Jamming and Flow of Rod-Like Granular Materials

Size: px
Start display at page:

Download "Jamming and Flow of Rod-Like Granular Materials"

Transcription

1 Scott Franklin Undergraduate Researchers Kevin Stokely Ari Diacou Ken Desmond Jess Gallagher Scott Barker Jamming and Flow of Rod-Like Granular Materials PRE 67, (2003) PRE 73, (2006) Petroleum Research Fund ACS Research Corporation

2 Granular Basics 1 Granular materials: collections of macroscopic ( mm) particles interacting through contact forces (e.g. friction) Thermal energy irrelevant (k B T J P E 10 5 J) systems frozen in metastable state, unable to move to lower energy state without external help exhibit solid, liquid, gas-like behavior density of a granular material is not well defined (packing fraction: percentage of space occupied) 3-d spheres: 52%< ρ <74% 2-d disks: 78%< ρ <91% long, thin rods in 3-d: 5%< ρ <91% long, thin rods in 2-d:??< ρ <100%

3 Packing and Force Distribution 2 Ordered packing yields uniform force distribution Slight disorder produces localized force chains (Parke Rhoads, 1998) large force chains more common than Gaussian

4 Packing and Force Distribution 2 Ordered packing yields uniform force distribution Slight disorder produces localized force chains (Parke Rhoads, 1998) large force chains more common than Gaussian F y tube sand = W F y tube sand = µf sand tube x µ 0.2 = Fsand tube x 5W

5 Packing and Force Distribution 2 Ordered packing yields uniform force distribution Slight disorder produces localized force chains (Parke Rhoads, 1998) large force chains more common than Gaussian F y tube sand = W F y tube sand = µf sand tube x µ 0.2 = Fsand tube x 5W F F 2F sin (θ) = W = F = W 2 sin (θ)

6 Who cares? 3 40% loss in production from factories from handling granular materials great industrial significance petroleum: extract oil through (granular) soil chemical: maximize reaction rate between liquid and particulate reactants pharmaceutical: uniformly mix particulate constituents for medicine large percentage of GDP estimated to involve granular materials (33%???) Physicists: how to describe something both solid and liquid? Continuum theories lack stress-strain relation to close the equations Friction requires history dependence, MD simulations promising

7 3D Jamming 4 Particles (length L, width w) poured into acrylic tube of diameter D to height h 1/4 ball at bottom of tube pulled upwards by motor, connected to force sensor Scale lengths by particle length L: D = D/L Scale force by pile weight: F = F/[ρ(π(D/2) 2 )hφ]

8 Packing Largely Determined by Particle Geometry 5 φ depends on aspect ratio α, less so on D data agree with geometric model with one free parameter: average contact number c = 5.25 ± 0.03

9 Geometric Random Contact Model 6 Contacts between particles uncorrelated, pile essentially collection of independent pairs of rods in contact some particle orientations made inaccessible by existence of another (rods very close together must be aligned) Average number of contacts proportional to the product of density and excluded orientations: c = 1 f ex (ρ, r)ρ( r)d r 2 Approximate local density ρ( r) with average density ρ and ρ = 2 c v ex. (v ex = r 2 dr sin θ dθ dφf ex is long and ugly and derived by Onsager 50 years ago)

10 How Hard is it to Leave the Pile? 7 As D 1 maximum force needed increases. Particularly dramatic at lower aspect ratios (higher packing fractions).

11 Small α, Large D: Stick-slip motion 8 linearly increasing force (ball at rest) followed by very short bursts of motion maximum force comparable to pile weight Fluctuations due to granular rearrangements

12 Large α, Small D: Solid-body motion 9 Force can be many times greater than pile weight Fluctuations due to stick-slip motion on surface

13 Modest α, D: Transition Region 10 Transition region marked by small moments of solid-body like motion followed by particle rearrangments that bring the ball to a stop

14 Pile Phase Space: Tube Diameter vs. Aspect Ratio 11 In a single tube, increasing particle length moves system through transition region to solid-like motion. Whether this is due to decreased D or increased α is unknown (yet).

15 Pile Phase Space: Tube Diameter vs. Aspect Ratio 12 In a single tube, increasing particle length moves system through transition region to solid-like motion. Whether this is due to decreased D or increased α is unknown (yet).

