Model order reduction of mechanical systems subjected to moving loads by the approximation of the input

Size: px
Start display at page:

Download "Model order reduction of mechanical systems subjected to moving loads by the approximation of the input"

Transcription

1 Model order reduction of mechanical systems subjected to moving loads by the approximation of the input Alexander Vasilyev, Tatjana Stykel Institut für Mathematik, Universität Augsburg ModRed 2013 MPI Magdeburg, December 11-13, 2013

2 I. Inrtoduction Elastic multibody systems (EMBS) EMBS with moving loads Vehicle-bridge interaction Working gears 2 Cableways etc.

3 I. Inrtoduction FEM PDEs 3 ODEs Example 4 2 a0 4 w(x,t )+ a1 2 w (x,t)+ a2 w(x,t )= ρ (x, t)u (t) t x t FEM [] b1 (t) b(t )= b2 (t), b N (t) l bi (t)= ρ (x, t) φ i (x)dx, i=1,..., N 0 M q (t)+ D q (t )+ K q(t) = b(t)u(t) y (t) = C (t)q(t) M, D, K ℝ N N, q ℝ N, b(t) ℝ N, C (t ) ℝ p N, y (t) ℝ p many forces input matrix B (t)ℝ N m instead of b(t)

4 I. Inrtoduction High computational cost 4 Model order reduction (MOR) MOR by projection: q (t) V q (t ), q ℝr, r N W T M V q (t )+W T D V q (t)+w T K V q (t) = W T B(t)u(t) r r M ℝ r r D ℝ r r K ℝ (t) ℝ r m B y (t) = C (t)v q (t) y (t) ℝ p (t) ℝ p r C Systems with time-varying input and/or output matrices: V,W???

5 II. Approximation of the input matrix ρ (x, t)=g(x ζ (t)), ζ (t) - a position of a «centre of force» at t ζ (t) Ω [0, l] [] b1 (t) b(t )= b2 (t), b N (t) l bi (t)= g (x ζ (t)) φ i (x )dx, i=1,..., N 0 Consider a SISO system M q (t)+ D q (t )+ K q(t) = b(t)u(t) T y (t) = b (t)q(t) Naive approach: M q (t)+ D q (t )+ K q(t) = I (b (t)u (t)) T y (t) = b (t)q(t) Difficulty: many inputs with t [0,T ] 5

6 II. Approximation of the input matrix Goal: approximate b(t) in a lower dimension subspace n χ (ζ(t))= b(t ) B bi χ i (ζ (t)), n N i=1 M q (t)+ D q (t )+ K q (t) = B u (t) with T y (t) = B q (t ) u (t)= χ (ζ (t))u(t) T Note: y (t) χ ( ζ (t)) y (t) Error bound: [ ] [ ] q (t) q(t ) q (t ) q (t) χ η b B Two approximation approaches:, find the vector χ (ζ ) B 2. given the vector χ (ζ ), find the matrix B 1. given the matrix such that b B χ min 6

7 II. Approximation of the input matrix [ ] [ ][ b11 ϕ 1 (ζ (t)) b(t )= ϕ 2 ( ζ (t)) b21 b N 1 ϕ N (ζ (t)) b 1 n b2 n bn n ] χ 1 (ζ (t)) = B χ (ζ (t)) χ n (ζ (t)) n approximation by polynomial expansion ϕ i(x ) bij P j 1( x), i=1,..., N, j=1 where P0 (x),..., Pn 1 (x) are orthogonal polynomials; n B-spline interpolation ϕ i( x ) bij β j 2 ( x), i=1,..., N j=1 where β 1 (x),..., β n 2 (x) are B-splines; n (n) linear least square method (LLSM) ϕ i(x )=ϕ (x) b ij φ j (x ), i=1,..., N (N ) i j=1 (n) (n ) where φ 1 (x),..., φ n (x) are FEM basis functions on a coarse grid; empirical interpolation method (EIM) [Barrault, Maday, Nguyen, Patera, 2004] 7

