dt =Γ () the ter iolig we ee, i the ae aer a before, that for i the itegrad cacel out ad we coclude that ( ) Y (), (),..., () log [log(/ )] = log t t (4.9) ( ) () ( ) γ = ψ ψ ψ t + dt I hi diertatio, Brede [] howed that there exit a polyoial p( z ) of degree uch that (4.3) γ = p[ log log(/ t)] + dt log t t Brede [] tated, for exaple, that p ( z ) = p ( z) = z γ p z z z ( ) = γ + γ ς() but he did ot pecify the precie for of the geeral polyoial p ( z ). Uig thee polyoial for =,,3 we hae γ = + dt log t t o that γ = log[log(/ t)] + dt γ + log t t log t t dt log[log(/ )] t + dt =γ log γ t t γ = log [log(/ t)] + dt γ log[log(/ t)] log t t + + log t t dt 5

26 o that + [ γ ς()] + dt log t t log [log(/ t)] + dt = γ γ + γ [ γ ς()] γ γ log t t Reidexig to = we ay write (4.9) a γ = ( ) ψ(), ψ (),..., ψ () log [log(/ )] + log ( ) () ( ) Y t dt = t t ad ice = thi becoe after reerig the order of uatio (4.3) () ( ) γ = ( ) Y ( ψ(), ψ (),..., ψ () ) ( log[log(/ t)] ) = + log t t dt Coparig thi with Brede repreetatio (4.3) we are therefore able to pecify the precie for of Brede polyoial (4.3) ( ) ( ) ( (), () (),..., ( p ) z = Y ψ ψ ψ () ) or equialetly = (4.33) ( ) ( ) ( (), () (),..., ( p ) z = Y () ) = With regard to the aboe, we ay ote that ψ ψ ψ z z d d = Y Γ() ( () ( ψ( ), ψ ( ),..., ψ ) ( )) Differetiatig (4.33) gie u p ( z) = ( ) ( ) Y ( ψ(), ψ (),..., ψ () ) z = () ( ) 6

27 = ( ) ( ) Y ( ψ(), ψ (),..., ψ () ) z = () ( ) ( ) = Y (), (),..., () = ( ψ ψ ψ ) () ( ) ad we therefore ee that (4.34) p ( z) = p ( z) Sice p ( z) = p ( z) we ee that p( z ) i a Appell polyoial ad therefore we hae the relatio p( z) = p() z = p( x+ y) = p( x) y = Thi cocur with Brede reult [] z z x = p ( xlog z) e dz We alo ote that p ( z) = ( ) Y (), (),..., () = ( ψ ψ ψ ) () ( ) z Haig expeded oe eergy gettig to (4.), it wa oewhat diappoitig to ubequetly dicoer that thi reult could hae bee deried i a ore uccict aer uig (3.8). Subtractig a factor of fro both ide of (3.8), we ay write that equatio i the followig for (4.5) u u u Γ ς (, u) = + + e + d ( ) e 7

28 which we the differetiate ad ealuate at = thi tie to obtai ( ) ( ) u (, ) log () ς u u f e d = + + ( ) + = = u Γ e where, a a ueful artifice, we hae deoted f () a u f() = We ca repreet f () by the followig itegral o that u f () = = u x dx u ( ) f () =() x log xdx ad thu we ee that f u ( ) log x () =( ) x dx =( ) Hece ubtitutig (.9) + log u + ς(, u) = () γ() u = we obtai + ( ) log u u γ u u e u + Γ( ) e d = ( ) ( ) = log ( ) + + Referrig to the defiitio (4.) of F (, ) we ee that u u e e d F(, ) d ( ) + = + = = Γ e e 8

29 ad uig (4.9.) thi becoe () ( ) Y u ( ( ), ( ),..., ( )) e = ψ ψ ψ log d = + e Hece we obtai (4.5) γ ( u ) log log u u + = u + () ( ) ( ) Y u ( ( ), ( ),..., ( )) e + ψ ψ ψ log d = + e which correpod with (4.). Writig (4.5) a (4.5.) u u u ς (, u) Γ () = e + d e ad, uig the Leibiz forula to differetiate thi, we obtai a ierio forula (4.5) d + log u ( ) u ( ) γ ( u) log u+ Γ () = e log + = u + e ad with u = we hae (4.53) Γ Γ = + e d ( ) ( ) ( ) γ () () e log = or equialetly (4.54) Γ = d e ( ) ( ) γ () e log = Differetiatig (4.5.) with repect to u gie u u u ς ( +, u) + + u Γ ( ) = e d + e which ay be writte a 9

30 ς ( + ) Γ ( + ) = e + e d ad differetiatig thi will alo reult i (4.5) (4.55) + log u ( ) u ( ) γ ( u) log u+ Γ () = e log + = u + e d Referrig bac to the ethod origially eployed by Stielte, i particular (3.), we hae ( u+ ) e e f( u) = log d log ( u + ) u + ( ) ( ) = ( + ) = ( ) Γ () = f u F u ad ice f () = we hae by itegratio o that f f u + + ( ) ( u) = ( ) Γ () = ( ) ( u ) = ( ) Γ () = + log ( ) + log u + u + e e ( ) log u log d= ( ) Γ () = + Referrig bac to (4.5) d + log u ( ) u ( ) γ ( u) log u+ Γ () = e log + = u + e we ee that (4.56) = γ u u u ( ) ( ) ( ) log Γ () 3

31 u u e e = e log + d log e d ad with u = u e = e + e we coe bac to (4.53) aboe. log d Γ Γ = + e d ( ) ( ) ( ) γ () () e log = With =,, we obtai γ = e d + e γ γ + γ = e log d + e γ [ γ + ς()] + γγ + γ = e log + e d The approxiate alue of the firt three Stielte cotat are [5] γ =.577 γ =.78 γ =.96 ad iertig thee alue ito the aboe three equatio uerically deotrate that the correpodig three itegral hae poitie alue. We ow wih to how that the itegral I, which i defied below, i trictly poitie for all poitie iteger ad for = We ee that I = log e + d e log log I = e + d+ e + d e e 3

32 J K = + With the ubtitutio t e we obtai for the firt copoet = J / e log e + d= log (log(/ t) dt e + + / t logt ad with the ubtitutio t = / u thi becoe (4.56) / e du log (log(/ t) + + dt log (log u) / t logt = + u logu e u It i clear that log (log u) for all u e ad we ow coider the other part of the itegrad i (4.56). Let φ ( u) = u logu + ( u+ )loguu+ = ( u ) logu ad we ote that φ () e = >. The deoiator of φ( u) i poitie for all u e e ad we ow coider the uerator hu ( ) = ( u+ )logu u+ We ote that he () = 3e > ad we hae the deriatie h ( u) = logu+ u ad h () e = e >. We ee that u h ( u) = u ad therefore h ( u) > for u >. Thi eable u to coclude that h ( u) i ootoic icreaig for u > e. Sice h ( e) i poitie we the deduce that hu ( ) i alo ootoic icreaig for u > e. Accordigly, hu ( ) for all u e. Fially, we hae φ( u) for all u e. Hece, ice the itegrad i poitie, we coclude that J i poitie. 3