16 Power-Law Scaling of Fluctuation Spectrum 13 fluctuations change from f 2 to f 1 ordinary granular materials scale as f 2 (Albert et al.), dry friction as f 1

17 Scaling Exponent: D = 5 cm 14 Transition region has larger fluctuations as system spends more time in solid-body (dry friction) state

18 Scaling Exponent: D = 2.5 cm 15

19 Scaling Exponent: D = 7.5 cm 16

20 Scaling Exponent Doesn t Simply Depend on D 17

21 Force Power Spectra Exponents 18 Power spectra of fluctuating force show power law tails with exponent characteristic of pile behavior

22 Flow of Particles Through Hoppers 19 Pour Release Measure mass Repeat

23 Prolate vs. Round Particles 20 Prolate granular materials (aspect ratio=α: length diameter = 16, 32) Random walk explains probability P (N) of arch w/n round particles Requires arch to be concave down

24 Random Walks in 2d Hopper Flow (To et al., 2001) 21 Left to right: π/2 > θ i > π/2 Concave down: θ 1 >... > θ i >... > θ n 1 No overlap: i k=1 r k j k=1 r k D Arch spans opening: X + D > R Pick number of disks in arch and simply add up all configurations that satisfy the constraints a n (x) = A n π/2 π/2 f 1 (θ 1 ) dθ 1... θn 1 β n 1 f n 1 dθ n 1 δ(x n 1 i=1 cos θ i )

25 Flow Mass (before jamming) Noisy quanity 22

26 Exponential Decay Distribution of Flow Mass 23 independent of aperture size

27 Uncorrellated Drop Model (Percolation, Random Walk) 24 Assume that the probability of a particle to exit the hopper is p, and doesn t depend on particle s neighbors (uncorrelated) Probability of exactly n particles exiting hopper before a jam (P (n))is P (n) = p p p... p (1 p) = p n (1 p) = log P (n) n log p If particles fall in groups of k and groups uncorrelated, P (k) p n k (1 p), scaling still holds Do we really believe rods fall in an uncorrelated arrangement?

28 Probability Scales with Mean Flow Size 25 apertures ranging in size by factor of six collapse onto single curve All details contained in mean flow

29 Mean Flow Diverges 26 Details of divergence unknown

30 Granular Flow in Rotating Drum 27 Another canonical system for study of granular systems

31 Critical Angles in Ordinary Granular Materials 28 Ordinary granular materials rotate until a critical angle, at which point an avalanche occurs, reducing the angle to a lower critical angle

32 Disappearance of Critical Angles w/increasing α 29 As aspect ratio increases, avalanches become less regular

33 Avalanches and Surface Flow 30 α = 4, L 1/4 α = 4, L = 1

34 Large Aspect Ratios and Pile Width W W/L 31 α = 16, W = 6 α = 16, W = 1/4

35 Conclusions and Future Work 32 Large aspect-ratio granular materials show a transition to solid-body like motion in both 2 and 3 dimensions For 3d experiments, both particle geometry and container size important Container size effects seen in increased angle of repose as pile thickness is decreased. Hopper flow intriguingly similar to ordinary granular materials MD simulations would complement increasing number of experimental systems we re investigating

The Needle in the Haystack: the physics of prolate granular piles

The Needle in the Haystack: the physics of prolate granular piles Scott Franklin svfsps@rit.edu http://piggy.rit.edu/franklin Undergraduate Researchers Kevin Stokely Ari Diacou Jesus Benhumea Ken Desmond Saul Lapidus Peter Gee The Needle in the Haystack: the physics

More information

Granular Micro-Structure and Avalanche Precursors

Granular Micro-Structure and Avalanche Precursors Granular Micro-Structure and Avalanche Precursors L. Staron, F. Radjai & J.-P. Vilotte Department of Applied Mathematics and Theoretical Physics, Cambridge CB3 0WA, UK. Laboratoire de Mécanique et Génie

More information

A model for the transmission of contact forces in granular piles

A model for the transmission of contact forces in granular piles Author: Javier Cristín. Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain Advisor: Carmen Miguel. Abstract:Granular matter is fundamentally different from other, more conventional,

More information

collisions inelastic, energy is dissipated and not conserved

collisions inelastic, energy is dissipated and not conserved LECTURE 1 - Introduction to Granular Materials Jamming, Random Close Packing, The Isostatic State Granular materials particles only interact when they touch hard cores: rigid, incompressible, particles

More information

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

Institute of Particle Science and Engineering, University of Leeds, LS2 9JT, UK 2