8 III. Model order reduction of mechanical systems 8 Balanced truncation solving Lyapunov equations is required use SO-LR-ADI method specially adapted for second-order systems [Benner, Kürschner, Saak, 2012] But, for mechanical systems with a weak damping, this method converges very slowly Krylov subspace methods SOAR [Bai, Su, 2005; Salimbahrami, 2005] SOR-IRKA, SO-IRKA [Wyatt, 2012] AORA [Lee, Chu, Feng, 2004; Bodendiek, Bollhöfer, 2013] MIRKA [Soppa, 2011] Choice of interpolation points and directions for second-order systems is still unclear Our approach: subspace acceleration poles finding combined with an extention of a frequency range

9 IV. Numerical experiments 9 Test model with a moving load: 1D Euler-Bernoulli beam equation 2 4 ρ A 2 w (x, t)+2 ρ A ω d w(x, t)+ EI 4 w (x,t)=δ (x vt)u t t x ( x, t) ( 0,l) (0,T ) (has an analytical solution) w (x, t) is a vertical deflection of the beam δ (x ζ (t )) is a point force density v is a velocity of the moving load ζ (t)=vt is an instantaneous position of a force u is a magnitude of the moving load ρ A ωd E I is a mass density is a cross section area is a circular frequency of damping is an Young modulus is an area moment of inertia with simply supported ends of the beam w (0, t)=0, w (l, t)=0, 2 w (0, t)=0, x2 2 w (l, t)=0 x2 and initial conditions w (x,0)=0, [Fryba, 1999] w (x,0)=0 t

10 IV. Numerical experiments 10 input distribution vector [] b1 (t) b(t )= b2 (t), b N (t) l bi (t )= δ(x ζ (t )) φ i (x)dx=φ i (ζ (t )), i=1,.., N, 0 where φ i (x ) is a finite element method basis function corresponded to some node and ζ (t) Ω =[0, l] M q (t)+ D q (t )+ K q(t) = b(t)u y (t) = b T (t)q(t) w b(t ) - moving input distribution b(t )u - moving load x c (t)=bt (t) - moving output distribution y (t) - moving observation

11 IV. Numerical experiments Approximation of FEM basis functions n φ i (ζ (t)) b ij χ j (t), j=1,..., N, n N j=1 x i 1 xi x i+1 x i 1 FEM basis functions φ i (x) xi x i+1 11

12 IV. Numerical experiments Approximated output by approximations of the input n=50 deflection / m absolute error / m N=5000, time / sec. time / sec. 50 φ i (ζ (t)) b ij χ j (t), i=1,...,5000 j=1 12

13 IV. Numerical experiments Approximated output by approximations of the input n=50 deflection / m absolute error / m N=50, time / sec. time / sec. 13

14 IV. Numerical experiments 14 Approximated output of the reduced system with moving load n=50, r =20 deflection / m absolute error / m N=5000, time / sec. time / sec. Reduction is carried out by the software MatMorembs Eberhard, Lehner, Fehr, Nowakowski, Fischer, Kürschner et al.

15 V. Conclusion It was considered: second-order systems with moving load approximation of time-varying input matrix model reduction methods for mechanical systems Further work: search of optimal methods to reduction of mechanical systems search of new approaches to model reduction of systems with moving load 15

16 V. Conclusion Further work: consideration of more realistic models for example, a coupled bridge-vehicle system beam subjected to a moving two-axle system Thank you for your attention! 16

arxiv: v1 [math.ds] 11 Jul 2016

arxiv: v1 [math.ds] 11 Jul 2016 Model reduction of linear time-varying systems with applications for moving loads Maria Cruz Varona and Boris Lohmann Preprint: June 15, 2016 arxiv:1607.02846v1 [math.ds] 11 Jul 2016 Abstract In this paper

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen CIV-E16 Engineering Computation and Simulation Examination, December 12, 217 / Niiranen This examination consists of 3 problems rated by the standard scale 1...6. Problem 1 Let us consider a long and tall

More information

Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution

Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution Vol. 3 (3) ACTA PHYSICA POLONICA A No. 6 Acoustic and Biomedical Engineering Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution M.S. Kozie«Institute of Applied Mechanics,

More information

Analysis III for D-BAUG, Fall 2017 Lecture 11

Analysis III for D-BAUG, Fall 2017 Lecture 11 Analysis III for D-BAUG, Fall 2017 Lecture 11 Lecturer: Alex Sisto (sisto@math.ethz.ch) 1 Beams (Balken) Beams are basic mechanical systems that appear over and over in civil engineering. We consider a