33 We ow coider K ad we wih to deterie the ig of f () where f() = e + + ( )( e ) = ( e ) The deoiator of f ( ) i poitie for all ad we ow coider the uerator We ote that g ( ) = + ( )( e ) g () = 3e g ( ) = ( ) e + > ad we hae the deriatie o that g ( ) > for. Accordigly, g ( ) for all. Fially, we hae f( ) for all. Hece, ice the itegrad i poitie, we coclude that i poitie. K It ha therefore bee deotrated that all poitie iteger ad for =. I = log e + d e i poitie for Haig regard to (3.7.) we eaily ee that li + = e ; alteratiely, thi ay be eaily deteried uig L Hôpital rule. It i poible that uch repreetatio for the Stielte cotat ay be ueful i coectio with the proof of the Riea Hypothei ia the Li/Keiper cotat (ee for exaple [6]). Thi i becaue we ote fro (4.53) that (4.57) Γ Γ = + e d ( ) ( ) ( ) γ () () e log = > ad referece to the Appedix the how that if i ee the thu ( ) (4.58) ( ) γ Γ () > = ( Γ ) () i poitie ad 33

34 Whilt ot pecifically eployed i thi paper, I accidetally cae acro the followig lea whilt I wa tryig to proe that I wa poitie Suppoe that f( t) ad f ( t) for all t [, ). We ee that I ()log = f t tdt dt = f ()log t tdt+ f()log t t ad with the ubtitutio t =/ y we hae f ( t) log t dt = ( ) f (/ y) y log y dy We therefore obtai ( ) ( ) I = f t + t f(/ t) log tdt ad it i clear that the itegrad i egatie i the iteral [, ) i the cae where i a ee iteger. We ow coider the cae where i a odd iteger ad we wat to proe that the followig itegral i alo egatie () (/ ) log + I + = f t t f t tdt A a coequece of the Mea Value Theore of calculu we hae where α i uch that t >α > ( ) f() t f(/ t) = t t f ( α) t. We ee that f t t f t f t f t f t t f t ( ) (/ ) = ( ) (/ ) + (/ ) (/ ) ( ) = f ( t) f(/ t) + f(/ t) t = t f ( α) + f(/ t) t t ( ) 34

35 [ tf ( α) f(/ t) ]( t ) = + ad thi i clearly egatie i the iteral (, ). We therefore coclude that egatie. I + i alo We could alo expre I a ( ) ( ) I = f t + t f(/ t) log tdt ad hece I will alo be egatie if f( t) ad f ( t) for all t (,]. 5. A applicatio of the alteratig Hurwitz zeta fuctio The alteratig Hurwitz zeta fuctio ς ( x, ) i defied by a ς (, x) = a = ( ) ( + x) Upo a eparatio of ter accordig to the parity of we ee that for Re( ) > ( ) ς (, x) = = + a = ( + x) = ( + x) = (+ x) = = ( + x/) = ( + ( x+ )/) ad we therefore ee that ς ( t a, ) i related to the Hurwitz zeta fuctio by the wellow forula [3] (5.) x + x ςa (, x) = ς, ς, Differetiatio gie u x x a (, x),, x ς ς ς + = ς (, ) ( ) [ (, ) ] a x = + f x + x = = 35

36 ad uig the Leibiz forula we obtai = + = ( ) ( ) log ( ) f (, x ) = where x + x f(, x) = ς +, ς +, We hae ( ) ( ) x ( ) + x f (, x) = ς, ς, ad therefore x + x = ( ) γ γ (5.) x + x (, ) ( ) ( ) log a x x ς + γ + = + γ + = = We ow refer to the Hae idetity for the alteratig Hurwitz zeta fuctio (ee equatio (4.4.79) i []) i i ( ) (5.3) ς (, x) = + i= = ( x + ) Differetiatio gie u a i i i ( ) ς (, x) = x x+ ) a i+ + i= = ( i ( ) log ( x + ) x x+ + i + ς (, ) () ( ) a x = + + i+ i = = = ad equatig thi with (5.) gie u (5.4) i x + x i ( ) log ( x+ ) log γ γ i+ = = i= = x+ We hae 36

37 ς ( ) log ( x + i) i ( ) log ( x+ ) ( x i) ( x ) i ( ) i a (, x) = () = () i+ i= + i= = + ( ad hece we ay obtai expreio for ς ) (, x) i ter of the Stielte cotat a (5.5) ς ( ) a x + x (, x) = log γ γ = With x = ad = i (5.4) we obtai i i ( ) () i γ γ + = i= = + which gie u i i ( ) log = i+ i= = + Thi i equialet to With x = ad = li ς ( ) = log. a i (5.4) we get or i i ( ) log( + ) γ γ() log γ γ i+ + = i= = + i ( ) log(+ ) + i log + γ γ = i+ i= = We hae the relatiohip [3] (5.6) p ( ) ( ) log q p+ p γ r p log q p p q q p r q γ = + + p γ = + = q ad with q = thi becoe (5.7) p+ p γ p log p p p ( ) ( ) p log γ = + + p γ + = ad i particular we hae 37

38 (5.8) γ = log log γ + γ γ We the obtai i i ( ) log( + ) (5.9) γ = log i+ log i= = + Thi expreio for Euler cotat wa origially deried by Coffey [7] i 6 (a differet deriatio i cotaied i equatio (4.4.6g) i [])). Siilarly we ay alo obtai with = γ i i i i log( + ) log ( + ) = log + ( ) ( ) i+ i+ i= = + log i= = + which wa alo preiouly deteried by Coffey [7] i a differet aer. Lettig x = ad x = i (5.4) reult i i i ( ) log ( + ) log γ γ i+ = = i= = + i 3 i ( ) log ( + ) log γ γ i+ = = i= = + We ote fro [38, p.89] that for N ς(, + x) = ς(, x) = ( + x) ad thu + log ( + x) [ ς(, + x) ς( x, )] = ( ) ( + x) = Therefore, referrig to (.3) we obtai γ ( + x) γ ( x) = = log ( + x) + x 38

