A Simple Optimum-Time FSSP Algorithm for Multi-Dimensional Cellular Automata

Size: px
Start display at page:

Download "A Simple Optimum-Time FSSP Algorithm for Multi-Dimensional Cellular Automata"

Transcription

1 A Simple Optimum-Time FSSP Algorithm for Multi-Dimesioal Cellular Automata HIROSHI UMEO Uiversity of Osaka Electro-Commuicatio KINUO NISHIDE Uiversity of Osaka Electro-Commuicatio KEISUKE KUBO Uiversity of Osaka Electro-Commuicatio The firig squad sychroizatio problem (FSSP) o cellular automata has bee studied extesively for more tha forty years, ad a rich variety of sychroizatio algorithms have bee proposed for ot oly oe-dimesioal arrays but two-dimesioal arrays. I the preset paper, we propose a simple recursive-halvig based optimum-time sychroizatio algorithm that ca sychroize ay rectagle arrays of size m with a geeral at oe corer i m + + max(m,) 3 steps. The algorithm is a atural expasio of the well-kow FSSP algorithms proposed by Balzer [1967], Gerke [1987], ad Waksma [1966] ad it ca be easily expaded to three-dimesioal arrays, eve to multi-dimesioal arrays with a geeral at ay positio of the array. The algorithm proposed is isotropic cocerig the side-legths of multi-dimesioal arrays ad its algorithmic correctess is trasparet ad easily verified. 1 Itroductio We study a sychroizatio problem that gives a fiite-state protocol for sychroizig large-scale cellular automata. The sychroizatio i cellular automata has bee kow as a firig squad sychroizatio problem (FSSP) sice its developmet, i which it was origially proposed by J. Myhill i Moore [1964] to sychroize all parts of self-reproducig cellular automata. The problem has bee studied extesively for more tha forty years [1-23], ad a rich variety of sychroizatio algorithms have bee proposed for ot oly oe-dimesioal (1D) arrays but two-dimesioal (2D) arrays. The 1D FSSP is described as follows: give a oe-dimesioal array of idetical cellular automata, icludig a geeral at oe ed that is activated at time t = 0, we wat to desig the automata such that, at some future time, all the cells will simultaeously ad, for the first time, eter a special firig state. Some questios may arise: How ca we sychroize multi-dimesioal arrays? Ca we expad those 2D FSSP algorithms proposed so far to 3D arrays, or more geerally to multi-dimesioal arrays? Ca we geeralize those 2D FSSP algorithms to geeralized oes, i which a iitial geeral is located at ay positio of the array? What is a lower boud of time steps eeded for sychroizig multi-dimesioal arrays with a geeral at oe corer? What is a lower boud for the geeralized case? E. Formeti (Ed.): AUTOMATA ad JAC 2012 cofereces EPTCS 90, 2012, pp , doi: /eptcs c H. Umeo, K. Nishide & K. Kubo This work is licesed uder the Creative Commos Attributio Licese.