Institute of Particle Science and Engineering, University of Leeds, LS2 9JT, UK 2 INFLUENCES OF PARTICLE-SCALE PROPERTIES ON THE FLOW PROPERTIES OF POWDER MEDIA IN LOW GRAVITY ENVIRONMENTS: COMPUTATIONAL ANALYSIS S. Joseph Antony, T. Amanbayev 2, B. Arowosola and L. Richter 3 Institute

More information

Steady Flow and its Instability of Gravitational Granular Flow

Steady Flow and its Instability of Gravitational Granular Flow Steady Flow and its Instability of Gravitational Granular Flow Namiko Mitarai Department of Chemistry and Physics of Condensed Matter, Graduate School of Science, Kyushu University, Japan. A thesis submitted

More information

Continuum Model of Avalanches in Granular Media

Continuum Model of Avalanches in Granular Media Continuum Model of Avalanches in Granular Media David Chen May 13, 2010 Abstract A continuum description of avalanches in granular systems is presented. The model is based on hydrodynamic equations coupled

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

Packing grains by thermally cycling

Packing grains by thermally cycling Packing grains by thermally cycling One of the oldest and most intriguing problems in the handling of materials is how a collection of solid grains packs together. 1 While granular packing is normally

More information

Lecture 17 - The Secrets we have Swept Under the Rug

Lecture 17 - The Secrets we have Swept Under the Rug 1.0 0.5 0.0-0.5-0.5 0.0 0.5 1.0 Lecture 17 - The Secrets we have Swept Under the Rug A Puzzle... What makes 3D Special? Example (1D charge distribution) A stick with uniform charge density λ lies between

More information

Answers to selected problems from Essential Physics, Chapter 10

Answers to selected problems from Essential Physics, Chapter 10 Answers to selected problems from Essential Physics, Chapter 10 1. (a) The red ones have the same speed as one another. The blue ones also have the same speed as one another, with a value twice the speed

More information

Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

More information

Granular Matter and the Marginal Rigidity State.

Granular Matter and the Marginal Rigidity State. 1 Granular Matter and the Marginal Rigidity State. R Blumenfeld*, SF Edwards and RC Ball*, *Department of Physics, University of Warwick, CV4 7AL Coventry, UK. Polymers and Colloids, Cavendish Laboratory,

More information

Statistical Mechanics of Granular Systems

Statistical Mechanics of Granular Systems Author: Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain. Advisor: Antoni Planes Vila Abstract: This work is a review that deals with the possibility of application

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

(2.1) Is often expressed using a dimensionless drag coefficient:

(2.1) Is often expressed using a dimensionless drag coefficient: 1. Introduction Multiphase materials occur in many fields of natural and engineering science, industry, and daily life. Biological materials such as blood or cell suspensions, pharmaceutical or food products,

More information

Indiana University, January T. Witten, University of Chicago

Indiana University, January T. Witten, University of Chicago Indiana University, January 2007 T. Witten, University of Chicago Force propagation in a simple solid: two pictures Add circular beads to a container one by one How does an added force reach the ground?

More information

BACKFILL AND INTERFACE CHARACTERISTICS

BACKFILL AND INTERFACE CHARACTERISTICS Chapter 5 BACKFILL AND INTERFACE CHARACTERISTICS This chapter introduces the properties of backfill and the distribution of soil density in the soil bin. The interface characteristics between the backfill

More information

Rubber elasticity. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. February 21, 2009

Rubber elasticity. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. February 21, 2009 Rubber elasticity Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge February 21, 2009 A rubber is a material that can undergo large deformations e.g. stretching to five

More information

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts)

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Random Averaging Eli Ben-Naim Los Alamos National Laboratory Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Talk, papers available from: http://cnls.lanl.gov/~ebn Plan I.