39 ad i particular we hae log γ( + x) γ( x) = x x Therefore we hae 3 γ γ = + ( ) log APPENDIX Soe apect of the (expoetial) coplete Bell polyoial It i well ow that [33] d dx f ( x) f ( x) () () ( ) (A.) e = e Y ( f ( x), f ( x),..., f ( x) ) where the (expoetial) coplete Bell polyoial ad for Y ( x,..., x ) are defied by Y = (A.)! x x x Y( x,..., x) =...!!...!!!! π ( ) where the u i tae oer all partitio π ( ) of, i.e. oer all et of iteger that = uch For exaple, with which reult i = we ee that the oly poibility i = ad = Y( x ) = x With =, we ee that the poible outcoe are ( = ad = ) ad ( = ad =) which reult i Y ( x, x ) = x + x Suppoe that h ( x) = h( x) g( x) ad let f ( x) = log h( x). We ee that 39

40 h ( x) f ( x) = = g( x ) hx ( ) ad the uig (A.) aboe we hae d dx log h( x) () ( ) (A.3) hx ( ) = e = hxy ( ) ( gx ( ), g ( x),..., g ( x) ) d dx A a exaple, lettig hx ( ) =Γ( x) i (A.3) we obtai d dx log Γ( x) ( ) () ( ) (A.4) e =Γ ( x) =Γ( x) Y ( ψ( x), ψ ( x),..., ψ ( x )) = x t t e log tdt ad ice [6, p.] (A.5) ψ ( x) = ( ) p! ς ( p+, x) ( p) p+ ( we ay expre Γ ) ( x) i ter of ψ ( x) ad the Hurwitz zeta fuctio. I particular, Kölbig [33] oted that (A.6) () Y (, x,..., x ) ( ) Γ = γ p+ ( where xp = ( ) p! ς ( p+ ). Value of Γ ) () for are reported i [38, p.65] ad the firt three are Γ () () = γ () Γ () = ς () + γ (3) 3 Γ () = [ ς (3) + 3 γς () + γ ] ( A how i [], we ote that Γ ) ( x) ha the ae ig a ( ) for all x (, α] where α i the uique poitie root of ψ ( x) = (Gau deteried that α ). Thi wa alo reported a a exercie i Apotol boo [3, p.33] for the particular cae of ( Γ ) (). We hae fro (A.5) ad (4.) 4

41 d dx Γ ( + x) Γ ( + x) (A.6.) = Y ( ψ( + x),! ς(, + x),..., ( ) ( )! ς(, + x) ) o that with x = d dx Γ ( + x) (A.6.) = Y ( γ,! ς(),..., ( ) ( )! ς( ) ) x= The coplete Bell polyoial hae iteger coefficiet ad the firt ix are et out below [9, p.37] (A.7) Y( x) = x Y ( x, x ) = x + x Y ( x, x, x ) = x + 3x x + x Y ( x, x, x, x ) = x + 6x x + 4x x + 3x + x Y ( x, x, x, x, x ) = x + x x + x x + 5x x + 5x x + x x + x Y ( x, x, x, x, x, x ) = x + 6x x + 5x x + x + 5x x + 5x + 6x x x x x + 45x x + 5x x + x The coplete Bell polyoial are alo gie by the expoetial geeratig fuctio (Cotet [9, p.34]) t t (A.8) exp x = Y( x,..., x ) =! =! We ee that d dt t exp (,..., ) x = Y x x =! t= We ote that t t t t Y ( ax,..., ax ) = exp ax = exp a x = exp x =! =! =! =! a 4

42 ad thu we hae a t t Y( x,..., x) = Y( ax,..., ax) =! =! We ee with a = that t t = Y ( x,..., x ) Y ( x,..., x )!! = = ad uig the Cauchy product forula thi becoe t = Y( x,..., x) Y( x,..., x ) = =! Hece we deduce that for (A.9) Y ( x,..., x ) Y ( x,..., x ) = = Fro the defiitio of the (expoetial) coplete Bell polyoial we hae Y ( ax, a x,..., a x ) a Y ( x,..., x ) = r ad thu with a = we hae Y ( x, x,...,( ) x ) = ( ) Y ( x,..., x ) We alo ote that Y ( x, x,...,( ) x ) = ( ) Y ( x,..., x ) + but o dicerible ig patter eerge here. We hae the recurrece relatio [35] Y ( x,..., x ) = Y ( x,..., x ) x = Y ( x,..., x ) x = = = x + Y x x + (,..., ) x + = 4

43 We ote that t t t Y( x+ y,..., x + y) = exp ( x + y) = exp x exp y =! =! =! t t = Y ( x,..., x ) Y ( y,..., y )!! = = ad, a before, we apply the Cauchy erie product forula to obtai (A.) Y( x+ y,..., x + y) = Y( x,..., x) Y( y,..., y) = ad we ote that Y ( α,,...,) = α With y = x we obtai fro (A.) (A.) Y(,...,) = = Y( x,..., x) Y( x,..., x) = a i (A.9) aboe. REFERENCES [] V.S.Adachi, A Cla of Logarithic Itegral. Proceedig of the 997 Iteratioal Sypoiu o Sybolic ad Algebraic Coputatio. ACM, Acadeic Pre, -8,. [] V.S. Adachi, O the Hurwitz fuctio for ratioal arguet. Applied Matheatic ad Coputatio, 87 (7) 3-. [3] T.M. Apotol, Matheatical Aalyi. Secod Ed., Addio-Weley Publihig Copay, Melo Par (Califoria), Lodo ad Do Mill (Otario), 974. [4] T.M. Apotol, Itroductio to Aalytic Nuber Theory. Spriger-Verlag, New Yor, Heidelberg ad Berli, 976. [5] T.M. Apotol, Forula for Higher Deriatie of the Riea Zeta Fuctio. Math. of Cop., 69, 3-3,

44 [6] R.G. Bartle, The Eleet of Real Aalyi. d Ed. Joh Wiley & So Ic, New Yor, 976. [7] B.C. Berdt, The Gaa Fuctio ad the Hurwitz Zeta Fuctio. Aer. Math. Mothly, 9, 6-3, 985. [8] B.C. Berdt, Raaua Noteboo. Part I, Spriger-Verlag, 985. [9] B.C. Berdt, Chapter eight of Raaua Secod Noteboo. J. Reie Agew. Math, Vol. 338, -55, [] J. Boha ad C.-E. Fröberg, The Stielte Fuctio-Defiitio ad Propertie. Math. of Coputatio, 5, 8-89, 988. [] M. Brede, Eie reiheetwiclug der erolltädigte ud ergäzte ς () Γ Rieache zetafutio Ξ () = ( ) / ( C {,} ) ud erwadte. π [] K. Charaborty, S. Kaeitu, ad T. Kuzuai, Fiite expreio for higher deriatie of the Dirichlet L fuctio ad the Deiger R fuctio. Hardy Raaua Joural, Vol.3 (9) [3] H. Che, The Freel itegral reiited. Coll. Math. Joural, 4, 59-6, 9. [4] M.W. Coffey, Relatio ad poitiity reult for the deriatie of the Riea ξ fuctio. J. Coput. Appl. Math., 66, (4) [5] M.W. Coffey, New uatio relatio for the Stielte cotat Proc. R. Soc. A, 46, , 6. [6] M.W. Coffey, New reult o the Stielte cotat: Ayptotic ad exact ealuatio. J. Math. Aal. Appl., 37 (6) ath-ph/566 [ab, p, pdf, other] [7] M.W. Coffey, The Stielte cotat, their relatio to the η coefficiet, ad repreetatio of the Hurwitz zeta fuctio. 7. arxi:ath-ph/686 [p, pdf, other] [8] M.W. Coffey, O repreetatio ad differece of Stielte coefficiet, ad cccccother relatio. arxi: [p, pdf, other], 8. 44