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

BEAM DEFLECTION THE ELASTIC CURVE

BEAM DEFLECTION THE ELASTIC CURVE BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each cross-sectional area of a beam. Supports that apply a moment

More information

Hydro-elastic Wagner impact using variational inequalities

Hydro-elastic Wagner impact using variational inequalities Hydro-elastic Wagner impact using variational inequalities Thomas GAZZOLA, Alexander KOROBKIN, Šime MALENICA Introduction A simple model of water impact has been introduced by Wagner [6]. This model is

More information

Parametrische Modellreduktion mit dünnen Gittern

Parametrische Modellreduktion mit dünnen Gittern Parametrische Modellreduktion mit dünnen Gittern (Parametric model reduction with sparse grids) Ulrike Baur Peter Benner Mathematik in Industrie und Technik, Fakultät für Mathematik Technische Universität

More information

Toward a novel approach for damage identification and health monitoring of bridge structures

Toward a novel approach for damage identification and health monitoring of bridge structures Toward a novel approach for damage identification and health monitoring of bridge structures Paolo Martino Calvi 1, Paolo Venini 1 1 Department of Structural Mechanics, University of Pavia, Italy E-mail:

More information

Dynamic Model of a Badminton Stroke

Dynamic Model of a Badminton Stroke ISEA 28 CONFERENCE Dynamic Model of a Badminton Stroke M. Kwan* and J. Rasmussen Department of Mechanical Engineering, Aalborg University, 922 Aalborg East, Denmark Phone: +45 994 9317 / Fax: +45 9815

More information

Methods of Modeling Damping in Flexible Structures

Methods of Modeling Damping in Flexible Structures Methods of Modeling Damping in Flexible Structures Michael Siegert, Alexander Lion, Yu Du Institute of Mechanics Faculty of Aerospace Engineering Universität der Bundeswehr München Volkswagen AG Wolfsburg

More information

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground To cite this article: Jozef Vlek and Veronika

More information

Modeling and Dynamic Analysis of Telescopic Systems of Structural Members with Clearance

Modeling and Dynamic Analysis of Telescopic Systems of Structural Members with Clearance First published in: Modeling and Dynamic Analysis of Telescopic Systems of Structural Members with Clearance P. BARTHELS and J. WAUER Institut für Technische Mechanik, Universität Karlsruhe, D-76128 Karlsruhe,

More information

The Newton-ADI Method for Large-Scale Algebraic Riccati Equations. Peter Benner.

The Newton-ADI Method for Large-Scale Algebraic Riccati Equations. Peter Benner. The Newton-ADI Method for Large-Scale Algebraic Riccati Equations Mathematik in Industrie und Technik Fakultät für Mathematik Peter Benner benner@mathematik.tu-chemnitz.de Sonderforschungsbereich 393 S

More information

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations Peter Benner Max-Planck-Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

More information

Mechanics of Inflatable Fabric Beams

Mechanics of Inflatable Fabric Beams Copyright c 2008 ICCES ICCES, vol.5, no.2, pp.93-98 Mechanics of Inflatable Fabric Beams C. Wielgosz 1,J.C.Thomas 1,A.LeVan 1 Summary In this paper we present a summary of the behaviour of inflatable fabric

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Forced Vibration Analysis of Timoshenko Beam with Discontinuities by Means of Distributions Jiri Sobotka

Forced Vibration Analysis of Timoshenko Beam with Discontinuities by Means of Distributions Jiri Sobotka 21 st International Conference ENGINEERING MECHANICS 2015 Svratka, Czech Republic, May 11 14, 2015 Full Text Paper #018, pp. 45 51 Forced Vibration Analysis of Timoshenko Beam with Discontinuities by Means

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

The Effect of Distribution for a Moving Force

The Effect of Distribution for a Moving Force Paper Number 66, Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia The Effect of Distribution for a Moving Force Ahmed M. Reda (1,2), Gareth L. Forbes (2) (1) Atkins, Perth, Australia

More information

Dynamic analysis of a bridge structure exposed to high-speed railway traffic

Dynamic analysis of a bridge structure exposed to high-speed railway traffic Dynamic analysis of a bridge structure exposed to high-speed railway traffic Master thesis Master of Science in Structural and Civil Engineering Paulius Bucinskas Liuba Agapii Jonas Sneideris Aalborg University