More information

Physics 8 Friday, October 20, 2017

Physics 8 Friday, October 20, 2017 Physics 8 Friday, October 20, 2017 HW06 is due Monday (instead of today), since we still have some rotation ideas to cover in class. Pick up the HW07 handout (due next Friday). It is mainly rotation, plus

More information

On self-organised criticality in one dimension

On self-organised criticality in one dimension On self-organised criticality in one dimension Kim Christensen Imperial College ondon Department of Physics Prince Consort Road SW7 2BW ondon United Kingdom Abstract In critical phenomena, many of the

More information

2. Modeling of shrinkage during first drying period

2. Modeling of shrinkage during first drying period 2. Modeling of shrinkage during first drying period In this chapter we propose and develop a mathematical model of to describe nonuniform shrinkage of porous medium during drying starting with several

More information

Chapter 1. Introduction. 1.1 Background

Chapter 1. Introduction. 1.1 Background Chapter 1 Introduction 1.1 Background Despite being common in everyday experience, granular materials are poorly understood from a theoretical standpoint, and even in the simplest of situations, they can

More information

Indefinite survival through backup copies

Indefinite survival through backup copies Indefinite survival through backup copies Anders Sandberg and Stuart Armstrong June 06 202 Abstract If an individual entity endures a fixed probability µ < of disappearing ( dying ) in a given fixed time

More information

Conservation of Energy

Conservation of Energy rev 05/2018 Conservation of Energy Equipment Qty Item Part Number 1 Mini Launcher ME-6800 1 Metal Sphere Projectile 1 and 2 Meter Sticks 1 Large Metal Rod ME-8741 1 Small Metal Rod ME-8736 1 Support Base

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Dry granular flows: gas, liquid or solid?

Dry granular flows: gas, liquid or solid? Dry granular flows: gas, liquid or solid? Figure 1: Forterre & Pouliquen, Annu. Rev. Fluid Mechanics, 2008 1 Characterizing size and size distribution Grains are not uniform (size, shape, ) Statistical

More information

Stress anisotropy in shear-jammed packings of frictionless disks

Stress anisotropy in shear-jammed packings of frictionless disks Stress anisotropy in shear-jammed packings of frictionless disks Sheng Chen, 1, 2 Weiwei Jin, 3, 2 Thibault Bertrand, 4 Mark D. Shattuck, 5 6, 7, 8, and Corey S. O Hern 1 Key Laboratory for Thermal Science

More information

Particle Distribution Analysis of Simulated Granular Avalanches. Abstract

Particle Distribution Analysis of Simulated Granular Avalanches. Abstract Particle Distribution Analysis of Simulated Granular Avalanches Abstract Initial results of two-dimensional, bimodal distribution of grains undergoing avalanches suggests there does not exist a relationship

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 28 Mar 2007

arxiv:cond-mat/ v2 [cond-mat.soft] 28 Mar 2007 Universal Anisotropy in Force Networks under Shear Srdjan Ostojic, 1, Thijs J. H. Vlugt, 2 and Bernard Nienhuis 1 arxiv:cond-mat/0610483v2 [cond-mat.soft] 28 Mar 2007 1 Institute for Theoretical Physics,

More information

VII. Porous Media Lecture 32: Percolation

VII. Porous Media Lecture 32: Percolation VII. Porous Media Lecture 32: Percolation April 25 th, 2011 Notes by John Casey (and MZB) References: S. Torquato, Random Heterogeneous Materials (Springer 2002) D. Stauffer, Introduction to Percolation

More information

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky Monte Carlo Lecture 15 4/9/18 1 Sampling with dynamics In Molecular Dynamics we simulate evolution of a system over time according to Newton s equations, conserving energy Averages (thermodynamic properties)

More information

THE ONSET OF FLUIDIZATION OF FINE POWDERS IN ROTATING DRUMS

THE ONSET OF FLUIDIZATION OF FINE POWDERS IN ROTATING DRUMS The Mater.Phys.Mech.3 Onset of Fluidization (1) 57-6 of Fine Powders in Rotating Drums 57 THE ONSET OF FLUIDIZATION OF FINE POWDERS IN ROTATING DRUMS A. Castellanos, M.A. Sánchez and J.M. Valverde Departamento

More information

FINAL EXAM CLOSED BOOK

FINAL EXAM CLOSED BOOK Physics 7A- Section 2, Fall 2008. Instructor Lanzara FINAL EXAM CLOSED BOOK GOOD LUCK! Print Name Discussion Section# or Time Signature Discussion Section GSI Student ID# Problem Points Score 1 20 2 20

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

Maxwell s equations for electrostatics

Maxwell s equations for electrostatics Maxwell s equations for electrostatics October 6, 5 The differential form of Gauss s law Starting from the integral form of Gauss s law, we treat the charge as a continuous distribution, ρ x. Then, letting