45 [9] L. Cotet, Adaced Cobiatoric, Reidel, Dordrecht, 974. [] D.F. Coo, Soe erie ad itegral iolig the Riea zeta fuctio, bioial coefficiet ad the haroic uber. Volue II(b), 7. arxi:7.44 [pdf] [] D.F. Coo, Soe erie ad itegral iolig the Riea zeta fuctio, bioial coefficiet ad the haroic uber. Volue III, 7. arxi:7.45 [pdf] [] D.F. Coo, Soe applicatio of the Stielte cotat. arxi:9.83 [pdf], 9. [3] D.F. Coo, New proof of the duplicatio ad ultiplicatio forulae for the gaa ad the Bare double gaa fuctio. arxi: [pdf], 9. [4] D.F. Coo, The differece betwee two Stielte cotat. arxi:96.77 [pdf], 9. [5] D.F. Coo, A recurrece relatio for the Li/Keiper cotat i ter of the Stielte cotat. arxi:9.69 [pdf], 9. [6] D.F. Coo, Soe poible approache to the Riea Hypothei ia the Li/Keiper cotat. arxi:.3484 [pdf],. [7] M. A. Coppo, Nouelle expreio de cotate de Stielte. Expoitio. Math.7(4), , 999. [8] C. Deiger, O the aalogue of the forula of Chowla ad Selberg for real quadratic field. J. Reie Agew. Math., 35 (984), [9] R.L. Graha, D.E. Kuth ad O. Patahi, Cocrete Matheatic. Secod Ed. Addio-Weley Publihig Copay, Readig, Maachuett, 994. [3] E.R. Hae ad M.L. Patric, Soe Relatio ad Value for the Geeralized Riea Zeta Fuctio. Math. Coput., Vol. 6, No. 79. (96), pp [3] H. Hae, Ei Suierugerfahre für Die Rieache ς - Reithe. Math. Z.3, , [3] C. Herite, Correpodace d'herite et de Stielte. Gauthier-Villar, Pari,

46 [33] K.S. Kölbig, The coplete Bell polyoial for certai arguet i ter of Stirlig uber of the firt id. J. Coput. Appl. Math. 5 (994) 3-6. Alo aailable electroically at: A relatio betwee the Bell polyoial at certai arguet ad a Pochhaer ybol. CERN/Coputig ad Networ Diiio, CN/93/, [34] K.S. Kölbig ad W. Strapp, A itegral by recurrece ad the Bell polyoial. CERN/Coputig ad Networ Diiio, CN/93/7, [35] J. Riorda, A itroductio to cobiatorial aalyi. Wiley, 958. [36] R. Shail, A cla of ifiite u ad itegral. Math. of Coput., Vol.7, No.34, ,. A Cla of Ifiite Su ad Itegral [37] R. Sitaraachadrarao, Maclauri Coefficiet of the Riea Zeta Fuctio. Abtract Aer. Math. Soc. 7, 8, 986. [38] H.M. Sriataa ad J. Choi, Serie Aociated with the Zeta ad Related Fuctio. Kluwer Acadeic Publiher, Dordrecht, the Netherlad,. [39] E.T. Whittaer ad G.N. Wato, A Coure of Moder Aalyi: A Itroductio to the Geeral Theory of Ifiite Procee ad of Aalytic Fuctio; With a Accout of the Pricipal Tracedetal Fuctio. Fourth Ed., Cabridge Uierity Pre, Cabridge, Lodo ad New Yor, 963. [4] Z.X. Wag ad D.R. Guo, Special Fuctio. World Scietific Publihig Co Pte Ltd, Sigapore, 989. [4] N.-Y. Zhag ad K.S. Willia, Soe reult o the geeralized Stielte cotat. Aalyi 4, 47-6 (994). Doal F. Coo Elhurt Dudle Road Matfield Ket TN 7HD dcoo@btopeworld.co 46

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon New proof of the duplicatio ad multiplicatio formulae for the gamma ad the Bare double gamma fuctio Abtract Doal F. Coo dcoo@btopeworld.com 6 March 9 New proof of the duplicatio formulae for the gamma

More information

Binomial transform of products

Binomial transform of products Jauary 02 207 Bioial trasfor of products Khristo N Boyadzhiev Departet of Matheatics ad Statistics Ohio Norther Uiversity Ada OH 4580 USA -boyadzhiev@ouedu Abstract Give the bioial trasfors { b } ad {

More information

Bertrand s postulate Chapter 2

Bertrand s postulate Chapter 2 Bertrad s postulate Chapter We have see that the sequece of prie ubers, 3, 5, 7,... is ifiite. To see that the size of its gaps is ot bouded, let N := 3 5 p deote the product of all prie ubers that are

More information

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS So far i the tudie of cotrol yte the role of the characteritic equatio polyoial i deteriig the behavior of the yte ha bee highlighted. The root of that polyoial are the pole of the cotrol yte, ad their

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

A Faster Product for π and a New Integral for ln π 2

A Faster Product for π and a New Integral for ln π 2 A Fater Product for ad a New Itegral for l Joatha Sodow. INTRODUCTION. I [5] we derived a ifiite product repreetatio of e γ, where γ i Euler cotat: e γ = 3 3 3 4 3 3 Here the th factor i the ( + )th root

More information

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials Soe results o the Apostol-Beroulli ad Apostol-Euler polyoials Weipig Wag a, Cagzhi Jia a Tiaig Wag a, b a Departet of Applied Matheatics, Dalia Uiversity of Techology Dalia 116024, P. R. Chia b Departet