More information

JEPPIAAR ENGINEERING COLLEGE

JEPPIAAR ENGINEERING COLLEGE JEPPIAAR ENGINEERING COLLEGE Jeppiaar Nagar, Rajiv Gandhi Salai 600 119 DEPARTMENT OFMECHANICAL ENGINEERING QUESTION BANK VI SEMESTER ME6603 FINITE ELEMENT ANALYSIS Regulation 013 SUBJECT YEAR /SEM: III

More information

The Generalized Empirical Interpolation Method: Analysis of the convergence and application to data assimilation coupled with simulation

The Generalized Empirical Interpolation Method: Analysis of the convergence and application to data assimilation coupled with simulation The Generalized Empirical Interpolation Method: Analysis of the convergence and application to data assimilation coupled with simulation Y. Maday (LJLL, I.U.F., Brown Univ.) Olga Mula (CEA and LJLL) G.

More information

ME FINITE ELEMENT ANALYSIS FORMULAS

ME FINITE ELEMENT ANALYSIS FORMULAS ME 2353 - FINITE ELEMENT ANALYSIS FORMULAS UNIT I FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS 01. Global Equation for Force Vector, {F} = [K] {u} {F} = Global Force Vector [K] = Global Stiffness

More information

Fast Frequency Response Analysis using Model Order Reduction

Fast Frequency Response Analysis using Model Order Reduction Fast Frequency Response Analysis using Model Order Reduction Peter Benner EU MORNET Exploratory Workshop Applications of Model Order Reduction Methods in Industrial Research and Development Luxembourg,

More information

Eigenvalues of Trusses and Beams Using the Accurate Element Method

Eigenvalues of Trusses and Beams Using the Accurate Element Method Eigenvalues of russes and Beams Using the Accurate Element Method Maty Blumenfeld Department of Strength of Materials Universitatea Politehnica Bucharest, Romania Paul Cizmas Department of Aerospace Engineering

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Serkan Gugercin, Tatjana Stykel, Sarah Wyatt Model Reduction of Descriptor Systems by Interpolatory Projection Methods Preprint Nr. 3/213 29.

More information

INPUT-OUTPUT BASED MODEL REDUCTION FOR INTERCONNECTED SYSTEMS

INPUT-OUTPUT BASED MODEL REDUCTION FOR INTERCONNECTED SYSTEMS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Dynamic analysis of railway bridges by means of the spectral method

Dynamic analysis of railway bridges by means of the spectral method Dynamic analysis of railway bridges by means of the spectral method Giuseppe Catania, Silvio Sorrentino DIEM, Department of Mechanical Engineering, University of Bologna, Viale del Risorgimento, 436 Bologna,

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Optimal sensor placement based on model order reduction

Optimal sensor placement based on model order reduction P. Benner a, R. Herzog b, N. Lang b, I. Riedel b, J. Saak a a Max Planck Institute for Dynamics of Complex Technical Systems, Computational Methods in Systems and Control Theory, 39106 Magdeburg, Germany

More information

Comparison of methods for parametric model order reduction of instationary problems

Comparison of methods for parametric model order reduction of instationary problems Max Planck Institute Magdeburg Preprints Ulrike Baur Peter Benner Bernard Haasdonk Christian Himpe Immanuel Maier Mario Ohlberger Comparison of methods for parametric model order reduction of instationary

More information

ME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013

ME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013 Introduction to Solid Mechanics ME C85/CE C30 Fall, 2013 1. Leave an empty seat between you and the person (people) next to you. Unfortunately, there have been reports of cheating on the midterms, so we

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

MCE503: Modeling and Simulation of Mechatronic Systems. Modeling of Continuous Beams: Finite-Mode Approach

MCE503: Modeling and Simulation of Mechatronic Systems. Modeling of Continuous Beams: Finite-Mode Approach MCE503: Modeling and Simulation of Mechatronic Systems MCE503 p./23 Modeling of Continuous Beams: Finite-Mode Approach Reading: KMR Chapter 0 Cleveland State University Mechanical Engineering Hanz Richter,