More information

CHARACTERISING THE FAILURE AND REPOSE ANGLES OF IRREGULARLY SHAPED THREE-DIMENSIONAL PARTICLES USING DEM

CHARACTERISING THE FAILURE AND REPOSE ANGLES OF IRREGULARLY SHAPED THREE-DIMENSIONAL PARTICLES USING DEM Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2012 CHARACTERISING THE FAILURE AND REPOSE ANGLES OF IRREGULARLY SHAPED THREE-DIMENSIONAL

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

More information

Tutorial 4. Figure 1: Rod and spindle. Dog. Figure 2: I have no idea what I m doing. Dog

Tutorial 4. Figure 1: Rod and spindle. Dog. Figure 2: I have no idea what I m doing. Dog Tutorial 4 Question 1 Figure 1: Rod and spindle A uniform disk rotates at 3.60 rev/s around a frictionless spindle. A non-rotating rod, of the same mass as the disk and equal in length to the disk s diameter,

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

P211 Spring 2004 Form A

P211 Spring 2004 Form A 1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

More information

Modeling Airplane Wings

Modeling Airplane Wings Modeling Airplane Wings Lauren Ault Physics Department, The College of Wooster, Wooster, Ohio 9 May 5, 000 Abstract: An air gyroscope is used to determine the nature of the viscous force of a sphere floating

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 10 Dec 2002

arxiv:cond-mat/ v2 [cond-mat.soft] 10 Dec 2002 Europhysics Letters PREPRINT Wall effects on granular heap stability arxiv:cond-mat/0209040v2 [cond-mat.soft] 10 Dec 2002 S. Courrech du Pont 1, P. Gondret 1, B. Perrin 2 and M. Rabaud 1 1 F.A.S.T. Universités

More information

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Numerical Analysis of 2-D Ising Model By Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Contents Abstract Acknowledgment Introduction Computational techniques Numerical Analysis

More information

What is the initial velocity (magnitude and direction) of the CM? Ans: v CM (0) = ( 7 /2) v 0 ; tan 1 ( 3 /2) 41 above horizontal.

What is the initial velocity (magnitude and direction) of the CM? Ans: v CM (0) = ( 7 /2) v 0 ; tan 1 ( 3 /2) 41 above horizontal. Reading: Systems of Particles, Rotations 1, 2. Key concepts: Center of mass, momentum, motion relative to CM, collisions; vector product, kinetic energy of rotation, moment of inertia; torque, rotational

More information

Finding the sum of a finite Geometric Series. The sum of the first 5 powers of 2 The sum of the first 5 powers of 3

Finding the sum of a finite Geometric Series. The sum of the first 5 powers of 2 The sum of the first 5 powers of 3 Section 1 3B: Series A series is the sum of a given number of terms in a sequence. For every sequence a 1, a, a 3, a 4, a 5, a 6, a 7,..., a n of real numbers there is a series that is defined as the sum

More information

Presenting author: S. Joseph Antony, Co-authors: Saeed Albaraki, Babatunde Arowosola, Neha Agarwal University of Leeds. Dr S Joseph Antony

Presenting author: S. Joseph Antony, Co-authors: Saeed Albaraki, Babatunde Arowosola, Neha Agarwal University of Leeds. Dr S Joseph Antony Novel Visual Probing of Shear Stress Distribution inside Pharmaceutical Powder Packing within Constrained Geometries using Photo Stress Analysis Tomography (PSAT) Presenting author: S. Joseph Antony, Co-authors:

More information

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes!

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Physics 8 Wednesday, October 19, 2011 Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Troublesome HW4 questions 1. Two objects of inertias

More information

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c. MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

More information

An introduction to the physics of. Granular Matter. Devaraj van der Meer

An introduction to the physics of. Granular Matter. Devaraj van der Meer An introduction to the physics of Granular Matter Devaraj van der Meer GRANULAR MATTER is everywhere: in nature: beach, soil, snow, desert, mountains, sea floor, Saturn s rings, asteroids... in industry:

More information

Theory of Force Transmission and Rigidity in Granular Aggregates. A Different kind of NonEquilibrium System

Theory of Force Transmission and Rigidity in Granular Aggregates. A Different kind of NonEquilibrium System Theory of Force Transmission and Rigidity in Granular Aggregates A Different kind of NonEquilibrium System Dapeng Bi Sumantra Sarkar Kabir Ramola Jetin Thomas Bob Behringer, Jie Ren Dong Wang Jeff Morris

More information

Physics 23 Exam 3 April 2, 2009

Physics 23 Exam 3 April 2, 2009 1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)

More information

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Open Book Exam Work on your own for this exam. You may consult your

More information

Criticality in Earthquakes. Good or bad for prediction?