More information

Bernoulli Numbers and a New Binomial Transform Identity

Bernoulli Numbers and a New Binomial Transform Identity 1 2 3 47 6 23 11 Joural of Iteger Sequece, Vol. 17 2014, Article 14.2.2 Beroulli Nuber ad a New Bioial Trafor Idetity H. W. Gould Departet of Matheatic Wet Virgiia Uiverity Morgatow, WV 26506 USA gould@ath.wvu.edu

More information

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes Beroulli Polyoials Tals give at LSBU, October ad Noveber 5 Toy Forbes Beroulli Polyoials The Beroulli polyoials B (x) are defied by B (x), Thus B (x) B (x) ad B (x) x, B (x) x x + 6, B (x) dx,. () B 3

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

A Ramanujan enigma involving the first Stieltjes constant. Donal F. Connon. 5 January 2019

A Ramanujan enigma involving the first Stieltjes constant. Donal F. Connon. 5 January 2019 A Ramauja eigma ivolvig the firt Stieltje cotat Doal F. Coo dcoo@topeworld.com 5 Jauary 9 Atract We provide a rigorou formulatio of Etry 7(v) i Ramauja Noteook ad how how thi relate to the firt Stieltje

More information

q-fibonacci polynomials and q-catalan numbers Johann Cigler [ ] (4) I don t know who has observed this well-known fact for the first time.

q-fibonacci polynomials and q-catalan numbers Johann Cigler [ ] (4) I don t know who has observed this well-known fact for the first time. -Fiboacci polyoials ad -Catala ubers Joha Cigler The Fiboacci polyoials satisfy the recurrece F ( x s) = s x = () F ( x s) = xf ( x s) + sf ( x s) () with iitial values F ( x s ) = ad F( x s ) = These

More information

x !1! + 1!2!

x !1! + 1!2! 4 Euler-Maclauri Suatio Forula 4. Beroulli Nuber & Beroulli Polyoial 4.. Defiitio of Beroulli Nuber Beroulli ubers B (,,3,) are defied as coefficiets of the followig equatio. x e x - B x! 4.. Expreesio

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

A Pair of Operator Summation Formulas and Their Applications

A Pair of Operator Summation Formulas and Their Applications A Pair of Operator Suatio Forulas ad Their Applicatios Tia-Xiao He 1, Leetsch C. Hsu, ad Dogsheg Yi 3 1 Departet of Matheatics ad Coputer Sciece Illiois Wesleya Uiversity Blooigto, IL 6170-900, USA Departet

More information

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro MATHEMATICA MONTISNIGRI Vol XXXVIII (017) MATHEMATICS CERTAIN CONGRUENCES FOR HARMONIC NUMBERS ROMEO METROVIĆ 1 AND MIOMIR ANDJIĆ 1 Maritie Faculty Kotor, Uiversity of Moteegro 85330 Kotor, Moteegro e-ail:

More information

Euler-Hurwitz series and non-linear Euler sums. Donal F. Connon. 11 March 2008

Euler-Hurwitz series and non-linear Euler sums. Donal F. Connon. 11 March 2008 Euler-urwitz series ad o-liear Euler sus Doal F. Coo March 8 Abstract I this paper we derive two epressios for the urwitz zeta fuctio ς ( q+, ivolvig the coplete Bell polyoials Y (,..., i the restricted

More information

Automated Proofs for Some Stirling Number Identities

Automated Proofs for Some Stirling Number Identities Autoated Proofs for Soe Stirlig Nuber Idetities Mauel Kauers ad Carste Scheider Research Istitute for Sybolic Coputatio Johaes Kepler Uiversity Altebergerstraße 69 A4040 Liz, Austria Subitted: Sep 1, 2007;

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

A PROOF OF THE THUE-SIEGEL THEOREM ABOUT THE APPROXIMATION OF ALGEBRAIC NUMBERS FOR BINOMIAL EQUATIONS

A PROOF OF THE THUE-SIEGEL THEOREM ABOUT THE APPROXIMATION OF ALGEBRAIC NUMBERS FOR BINOMIAL EQUATIONS A PROO O THE THUE-SIEGEL THEOREM ABOUT THE APPROXIMATION O ALGEBRAIC NUMBERS OR BINOMIAL EQUATIONS KURT MAHLER, TRANSLATED BY KARL LEVY I 98 Thue () showed that algebraic ubers of the special for = p a

More information

Analysis of Analytical and Numerical Methods of Epidemic Models

Analysis of Analytical and Numerical Methods of Epidemic Models Iteratioal Joural of Egieerig Reearc ad Geeral Sciece Volue, Iue, Noveber-Deceber, 05 ISSN 09-70 Aalyi of Aalytical ad Nuerical Metod of Epideic Model Pooa Kuari Aitat Profeor, Departet of Mateatic Magad

More information

Complete Solutions to Supplementary Exercises on Infinite Series

Complete Solutions to Supplementary Exercises on Infinite Series Coplete Solutios to Suppleetary Eercises o Ifiite Series. (a) We eed to fid the su ito partial fractios gives By the cover up rule we have Therefore Let S S A / ad A B B. Covertig the suad / the by usig

More information

A New Type of q-szász-mirakjan Operators

A New Type of q-szász-mirakjan Operators Filoat 3:8 07, 567 568 https://doi.org/0.98/fil7867c Published by Faculty of Scieces ad Matheatics, Uiversity of Niš, Serbia Available at: http://www.pf.i.ac.rs/filoat A New Type of -Szász-Miraka Operators

More information

The Hypergeometric Coupon Collection Problem and its Dual

The Hypergeometric Coupon Collection Problem and its Dual Joural of Idustrial ad Systes Egieerig Vol., o., pp -7 Sprig 7 The Hypergeoetric Coupo Collectio Proble ad its Dual Sheldo M. Ross Epstei Departet of Idustrial ad Systes Egieerig, Uiversity of Souther

More information

q-apery Irrationality Proofs by q-wz Pairs

q-apery Irrationality Proofs by q-wz Pairs ADVANCES IN APPLIED MATHEMATICS 0, 7583 1998 ARTICLE NO AM970565 -Apery Irratioality Proof by -WZ Pair Tewodro Adeberha ad Doro Zeilberger Departet of Matheatic, Teple Uierity, Philadelphia, Peylaia 191,

More information

SphericalHarmonicY. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

SphericalHarmonicY. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation SphericalHaroicY Notatios Traditioal ae Spherical haroic Traditioal otatio Y, φ Matheatica StadardFor otatio SphericalHaroicY,,, φ Priary defiitio 05.0.0.000.0 Y, φ φ P cos ; 05.0.0.000.0 Y 0 k, φ k k

More information

A new sequence convergent to Euler Mascheroni constant

A new sequence convergent to Euler Mascheroni constant You ad Che Joural of Iequalities ad Applicatios 08) 08:7 https://doi.org/0.86/s3660-08-670-6 R E S E A R C H Ope Access A ew sequece coverget to Euler Mascheroi costat Xu You * ad Di-Rog Che * Correspodece:

More information

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version] Math 4707 Sprig 08 Darij Griberg: idter page Math 4707 Sprig 08 Darij Griberg: idter with solutios [preliiary versio] Cotets 0.. Coutig first-eve tuples......................... 3 0.. Coutig legal paths

More information

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i 0 Dirichlet Serie & Logarithmic Power Serie. Defiitio & Theorem Defiitio.. (Ordiary Dirichlet Serie) Whe,a,,3, are complex umber, we call the followig Ordiary Dirichlet Serie. f() a a a a 3 3 a 4 4 Note

More information

Fractional parts and their relations to the values of the Riemann zeta function

Fractional parts and their relations to the values of the Riemann zeta function Arab. J. Math. (08) 7: 8 http://doi.org/0.007/40065-07-084- Arabia Joural of Mathematic Ibrahim M. Alabdulmohi Fractioal part ad their relatio to the value of the Riema zeta fuctio Received: 4 Jauary 07

More information

Certain Properties of an Operator Involving the Generalized Hypergeometric Functions

Certain Properties of an Operator Involving the Generalized Hypergeometric Functions Proceedig of the Pakita Acadey of Sciece 5 (3): 7 3 (5) Copyright Pakita Acadey of Sciece ISSN: 377-969 (prit), 36-448 (olie) Pakita Acadey of Sciece Reearch Article Certai Propertie of a Operator Ivolvig

More information

Double Derangement Permutations

Double Derangement Permutations Ope Joural of iscrete Matheatics, 206, 6, 99-04 Published Olie April 206 i SciRes http://wwwscirporg/joural/ojd http://dxdoiorg/04236/ojd2066200 ouble erageet Perutatios Pooya aeshad, Kayar Mirzavaziri

More information

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a MEAN VALUE FOR THE MATCHING AND DOMINATING POLYNOMIAL JORGE LUIS AROCHA AND BERNARDO LLANO Abstract. The ea value of the atchig polyoial is coputed i the faily of all labeled graphs with vertices. We dee

More information

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences Turkih Joural of Aalyi ad Number Theory, 4, Vol., No. 6, 33-38 Available olie at http://pub.ciepub.com/tjat//6/9 Sciece ad Educatio Publihig DOI:.69/tjat--6-9 Geeralized Fiboacci Like Sequece Aociated

More information

6.4 Binomial Coefficients

6.4 Binomial Coefficients 64 Bioial Coefficiets Pascal s Forula Pascal s forula, aed after the seveteeth-cetury Frech atheaticia ad philosopher Blaise Pascal, is oe of the ost faous ad useful i cobiatorics (which is the foral ter

More information

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a Jacobi sybols efiitio Let be a odd positive iteger If 1, the Jacobi sybol : Z C is the costat fuctio 1 1 If > 1, it has a decopositio ( as ) a product of (ot ecessarily distict) pries p 1 p r The Jacobi

More information

A PROBABILITY PROBLEM

A PROBABILITY PROBLEM A PROBABILITY PROBLEM A big superarket chai has the followig policy: For every Euros you sped per buy, you ear oe poit (suppose, e.g., that = 3; i this case, if you sped 8.45 Euros, you get two poits,

More information

Generating Functions and Their Applications

Generating Functions and Their Applications Geeratig Fuctios ad Their Applicatios Agustius Peter Sahaggau MIT Matheatics Departet Class of 2007 18.104 Ter Paper Fall 2006 Abstract. Geeratig fuctios have useful applicatios i ay fields of study. I

More information

x+ 2 + c p () x c p () x is an arbitrary function. ( sin x ) dx p f() d d f() dx = x dx p cosx = cos x+ 2 d p () x + x-a r (1.

x+ 2 + c p () x c p () x is an arbitrary function. ( sin x ) dx p f() d d f() dx = x dx p cosx = cos x+ 2 d p () x + x-a r (1. Super Derivative (No-iteger ties Derivative). Super Derivative ad Super Differetiatio Defitio.. p () obtaied by cotiuig aalytically the ide of the differetiatio operator of Higher Derivative of a fuctio

More information

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES #A37 INTEGERS (20) BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES Derot McCarthy Departet of Matheatics, Texas A&M Uiversity, Texas ccarthy@athtauedu Received: /3/, Accepted:

More information

Integrals of Functions of Several Variables

Integrals of Functions of Several Variables Itegrals of Fuctios of Several Variables We ofte resort to itegratios i order to deterie the exact value I of soe quatity which we are uable to evaluate by perforig a fiite uber of additio or ultiplicatio

More information

Lommel Polynomials. Dr. Klaus Braun taken from [GWa] source. , defined by ( [GWa] 9-6)

Lommel Polynomials. Dr. Klaus Braun taken from [GWa] source. , defined by ( [GWa] 9-6) Loel Polyoials Dr Klaus Brau tae fro [GWa] source The Loel polyoials g (, efie by ( [GWa] 9-6 fulfill Puttig g / ( -! ( - g ( (,!( -!! ( ( g ( g (, g : g ( : h ( : g ( ( a relatio betwee the oifie Loel

More information

Binomial Notations Traditional name Traditional notation Mathematica StandardForm notation Primary definition

Binomial Notations Traditional name Traditional notation Mathematica StandardForm notation Primary definition Bioial Notatios Traditioal ae Bioial coefficiet Traditioal otatio Matheatica StadardFor otatio Bioial, Priary defiitio 06.03.0.0001.01 1 1 1 ; 0 For Ν, Κ egative itegers with, the bioial coefficiet Ν caot

More information

Multistep Runge-Kutta Methods for solving DAEs

Multistep Runge-Kutta Methods for solving DAEs Multitep Ruge-Kutta Method for olvig DAE Heru Suhartato Faculty of Coputer Sciece, Uiverita Idoeia Kapu UI, Depok 6424, Idoeia Phoe: +62-2-786 349 E-ail: heru@c.ui.ac.id Kevi Burrage Advaced Coputatioal

More information

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES J. Nuber Theory 0, o., 9-9. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES Zhi-Hog Su School of Matheatical Scieces, Huaiyi Noral Uiversity, Huaia, Jiagsu 00, PR Chia Eail: zhihogsu@yahoo.co

More information

Riemann Hypothesis Proof

Riemann Hypothesis Proof Riea Hypothesis Proof H. Vic Dao 43 rd West Coast Nuber Theory Coferece, Dec 6-0, 009, Asiloar, CA. Revised 0/8/00. Riea Hypothesis Proof H. Vic Dao vic0@cocast.et March, 009 Revised Deceber, 009 Abstract