More information

Reduction of Finite Element Models of Complex Mechanical Components

Reduction of Finite Element Models of Complex Mechanical Components Reduction of Finite Element Models of Complex Mechanical Components Håkan Jakobsson Research Assistant hakan.jakobsson@math.umu.se Mats G. Larson Professor Applied Mathematics mats.larson@math.umu.se Department

More information

ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS

ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS 8th International Congress on Computational Mechanics, Volos, 1-15 July 015 ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS E.G. Kakouris, V.K. Koumousis Institute of Structural

More information

ADI-preconditioned FGMRES for solving large generalized Lyapunov equations - A case study

ADI-preconditioned FGMRES for solving large generalized Lyapunov equations - A case study -preconditioned for large - A case study Matthias Bollhöfer, André Eppler TU Braunschweig Institute Computational Mathematics Syrene-MOR Workshop, TU Hamburg October 30, 2008 2 / 20 Outline 1 2 Overview

More information

Dynamic Green Function Solution of Beams Under a Moving Load with Dierent Boundary Conditions

Dynamic Green Function Solution of Beams Under a Moving Load with Dierent Boundary Conditions Transaction B: Mechanical Engineering Vol. 16, No. 3, pp. 273{279 c Sharif University of Technology, June 2009 Research Note Dynamic Green Function Solution of Beams Under a Moving Load with Dierent Boundary

More information

Appl. Math. Inf. Sci. 10, No. 6, (2016) 2025

Appl. Math. Inf. Sci. 10, No. 6, (2016) 2025 Appl. Math. Inf. Sci. 1, No. 6, 225-233 (216) 225 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/1.18576/amis/164 The Differences in the Shape of Characteristic Curves

More information

Shape Optimization of Revolute Single Link Flexible Robotic Manipulator for Vibration Suppression

Shape Optimization of Revolute Single Link Flexible Robotic Manipulator for Vibration Suppression 15 th National Conference on Machines and Mechanisms NaCoMM011-157 Shape Optimization of Revolute Single Link Flexible Robotic Manipulator for Vibration Suppression Sachindra Mahto Abstract In this work,

More information

Topic 5: Finite Element Method

Topic 5: Finite Element Method Topic 5: Finite Element Method 1 Finite Element Method (1) Main problem of classical variational methods (Ritz method etc.) difficult (op impossible) definition of approximation function ϕ for non-trivial

More information

Structure preserving Krylov-subspace methods for Lyapunov equations

Structure preserving Krylov-subspace methods for Lyapunov equations Structure preserving Krylov-subspace methods for Lyapunov equations Matthias Bollhöfer, André Eppler Institute Computational Mathematics TU Braunschweig MoRePas Workshop, Münster September 17, 2009 System

More information

Two User-Routines for. Online Stress and Damage Calculation

Two User-Routines for. Online Stress and Damage Calculation SIMPACK User Meeting 2011, May 19 th, Salzburg, Austria Two User-Routines for Online Stress and Damage Calculation Christoph Tobias and Peter Eberhard christoph.tobias@itm.uni-stuttgart.de 1/26 Outline

More information

Indian railway track analysis for displacement and vibration pattern estimation

Indian railway track analysis for displacement and vibration pattern estimation Indian railway track analysis for displacement and vibration pattern estimation M. Mohanta 1, Gyan Setu 2, V. Ranjan 3, J. P. Srivastava 4, P. K. Sarkar 5 1, 3 Department of Mechanical and Aerospace Engineering,

More information

IN-PLANE VIBRATIONS OF CIRCULAR CURVED BEAMS WITH A TRANSVERSE OPEN CRACK 1. INTRODUCTION

IN-PLANE VIBRATIONS OF CIRCULAR CURVED BEAMS WITH A TRANSVERSE OPEN CRACK 1. INTRODUCTION Mathematical and Computational Applications, Vol. 11, No. 1, pp. 1-10, 006. Association for Scientific Research IN-PLANE VIBRATIONS OF CIRCULAR CURVED BEAMS WITH A TRANSVERSE OPEN CRACK Department of Mechanical

More information

Approximation of the Linearized Boussinesq Equations

Approximation of the Linearized Boussinesq Equations Approximation of the Linearized Boussinesq Equations Alan Lattimer Advisors Jeffrey Borggaard Serkan Gugercin Department of Mathematics Virginia Tech SIAM Talk Series, Virginia Tech, April 22, 2014 Alan