Criticality in Earthquakes. Good or bad for prediction? http://www.pmmh.espci.fr/~oramos/ Osvanny Ramos. Main projects & collaborators Slow crack propagation Cracks patterns L. Vanel, S. Ciliberto, S. Santucci, J-C. Géminard, J. Mathiesen IPG Strasbourg, Nov.

More information

Section B. Electromagnetism

Section B. Electromagnetism Prelims EM Spring 2014 1 Section B. Electromagnetism Problem 0, Page 1. An infinite cylinder of radius R oriented parallel to the z-axis has uniform magnetization parallel to the x-axis, M = m 0ˆx. Calculate

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released at

More information

Why Complexity is Different

Why Complexity is Different Why Complexity is Different Yaneer Bar-Yam (Dated: March 21, 2017) One of the hardest things to explain is why complex systems are actually different from simple systems. The problem is rooted in a set

More information

Internal Diffusion-Limited Erosion

Internal Diffusion-Limited Erosion January 18, 2008 Joint work with Yuval Peres Internal Erosion of a Domain Given a finite set A Z d containing the origin. Start a simple random walk at the origin. Stop the walk when it reaches a site

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

= m = kg = kg

= m = kg = kg Physics Unit 8 1 2 3 N = q e N = 4 10 6 C 1.6 10 19 = 2.5 1013 C m = 2.5 10 13 9.11 10 31 kg = 2.28 10 17 kg 4 When you rub a balloon on your hair, the balloon steals electrons from the hair. The balloon

More information

The Curious Case of Soft Matter Ranjini Bandyopadhyay Raman Research Institute

The Curious Case of Soft Matter Ranjini Bandyopadhyay Raman Research Institute The Curious Case of Soft Matter Ranjini Bandyopadhyay Raman Research Institute ranjini@rri.res.in. My research interests: structure, dynamics, phase behavior and flow of soft materials Panta rei: everything

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Influence of forced material in roller compactor parameters I.

Influence of forced material in roller compactor parameters I. 1 Portál pre odborné publikovanie ISSN 1338-0087 Influence of forced material in roller compactor parameters I. Krok Alexander Elektrotechnika, Strojárstvo 24.08.2009 In the chemical, pharmaceutical and

More information

Jamming and critical outlet size in the discharge of a two-dimensional silo

Jamming and critical outlet size in the discharge of a two-dimensional silo November 2008 EPL, 84 (2008) 44002 doi: 10.1209/0295-5075/84/44002 www.epljournal.org Jamming and critical outlet size in the discharge of a two-dimensional silo A. Janda 1(a), I. Zuriguel 1,A.Garcimartín

More information

Constitutive model development for granular and porous materials and modelling of particulate processes

Constitutive model development for granular and porous materials and modelling of particulate processes Constitutive model development for granular and porous materials and modelling of particulate processes Csaba Sinka ics4@le.ac.uk Department of Engineering Mechanics of Materials Group Geophysics modelling

More information

Suggestions for Further Reading

Suggestions for Further Reading Contents Preface viii 1 From Microscopic to Macroscopic Behavior 1 1.1 Introduction........................................ 1 1.2 Some Qualitative Observations............................. 2 1.3 Doing

More information

SEE the list given for chapter 04 where Newton s laws were introduced.

SEE the list given for chapter 04 where Newton s laws were introduced. PH2213 : Examples from Chapter 5 : Applying Newton s Laws Key Concepts Newton s Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion of the object,

More information

Exam paper: Biomechanics

Exam paper: Biomechanics Exam paper: Biomechanics Tuesday August 10th 2010; 9.00-12.00 AM Code: 8W020 Biomedical Engineering Department, Eindhoven University of Technology The exam comprises 10 problems. Every problem has a maximum

More information

Rotation and Angles. By torque and energy

Rotation and Angles. By torque and energy Rotation and Angles By torque and energy CPR An experiment - and things always go wrong when you try experiments the first time. (I won t tell you the horror stories of when I first used clickers, Wattle

More information

Optical fibers. Weak guidance approximation in cylindrical waveguides

Optical fibers. Weak guidance approximation in cylindrical waveguides Optical fibers Weak guidance approximation in cylindrical waveguides Propagation equation with symmetry of revolution r With cylindrical coordinates : r ( r,θ) 1 ψ( r,θ) 1 ψ( r,θ) ψ + + r r + r θ [ ( )