More information

42 Dependence and Bases

42 Dependence and Bases 42 Depedece ad Bases The spa s(a) of a subset A i vector space V is a subspace of V. This spa ay be the whole vector space V (we say the A spas V). I this paragraph we study subsets A of V which spa V

More information

On Elementary Methods to Evaluate Values of the Riemann Zeta Function and another Closely Related Infinite Series at Natural Numbers

On Elementary Methods to Evaluate Values of the Riemann Zeta Function and another Closely Related Infinite Series at Natural Numbers Global oural of Mathematical Sciece: Theory a Practical. SSN 97- Volume 5, Number, pp. 5-59 teratioal Reearch Publicatio Houe http://www.irphoue.com O Elemetary Metho to Evaluate Value of the Riema Zeta

More information

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I #A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I Miloud Mihoubi 1 Uiversité des Scieces et de la Techologie Houari Bouediee Faculty

More information

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k) THE TWELVEFOLD WAY FOLLOWING GIAN-CARLO ROTA How ay ways ca we distribute objects to recipiets? Equivaletly, we wat to euerate equivalece classes of fuctios f : X Y where X = ad Y = The fuctios are subject

More information

ON THE NUMERICAL COMPUTATION OF CYLINDRICAL CONDUCTOR INTERNAL IMPEDANCE FOR COMPLEX ARGUMENTS OF LARGE MAGNITUDE * Slavko Vujević, Dino Lovrić

ON THE NUMERICAL COMPUTATION OF CYLINDRICAL CONDUCTOR INTERNAL IMPEDANCE FOR COMPLEX ARGUMENTS OF LARGE MAGNITUDE * Slavko Vujević, Dino Lovrić FACTA UNIVERSITATIS Serie: Electroic ad Eergetic Vol. 3, N o 1, March 17, pp. 81-91 DOI: 1.98/FUEE17181V ON THE NUMERICAL COMPUTATION OF CYLINDRICAL CONDUCTOR INTERNAL IMPEDANCE FOR COMPLEX ARGUMENTS OF

More information

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a =

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a = FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS NEIL J. CALKIN Abstract. We prove divisibility properties for sus of powers of bioial coefficiets ad of -bioial coefficiets. Dedicated to the eory of

More information

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM UPB Sci Bull, Series A, Vol 7, No 3, 8 ISSN 3-77 SZEGO S THEOREM STARTING FROM JENSEN S THEOREM Cǎli Alexe MUREŞAN Mai îtâi vo itroduce Teorea lui Jese şi uele coseciţe ale sale petru deteriarea uǎrului

More information

Discrete Mathematics: Lectures 8 and 9 Principle of Inclusion and Exclusion Instructor: Arijit Bishnu Date: August 11 and 13, 2009

Discrete Mathematics: Lectures 8 and 9 Principle of Inclusion and Exclusion Instructor: Arijit Bishnu Date: August 11 and 13, 2009 Discrete Matheatics: Lectures 8 ad 9 Priciple of Iclusio ad Exclusio Istructor: Arijit Bishu Date: August ad 3, 009 As you ca observe by ow, we ca cout i various ways. Oe such ethod is the age-old priciple

More information

A talk given at Institut Camille Jordan, Université Claude Bernard Lyon-I. (Jan. 13, 2005), and University of Wisconsin at Madison (April 4, 2006).

A talk given at Institut Camille Jordan, Université Claude Bernard Lyon-I. (Jan. 13, 2005), and University of Wisconsin at Madison (April 4, 2006). A tal give at Istitut Caille Jorda, Uiversité Claude Berard Lyo-I (Ja. 13, 005, ad Uiversity of Wiscosi at Madiso (April 4, 006. SOME CURIOUS RESULTS ON BERNOULLI AND EULER POLYNOMIALS Zhi-Wei Su Departet

More information

MORE COMMUTATOR INEQUALITIES FOR HILBERT SPACE OPERATORS

MORE COMMUTATOR INEQUALITIES FOR HILBERT SPACE OPERATORS terat. J. Fuctioal alyi Operator Theory ad pplicatio 04 Puhpa Publihig Houe llahabad dia vailable olie at http://pph.co/oural/ifaota.ht Volue Nuber 04 Page MORE COMMUTTOR NEQULTES FOR HLERT SPCE OPERTORS

More information

Orthogonal Functions

Orthogonal Functions Royal Holloway Uiversity of odo Departet of Physics Orthogoal Fuctios Motivatio Aalogy with vectors You are probably failiar with the cocept of orthogoality fro vectors; two vectors are orthogoal whe they

More information

1 6 = 1 6 = + Factorials and Euler s Gamma function

1 6 = 1 6 = + Factorials and Euler s Gamma function Royal Holloway Uiversity of Lodo Departmet of Physics Factorials ad Euler s Gamma fuctio Itroductio The is a self-cotaied part of the course dealig, essetially, with the factorial fuctio ad its geeralizatio

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre:

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20 ECE 6341 Sprig 016 Prof. David R. Jackso ECE Dept. Notes 0 1 Spherical Wave Fuctios Cosider solvig ψ + k ψ = 0 i spherical coordiates z φ θ r y x Spherical Wave Fuctios (cot.) I spherical coordiates we

More information

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0 GENERATING FUNCTIONS Give a ifiite sequece a 0,a,a,, its ordiary geeratig fuctio is A : a Geeratig fuctios are ofte useful for fidig a closed forula for the eleets of a sequece, fidig a recurrece forula,

More information

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry Zeta-reciprocal Eteded reciprocal zeta fuctio ad a alterate formulatio of the Riema hypothei By. Alam Chaudhry Departmet of athematical Sciece, Kig Fahd Uiverity of Petroleum ad ieral Dhahra 36, Saudi

More information

A solid Foundation for q-appell Polynomials

A solid Foundation for q-appell Polynomials Advaces i Dyamical Systems ad Applicatios ISSN 0973-5321, Volume 10, Number 1, pp. 27 35 2015) http://campus.mst.edu/adsa A solid Foudatio for -Appell Polyomials Thomas Erst Uppsala Uiversity Departmet

More information

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS EULER-MACLAURI SUM FORMULA AD ITS GEERALIZATIOS AD APPLICATIOS Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre: Practicate Ada y Grijalba

More information

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1 ROOT LOCUS TECHNIQUE 93 should be desiged differetly to eet differet specificatios depedig o its area of applicatio. We have observed i Sectio 6.4 of Chapter 6, how the variatio of a sigle paraeter like