More information

Part D: Frames and Plates

Part D: Frames and Plates Part D: Frames and Plates Plane Frames and Thin Plates A Beam with General Boundary Conditions The Stiffness Method Thin Plates Initial Imperfections The Ritz and Finite Element Approaches A Beam with

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

Lecture 10: Fourier Sine Series

Lecture 10: Fourier Sine Series Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. ecture : Fourier Sine Series

More information

Model reduction of coupled systems

Model reduction of coupled systems Model reduction of coupled systems Tatjana Stykel Technische Universität Berlin ( joint work with Timo Reis, TU Kaiserslautern ) Model order reduction, coupled problems and optimization Lorentz Center,

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Solution of Nonlinear Equations: Graphical and Incremental Sea

Solution of Nonlinear Equations: Graphical and Incremental Sea Outlines Solution of Nonlinear Equations: Graphical and Incremental Search Methods September 2, 2004 Outlines Part I: Review of Previous Lecture Part II: Sample Problems Solved with Numerical Methods Part

More information

Solution of Differential Equation by Finite Difference Method

Solution of Differential Equation by Finite Difference Method NUMERICAL ANALYSIS University of Babylon/ College of Engineering/ Mechanical Engineering Dep. Lecturer : Dr. Rafel Hekmat Class : 3 rd B.Sc Solution of Differential Equation by Finite Difference Method

More information

Deflection profile analysis of beams on two-parameter elastic subgrade

Deflection profile analysis of beams on two-parameter elastic subgrade 1(213) 263 282 Deflection profile analysis of beams on two-parameter elastic subgrade Abstract A procedure involving spectral Galerkin and integral transformation methods has been developed and applied

More information

Dynamics of beams. Modes and waves. D. Clouteau. September 16, Department of Mechanical and Civil Engineering Ecole Centrale Paris, France

Dynamics of beams. Modes and waves. D. Clouteau. September 16, Department of Mechanical and Civil Engineering Ecole Centrale Paris, France Dynamics of and waves Department of Mechanical and Civil Engineering Ecole Centrale Paris, France September 16, 2008 Outline 1 2 Pre-stressed Bernoulli-Euler in moving frames Kinematical assumption Resultant

More information

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University Method of Virtual Work Frame Deflection xample Steven Vukazich San Jose State University Frame Deflection xample 9 k k D 4 ft θ " # The statically determinate frame from our previous internal force diagram

More information

TO DETERMINE YOUNG S MODULUS OF ELASTICITY OF THE MATERIAL OF A BAR BY THE METHOD OF FLEXURE

TO DETERMINE YOUNG S MODULUS OF ELASTICITY OF THE MATERIAL OF A BAR BY THE METHOD OF FLEXURE TO DETERMINE YOUNG S MODULUS OF ELASTICITY OF THE MATERIAL OF A BAR BY THE METHOD OF FLEXURE Aim: To determine the Young s modulus elasticity the given material. Apparatus: meter, screw gauge, spherometer

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

DYNAMIC CHARACTERISTICS OF ELASTICALLY SUPPORTED BEAM SUBJECTED TO A COMPRESSIVE AXIAL FORCE AND A MOVING LOAD

DYNAMIC CHARACTERISTICS OF ELASTICALLY SUPPORTED BEAM SUBJECTED TO A COMPRESSIVE AXIAL FORCE AND A MOVING LOAD Vietnam Journal of Mechanics, VAST, Vol. 33, No. (), pp. 3 3 DYNAMIC CHARACTERISTICS OF ELASTICALLY SUPPORTED BEAM SUBJECTED TO A COMPRESSIVE AXIAL FORCE AND A MOVING LOAD Nguyen Dinh Kien, Le Thi Ha Institute

More information

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FINAL EXAMINATION. (CE130-2 Mechanics of Materials) UNIVERSITY OF CLIFORNI, ERKELEY FLL SEMESTER 001 FINL EXMINTION (CE130- Mechanics of Materials) Problem 1: (15 points) pinned -bar structure is shown in Figure 1. There is an external force, W = 5000N,