2 152 A Optimum-Time FSSP Algorithm for Multi-Dimesioal Cellular Automata I the preset paper, we attempt to aswer these questios by proposig a ew, simple recursivehalvig based sychroizatio algorithm for 2D rectagle cellular automata. The algorithm ca sychroize ay 2D rectagle array of size m with a geeral at oe corer i m + + max(m,) 3 steps. A implemetatio i terms of local trasitio rules is also give o a 2D cellular automato, ot oly for the array with a geeral at oe corer but a geeralized case. The algorithms proposed i this paper are iterestig i the followig view poits. The 2D algorithm proposed is isotropic with respect to shape of a give rectagle array, i.e. o eed to cotrol the FSSP algorithm for loger-tha-wide ad wider-tha-log iput rectagles. The algorithm proposed ca be easily expaded to 3D arrays, eve to multi-dimesioal arrays. The algorithm is a atural geeralizatio of the well-kow 1D FSSP algorithms developed by Waksma [1966], Balzer [1967] ad Gerke [1987]. It gives us a ew view poit of those classical 1D FSSP algorithms based o recursive-halvig. The algorithm ca be expaded to a geeralized FSSP solutio, where a iitial geeral is at a arbitrary positio of a give array. The algorithm ca be geeralized to a optimum-time geeralized FSSP solutio. I Sectio 2 we give a descriptio of the 2D FSSP ad review some basic results o 2D FSSP algorithms. Sectio 3 defies the recursive-halvig markig o 1D arrays ad gives some prelimiary lemmas for the costructio of 2D FSSP algorithms. I Sectios 4, 5, ad 6 we preset a ew 2D FSSP algorithm based o the recursive-halvig markig ad several multi-dimesioal expasios. Two implemetatios i terms of 2D cellular automata are also preseted for the optimum-time FSSP algorithms. Most of the descriptios of the multi-dimesioal FSSP algorithms are based o the 2D FSSP algorithms. Some expaded ad geeralized theorems for multi-dimesioal arrays are give without proofs. 2 Firig Squad Sychroizatio Problem o Two-Dimesioal Arrays Figure 1 shows a fiite two-dimesioal (2D) cellular automato cosistig of m cells. Each cell is a idetical (except the border cells) fiite-state automato. The array operates i lock-step mode i such a way that the ext state of each cell (except border cells) is determied by both its ow preset state ad the preset states of its orth, south, east ad west eighbors. All cells (soldiers), except the orth-west corer cell (geeral), are iitially i the quiescet state at time t = 0 with the property that the ext state of a quiescet cell with quiescet eighbors is the quiescet state agai. At time t = 0, the orth-west corer cell C 11 is i the fire-whe-ready state, which is the iitiatio sigal for the array. The firig squad sychroizatio problem is to determie a descriptio (state set ad ext-state fuctio) for cells that esures all cells eter the fire state at exactly the same time ad for the first time. The tricky part of the problem is that the same kid of soldier havig a fixed umber of states must be sychroized, regardless of the size m of the array. The set of states ad ext state fuctio must be idepedet of m ad. The problem was first solved by J. McCarthy ad M. Misky who preseted a 3-step algorithm for 1D cellular array of legth. I 1962, the first optimum-time, i.e. (2 2)-step, sychroizatio algorithm was preseted by Goto [1962], with each cell havig several thousads of states. Waksma [1966] preseted a 16-state optimum-time sychroizatio algorithm. Afterward, Balzer [1967] ad Gerke [1987] developed a eight-state algorithm ad a seve-state sychroizatio algorithm, respectively, thus decreasig the umber of states required for the sychroizatio. Mazoyer [1987] developed

3 H. Umeo, K. Nishide & K. Kubo C11 C12 C13 C14 C1 C21 C22 C23 C24 C2 C31 C32 C33 C34 C3 m Cm1 Cm2 Cm3 Cm4 Cm Figure 1: A two-dimesioal (2D) cellular automato. a six-state sychroizatio algorithm which, at preset, is the algorithm havig the fewest states for 1D arrays. O the other had, several sychroizatio algorithms o 2D arrays have bee proposed by Beyer [1969], Grasselli [1975], Shiahr [1974], Szweriski [1982], Schmid [2003], Schmid ad Worsch [2004], Umeo, Maeda, Hisaoka ad Teraoka [2006], ad Umeo ad Uchio [2008]. It has bee show idepedetly by Beyer [1969] ad Shiahr [1974] that there exists o 2D cellular automato that ca sychroize ay 2D array of size m i less tha m + + max(m,) 3 steps. I additio they first proposed a optimum-time sychroizatio algorithm that ca sychroize ay 2D array of size m i optimum m + + max(m, ) 3 steps. Shiahr [1974] gave a 28-state implemetatio. Umeo, Hisaoka ad Akiguchi [2005] preseted a ew 12-state sychroizatio algorithm operatig i optimum-step, realizig a smallest solutio to the rectagle sychroizatio problem at preset. As for the time optimality of the 2D FSSP algorithms, the followig theorems have bee show. Theorem 1 Beyer [1969], Shiahr [1974] There exists o cellular automato that ca sychroize ay 2D array of size m i less tha m + + max(m,) 3 steps, where the geeral is located at oe corer of the array. Theorem 2 Shiahr [1974], Umeo, Hisaoka, ad Akiguchi [2005] There exists a cellular automato that ca sychroize ay 2D array of size m at exactly m + + max(m,) 3 steps, where the geeral is located at oe corer of the array. 3 Recursive-Halvig Markig I this sectio, we develop a markig schema for 1D arrays referred to as recursive-halvig markig. The markig schema prits a special mark o cells i a cellular space defied by the recursive-halvig markig. The markig itself is based o a 1D FSSP sychroizatio algorithm. It will be effectively used for costructig multi-dimesioal FSSP algorithms operatig i optimum-time. Let S be a 1D cellular space cosistig of cells C i, C i+1,, C j, deoted by [i j], where j > i. Let S deote the umber of cells i S, that is S = j i + 1. A ceter cell(s) C x of S is defied by