More information

Generalized Fibonacci-Like Sequence and. Fibonacci Sequence

Generalized Fibonacci-Like Sequence and. Fibonacci Sequence It. J. Cotep. Math. Scieces, Vol., 04, o., - 4 HIKARI Ltd, www.-hiari.co http://dx.doi.org/0.88/ijcs.04.48 Geeralized Fiboacci-Lie Sequece ad Fiboacci Sequece Sajay Hare epartet of Matheatics Govt. Holar

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Harmonic Number Identities Via Euler s Transform

Harmonic Number Identities Via Euler s Transform 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 2009), Article 09.6.1 Harmoic Number Idetities Via Euler s Trasform Khristo N. Boyadzhiev Departmet of Mathematics Ohio Norther Uiversity Ada, Ohio 45810

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction WHAT ARE THE BERNOULLI NUMBERS? C. D. BUENGER Abstract. For the "What is?" semiar today we will be ivestigatig the Beroulli umbers. This surprisig sequece of umbers has may applicatios icludig summig powers

More information

On Some Properties of Tensor Product of Operators

On Some Properties of Tensor Product of Operators Global Joural of Pure ad Applied Matheatics. ISSN 0973-1768 Volue 12, Nuber 6 (2016), pp. 5139-5147 Research Idia Publicatios http://www.ripublicatio.co/gjpa.ht O Soe Properties of Tesor Product of Operators

More information

The Arakawa-Kaneko Zeta Function

The Arakawa-Kaneko Zeta Function The Arakawa-Kaeko Zeta Fuctio Marc-Atoie Coppo ad Berard Cadelpergher Nice Sophia Atipolis Uiversity Laboratoire Jea Alexadre Dieudoé Parc Valrose F-0608 Nice Cedex 2 FRANCE Marc-Atoie.COPPO@uice.fr Berard.CANDELPERGHER@uice.fr

More information

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces, Vol. 5 (0), Article..7 Series with Cetral Biomial Coefficiets, Catala Numbers, ad Harmoic Numbers Khristo N. Boyadzhiev Departmet of Mathematics ad Statistics Ohio Norther

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

New integral representations. . The polylogarithm function

New integral representations. . The polylogarithm function New itegral repreetatio of the polylogarithm fuctio Djurdje Cvijović Atomic Phyic Laboratory Viča Ititute of Nuclear Sciece P.O. Box 5 Belgrade Serbia. Abtract. Maximo ha recetly give a excellet ummary

More information

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces Lecture : Bouded Liear Operators ad Orthogoality i Hilbert Spaces 34 Bouded Liear Operator Let ( X, ), ( Y, ) i i be ored liear vector spaces ad { } X Y The, T is said to be bouded if a real uber c such

More information

Chapter 2. Asymptotic Notation

Chapter 2. Asymptotic Notation Asyptotic Notatio 3 Chapter Asyptotic Notatio Goal : To siplify the aalysis of ruig tie by gettig rid of details which ay be affected by specific ipleetatio ad hardware. [1] The Big Oh (O-Notatio) : It

More information

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions ECE 9 Lecture 4: Estiatio of Lipschitz sooth fuctios R. Nowak 5/7/29 Cosider the followig settig. Let Y f (X) + W, where X is a rado variable (r.v.) o X [, ], W is a r.v. o Y R, idepedet of X ad satisfyig

More information

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER Joural of Algebra, Nuber Theory: Advaces ad Applicatios Volue, Nuber, 010, Pages 57-69 SOME FINITE SIMPLE GROUPS OF LIE TYPE C ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER School

More information

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions J. Math. Aal. Appl. 297 2004 186 193 www.elsevier.com/locate/jmaa Some families of geeratig fuctios for the multiple orthogoal polyomials associated with modified Bessel K-fuctios M.A. Özarsla, A. Altı

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction LOWER BOUNDS FOR MOMENTS OF ζ ρ MICAH B. MILINOVICH AND NATHAN NG Abstract. Assuig the Riea Hypothesis, we establish lower bouds for oets of the derivative of the Riea zeta-fuctio averaged over the otrivial

More information

A detailed proof of the irrationality of π

A detailed proof of the irrationality of π Matthew Straugh Math 4 Midterm A detailed proof of the irratioality of The proof is due to Iva Nive (1947) ad essetial to the proof are Lemmas ad 3 due to Charles Hermite (18 s) First let us itroduce some

More information

A note on the p-adic gamma function and q-changhee polynomials

A note on the p-adic gamma function and q-changhee polynomials Available olie at wwwisr-publicatioscom/jmcs J Math Computer Sci, 18 (2018, 11 17 Research Article Joural Homepage: wwwtjmcscom - wwwisr-publicatioscom/jmcs A ote o the p-adic gamma fuctio ad q-chaghee

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

Left Quasi- ArtinianModules

Left Quasi- ArtinianModules Aerica Joural of Matheatic ad Statitic 03, 3(): 6-3 DO: 0.593/j.aj.03030.04 Left Quai- ArtiiaModule Falih A. M. Aldoray *, Oaia M. M. Alhekiti Departet of Matheatic, U Al-Qura Uiverity, Makkah,P.O.Box

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

Journal of American Science, 2012; 8(5); Spectral Relationships of Some Mixed Integral Equations of the First Kind

Journal of American Science, 2012; 8(5);   Spectral Relationships of Some Mixed Integral Equations of the First Kind Joural of Aerica Sciece ; 8(5); http://www.aericasciece.org Spectral Relatioships of Soe Mixed Itegral Equatios of the First Kid S. J. Moaquel Departet of Matheatics Faculty of Sciece Kig Abdul Aziz Uiersity

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

2. F ; =(,1)F,1; +F,1;,1 is satised by thestirlig ubers of the rst kid ([1], p. 824). 3. F ; = F,1; + F,1;,1 is satised by the Stirlig ubers of the se

2. F ; =(,1)F,1; +F,1;,1 is satised by thestirlig ubers of the rst kid ([1], p. 824). 3. F ; = F,1; + F,1;,1 is satised by the Stirlig ubers of the se O First-Order Two-Diesioal Liear Hoogeeous Partial Dierece Equatios G. Neil Have y Ditri A. Gusev z Abstract Aalysis of algoriths occasioally requires solvig of rst-order two-diesioal liear hoogeeous partial

More information

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM Ø Ñ Å Ø Ñ Ø Ð ÈÙ Ð Ø ÓÒ DOI: 10.2478/v10127-011-0029-x Tatra Mt. Math. Publ. 49 2011, 99 109 A GENERALIZED BERNSTEIN APPROXIMATION THEOREM Miloslav Duchoň ABSTRACT. The preset paper is cocered with soe

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s) that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Quadratic Trasformatios of Hypergeometric Fuctio ad Series with Harmoic Numbers Marti Nicholso I this brief ote, we show how to apply Kummer s ad other quadratic trasformatio formulas for Gauss ad geeralized

More information