More information

A Boundary Integral Formulation for the Dynamic Behavior of a Timoshenko Beam

A Boundary Integral Formulation for the Dynamic Behavior of a Timoshenko Beam A Boundary Integral Formulation for the Dynamic Behavior of a Timoshenko Beam M. Schanz and H. Antes Institute of Applied Mechanics Technical University Braunschweig, Germany e-mail: m.schanz@tu-bs.de,

More information

Spectral Element Methods (SEM) May 12, D Wave Equations (Strong and Weak form)

Spectral Element Methods (SEM) May 12, D Wave Equations (Strong and Weak form) Spectral Element Methods (SEM) May 12, 2009 1 3-D Wave Equations (Strong and Weak form) Strong form (PDEs): ρ 2 t s = T + F in (1) Multiply a global test function W(x) to both sides and integrate over

More information

Towards Rotordynamic Analysis with COMSOL Multiphysics

Towards Rotordynamic Analysis with COMSOL Multiphysics Towards Rotordynamic Analysis with COMSOL Multiphysics Martin Karlsson *1, and Jean-Claude Luneno 1 1 ÅF Sound & Vibration *Corresponding author: SE-169 99 Stockholm, martin.r.karlsson@afconsult.com Abstract:

More information

Robotics Intelligent sensors (part 2)

Robotics Intelligent sensors (part 2) Robotics Intelligent sensors (part ) Tullio Facchinetti Tuesday 6 th December, 06 http://robot.unipv.it/toolleeo Pressure measurement static pressure is a force applied to

More information

CO-ROTATIONAL DYNAMIC FORMULATION FOR 2D BEAMS

CO-ROTATIONAL DYNAMIC FORMULATION FOR 2D BEAMS COMPDYN 011 ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 5-8 May 011 CO-ROTATIONAL

More information

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES A Thesis by WOORAM KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the

More information

Experimental Lab. Principles of Superposition

Experimental Lab. Principles of Superposition Experimental Lab Principles of Superposition Objective: The objective of this lab is to demonstrate and validate the principle of superposition using both an experimental lab and theory. For this lab you

More information

EVALUATING DYNAMIC STRESSES OF A PIPELINE

EVALUATING DYNAMIC STRESSES OF A PIPELINE EVALUATING DYNAMIC STRESSES OF A PIPELINE by K.T. TRUONG Member ASME Mechanical & Piping Division THE ULTRAGEN GROUP LTD 2255 Rue De La Province Longueuil (Quebec) J4G 1G3 This document is provided to

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture 10 th Symposimum on Overset Composite Grids and Solution Technology, NASA Ames Research Center Moffett Field, California, USA 1 Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

AN EFFECTIVE SOLUTION OF THE COMPOSITE (FGM S) BEAM STRUCTURES

AN EFFECTIVE SOLUTION OF THE COMPOSITE (FGM S) BEAM STRUCTURES Engineering MECHANICS, Vol. 15, 2008, No. 2, p. 115 132 115 AN EFFECTIVE SOLUTION OF THE COMPOSITE (FGM S) BEAM STRUCTURES Justín Murín, Vladimír Kutiš* The additive mixture rules have been extended for

More information

Structural Matrices in MDOF Systems

Structural Matrices in MDOF Systems in MDOF Systems http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 9, 2016 Outline Additional Static Condensation

More information

SDLV302 Modal analysis by under-structuring: bi-- supported beam

SDLV302 Modal analysis by under-structuring: bi-- supported beam Titre : SDLV302 Analyse modale par sous-structuration : [...] Date : 21/07/2017 age : 1/10 SDLV302 Modal analysis by under-structuring: bi-- supported beam Summary: This test validates the modal analysis

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

ME 1401 FINITE ELEMENT ANALYSIS UNIT I PART -A. 2. Why polynomial type of interpolation functions is mostly used in FEM?

ME 1401 FINITE ELEMENT ANALYSIS UNIT I PART -A. 2. Why polynomial type of interpolation functions is mostly used in FEM? SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI 621 105 Department of Mechanical Engineering ME 1401 FINITE ELEMENT ANALYSIS 1.