4 154 A Optimum-Time FSSP Algorithm for Multi-Dimesioal Cellular Automata x = { (i + j)/2 S : odd (i + j 1)/2,(i + j + 1)/2 S : eve. (1) The recursive-halvig markig for a give cellular space S = [1] is defied as follows: Recursive-Halvig Markig: RHM Algorithm RHM(S) begi if S 2 the if S is odd the mark a ceter cell C x i S; S L := [1x]; S R := [x]; RHM L (S L ); RHM R (S R ); else mark ceter cells Cx ad C x+1 i S; S L := [1x]; S R := [x + 1]; RHM L (S L ); RHM R (S R ); ed Left-Side Recursive-Halvig Markig: RHM L Algorithm RHM L (S) begi while S > 2 do if S is odd the mark a ceter cell C x i S; S L := [1x]; RHM L (S L ); else mark ceter cells Cx ad C x+1 i S; S L := [1x]; RHM L (S L ); ed Right-Side Recursive-Halvig Markig: RHM R Algorithm RHM R (S) begi while S > 2 do if S is odd the mark a ceter cell C x i S; S R := [x]; RHM R (S R ); else mark ceter cells Cx ad C x+1 i S; S R := [x + 1]; RHM R (S R ); ed For example, we cosider a cellular space S = [115] cosistig of 15 cells. The first ceter cell is C 8, the the secod oe is C 4, C 5 ad C 11, C 12, ad the last oe is C 2, C 3, C 13, C 14, respectively. I case S = [117], we get C 9, C 5, C 13, C 3, C 15, ad C 2, C 16 after four iteratios. Figure 2 (left) shows a space-time diagram for the markig. At time t = 0, the leftmost cell C 1 geerates a ifiite set of sigals w 1,w 2,,w k,.., each propagatig i the right directio at 1/(2 k 1) speed,