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

2010 F=ma Solutions. that is

2010 F=ma Solutions. that is 2010 F=ma Solutions 1. The slope of a position vs time graph gives the velocity of the object So you can see that the position from B to D gives the steepest slope, so the speed is the greatest in that

More information

Science 8 Chapter 7 Section 1

Science 8 Chapter 7 Section 1 Science 8 Chapter 7 Section 1 Describing Fluids (pp. 268-277) What is a fluid? Fluid: any thing that flows; a liquid or a gas While it would seem that some solids flow (sugar, salt, etc), they are not

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5

CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 1 / 42 CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, November 27, 2012 2 / 42 KINETIC

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Monte Carlo Simulation of the Ising Model. Abstract

Monte Carlo Simulation of the Ising Model. Abstract Monte Carlo Simulation of the Ising Model Saryu Jindal 1 1 Department of Chemical Engineering and Material Sciences, University of California, Davis, CA 95616 (Dated: June 9, 2007) Abstract This paper

More information

Lecture 19. Friction

Lecture 19. Friction Matthew T. Mason angle, Mechanics of Manipulation Today s outline angle, angle, How do you move things around? angle, Kinematics, kinematic constraint. Force. Force of constraint; Gravity; ; Momentum.

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

Physics 2212 GH Quiz #2 Solutions Spring 2015

Physics 2212 GH Quiz #2 Solutions Spring 2015 Physics 2212 GH uiz #2 Solutions Spring 2015 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Coulomb constant K = 8.988 10 9 N m 2 /C 2 Vacuum Permittivity ϵ 0 = 8.854 10

More information

States of Matter. Solids, Liquids, and Gases

States of Matter. Solids, Liquids, and Gases States of Matter Solids, Liquids, and Gases What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

More information

The Power Law: Hallmark Of A Complex System

The Power Law: Hallmark Of A Complex System The Power Law: Hallmark Of A Complex System Or Playing With Data Can Be Dangerous For Your Mental Health Tom Love, Department of General Practice Wellington School of Medicine and Health Sciences University

More information

Lecture 6: Flow regimes fluid-like

Lecture 6: Flow regimes fluid-like Granular Flows 1 Lecture 6: Flow regimes fluid-like Quasi-static granular flows have plasticity laws, gaseous granular flows have kinetic theory -- how to model fluid-like flows? Intermediate, dense regime:

More information

Lecture 11 - Advanced Rotational Dynamics

Lecture 11 - Advanced Rotational Dynamics Lecture 11 - Advanced Rotational Dynamics A Puzzle... A moldable blob of matter of mass M and uniform density is to be situated between the planes z = 0 and z = 1 so that the moment of inertia around the

More information

Quiz 5 Morphology of Complex Materials

Quiz 5 Morphology of Complex Materials 20302 Quiz 5 Morphology of Complex Materials ) a) The density of a mass-fractal decreases with the size of the mass fractal. Calculate the mass density of a mass-fractal and show that it decreases with

More information

DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME HOMEWORK PROBLEM SETS DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on

More information

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Atsushi Ikeda Fukui Institute for Fundamental Chemistry, Kyoto University Atsushi Ikeda & Ludovic Berthier Phys. Rev. E 92,

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 IT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical echanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. ASSACHUSETTS INSTITUTE

More information

Moment of Inertia & Newton s Laws for Translation & Rotation

Moment of Inertia & Newton s Laws for Translation & Rotation Moment of Inertia & Newton s Laws for Translation & Rotation In this training set, you will apply Newton s 2 nd Law for rotational motion: Στ = Σr i F i = Iα I is the moment of inertia of an object: I

More information

Lab 4 CAPACITORS & RC CIRCUITS

Lab 4 CAPACITORS & RC CIRCUITS 67 Name Date Partners Lab 4 CAPACITORS & RC CIRCUITS OBJECTIVES OVERVIEW To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance of conducting parallel

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture 22 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released

More information

Basic principles of the seismic method

Basic principles of the seismic method Chapter 2 Basic principles of the seismic method In this chapter we introduce the basic notion of seismic waves. In the earth, seismic waves can propagate as longitudinal (P) or as shear (S) waves. For

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/29750 holds various files of this Leiden University dissertation Author: Wortel, Geert Title: Granular flows : fluidization and anisotropy Issue Date: 2015-11-19

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information