More information

Integral Method for Static, Dynamic, Stability and Aeroelastic Analysis of Beam-like Structure Configurations

Integral Method for Static, Dynamic, Stability and Aeroelastic Analysis of Beam-like Structure Configurations Integral Method for Static, Dynamic, Stability and Aeroelastic Analysis of Beam-like Structure Configurations Viorel ANGHEL* *Corresponding author POLITEHNICA University of Bucharest, Strength of Materials

More information

Chris Beattie and Serkan Gugercin

Chris Beattie and Serkan Gugercin Krylov-based model reduction of second-order systems with proportional damping Chris Beattie and Serkan Gugercin Department of Mathematics, Virginia Tech, USA 44th IEEE Conference on Decision and Control

More information

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Marcus Sarkis Worcester Polytechnic Inst., Mass. and IMPA, Rio de Janeiro and Daniel

More information

Model Reduction for Dynamical Systems

Model Reduction for Dynamical Systems MAX PLANCK INSTITUTE Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics Summer term 2015 Model Reduction for Dynamical Systems Lecture 10 Peter Benner Lihong Feng Max Planck Institute for

More information

Geometrically exact beam dynamics, with and without rotational degree of freedom

Geometrically exact beam dynamics, with and without rotational degree of freedom ICCM2014 28-30 th July, Cambridge, England Geometrically exact beam dynamics, with and without rotational degree of freedom *Tien Long Nguyen¹, Carlo Sansour 2, and Mohammed Hjiaj 1 1 Department of Civil

More information

Dynamic Behaviour of a Cantilever Beam Subjected To Moving Mass and Elastic End Constraint

Dynamic Behaviour of a Cantilever Beam Subjected To Moving Mass and Elastic End Constraint Dynamic Behaviour of a Cantilever Beam Subjected To Moving Mass and Elastic End Constraint Ratnadeep Pramanik 1 Student (4 th Year), Department of Mechanical Engineering, Jadavpur University, Kolkata,

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

Transverse vibrations analysis of a beam with degrading hysteretic behavior by using Euler-Bernoulli beam model

Transverse vibrations analysis of a beam with degrading hysteretic behavior by using Euler-Bernoulli beam model DOI: 10.2478/auom-2018-0008 An. Şt. Univ. Ovidius Constanţa Vol. 26(1),2018, 125 139 Transverse vibrations analysis of a beam with degrading hysteretic behavior by using Euler-Bernoulli beam model Ghiocel

More information

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Introduction Till now we dealt only with finite elements having straight edges.

More information

Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method. Eric A. Butcher and Ma en Sari

Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method. Eric A. Butcher and Ma en Sari Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method Eric A. Butcher and Ma en Sari Department of Mechanical and Aerospace Engineering, New Mexico State

More information

1.050: Beam Elasticity (HW#9)

1.050: Beam Elasticity (HW#9) 1050: Beam Elasticity (HW#9) MIT 1050 (Engineering Mechanics I) Fall 2007 Instructor: Markus J BUEHER Due: November 14, 2007 Team Building and Team Work: We strongly encourage you to form Homework teams

More information

EML4507 Finite Element Analysis and Design EXAM 1

EML4507 Finite Element Analysis and Design EXAM 1 2-17-15 Name (underline last name): EML4507 Finite Element Analysis and Design EXAM 1 In this exam you may not use any materials except a pencil or a pen, an 8.5x11 formula sheet, and a calculator. Whenever

More information

The Spectral-Element Method: Introduction

The Spectral-Element Method: Introduction The Spectral-Element Method: Introduction Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Computational Seismology 1 / 59 Outline 1 Introduction 2 Lagrange

More information

Vibration Analysis of Hollow Profiled Shafts

Vibration Analysis of Hollow Profiled Shafts International Journal of Current Engineering and echnology ISSN 77-406 04 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Research Article Vibration Analysis of Hollow

More information

Fast transient structural FE analysis imposing prescribed displacement condition. by using a model order reduction method via Krylov subspace

Fast transient structural FE analysis imposing prescribed displacement condition. by using a model order reduction method via Krylov subspace Journal of Applied Mechanics Vol.13 Vol.13, (August pp.159-167 21) (August 21) JSCE JSCE Fast transient structural FE analysis imposing prescribed displacement condition by using a model order reduction

More information

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

2nd Workshop. Model Reduction of Complex Dynamical Systems (ModRed)

2nd Workshop. Model Reduction of Complex Dynamical Systems (ModRed) MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG 2nd Workshop on Model Reduction of Complex Dynamical Systems (ModRed) December 11-13, 2013 Max Planck Institute for Dynamics of

More information