5 H. Umeo, K. Nishide & K. Kubo G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 1 G B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 2 G O B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 3 G O K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 4 G O K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 5 G O O C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 6 G E O Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 7 G E O Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 8 G E O O C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 9 G E K O Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 10 G E K O Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 11 G E K O O C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 12 G E K C O Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 13 G E E C O Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 14 G E E C O O C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 15 G E E C K O Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 16 G E E Q K O Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 17 G E E Q K O O C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 18 G E E Q K C O Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 19 G E E Q C C O Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 20 G E E E C C O O C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 21 G E K E C C K O Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 22 G E K E C Q K O Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 23 G E K E Q Q K O O C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 24 G E K E Q Q K C O Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 25 G E K E Q Q C C O Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 26 G E K E Q C C C O O C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 27 G E K E E C C C K O Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 28 G E K C E C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 29 G E E C E C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 30 G E E C E Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 31 G E E C E Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 32 G E E C E Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 33 G E E C E Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 34 G E E C E E C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 35 G E E C K E C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 36 G E E Q K E C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 37 G E E Q K E Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 38 G E E Q K E Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 39 G E E Q K E Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 40 G E E Q K E Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 41 G E E Q K E E C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 42 G E E Q K C E C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 43 G E E Q C C E C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 44 G E E E C C E Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 45 G E K E C C E Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 46 G E K E C C E Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 47 G E K E C C E Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 48 G E K E C C E E C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 49 G E K E C C K E C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 50 G E K E C Q K E C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 51 G E K E Q Q K E Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 52 G E K E Q Q K E Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 53 G E K E Q Q K E Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 54 G E K E Q Q K E Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 55 G E K E Q Q K E E C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 56 G E K E Q Q K C E C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q 57 G E K E Q Q C C E C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q 58 G E K E Q C C C E Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q 59 G E K E E C C C E Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q 60 G E K C E C C C E Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q 61 G E E C E C C C E Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q 62 G E E C E C C C E E C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q 63 G E E C E C C C K E C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q 64 G E E C E C C Q K E C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q 65 G E E C E C Q Q K E Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q 66 G E E C E Q Q Q K E Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q 67 G E E C E Q Q Q K E Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q 68 G E E C E Q Q Q K E Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q 69 G E E C E Q Q Q K E E C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q 70 G E E C E Q Q Q K C E C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C G 71 G E E C E Q Q Q C C E C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B G 72 G E E C E Q Q C C C E Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D G 73 G E E C E Q C C C C E Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K E G 74 G E E C E E C C C C E Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K E G 75 G E E C K E C C C C E Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D E E G 76 G E E Q K E C C C C E E C C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q E E G 77 G E E Q K E C C C C K E C C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q E E G 78 G E E Q K E C C C Q K E C Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D E E E G 79 G E E Q K E C C Q Q K E Q Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q E K E G 80 G E E Q K E C Q Q Q K E Q Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q E K E G 81 G E E Q K E Q Q Q Q K E Q Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D E E K E G 82 G E E Q K E Q Q Q Q K E Q C C C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q E D K E G 83 G E E Q K E Q Q Q Q K E E C C C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q E D E E G 84 G E E Q K E Q Q Q Q K C E C C Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D E E D E E G 85 G E E Q K E Q Q Q Q C C E C Q Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q E K D E E G 86 G E E Q K E Q Q Q C C C E Q Q Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q E K Q E E G 87 G E E Q K E Q Q C C C C E Q Q Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D E E K Q E E G 88 G E E Q K E Q C C C C C E Q Q C C C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q E D K Q E E G 89 G E E Q K E E C C C C C E Q C C C C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q E D D Q E E G 90 G E E Q K C E C C C C C E E C C C Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D E E D D E E E G 91 G E E Q C C E C C C C C K E C C Q Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q E K D D E K E G 92 G E E E C C E C C C C Q K E C Q Q Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q E K Q D E K E G 93 G E K E C C E C C C Q Q K E Q Q Q Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q D E E K Q Q E K E G 94 G E K E C C E C C Q Q Q K E Q Q Q C C C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q Q E D K Q Q E K E G 95 G E K E C C E C Q Q Q Q K E Q Q C C C C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q D D Q E D D Q Q E K E G 96 G E K E C C E Q Q Q Q Q K E Q C C C C Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q Q D E E D D D Q E K E G 97 G E K E C C E Q Q Q Q Q K E E C C C Q Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q D D Q Q E K D D D E E K E G 98 G E K E C C E Q Q Q Q Q K C E C C Q Q Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q Q D D Q E K Q D D E D K E G 99 G E K E C C E Q Q Q Q Q C C E C Q Q Q Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q D D Q Q D E E K Q Q D E D E E G 100 G E K E C C E Q Q Q Q C C C E Q Q Q Q C C C C Q Q Q Q C C C C Q K O Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q Q D D Q Q E D K Q Q Q E D E E G 101 G E K E C C E Q Q Q C C C C E Q Q Q C C C C Q Q Q Q C C C C Q Q K O O C Q Q C B K D D Q Q D D Q Q D D Q Q D D Q Q D D Q E D D Q Q Q E D E E G 102 G E K E C C E Q Q C C C C C E Q Q C C C C Q Q Q Q C C C C Q Q Q K C O Q Q C B D K Q D D Q Q D D Q Q D D Q Q D D Q Q D E E D D D Q Q E D E E G 103 G E K E C C E Q C C C C C C E Q C C C C Q Q Q Q C C C C Q Q Q Q C C O Q C B K D D Q Q D D Q Q D D Q Q D D Q Q D D Q Q E K D D D D Q E D E E G 104 G E K E C C E E C C C C C C E E C C C Q Q Q Q C C C C Q Q Q Q C C C O O B D K Q D D Q Q D D Q Q D D Q Q D D Q Q D D Q E K Q D D D E E D E E G 105 G E K E C C K E C C C C C C K E C C Q Q Q Q C C C C Q Q Q Q C C C C K M K D D Q Q D D Q Q D D Q Q D D Q Q D D Q Q D E E K Q Q D D E K D E E G 106 G E K E C Q K E C C C C C Q K E C Q Q Q Q C C C C Q Q Q Q C C C C Q A M A Q D D Q Q D D Q Q D D Q Q D D Q Q D D Q Q E D K Q Q Q D E K Q E E G 107 G E K E Q Q K E C C C C Q Q K E Q Q Q Q C C C C Q Q Q Q C C C C Q A C M D A Q D D Q Q D D Q Q D D Q Q D D Q Q D D Q E D D Q Q Q Q E K Q E E G 108 G E K E Q Q K E C C C Q Q Q K E Q Q Q C C C C Q Q Q Q C C C C Q A C Q M Q D A Q D D Q Q D D Q Q D D Q Q D D Q Q D E E D D D Q Q Q E K Q E E G 109 G E K E Q Q K E C C Q Q Q Q K E Q Q C C C C Q Q Q Q C C C C Q A C Q Q M Q Q D A Q D D Q Q D D Q Q D D Q Q D D Q Q E K D D D D Q Q E K Q E E G 110 G E K E Q Q K E C Q Q Q Q Q K E Q C C C C Q Q Q Q C C C C Q A C Q Q Q M Q Q Q D A Q D D Q Q D D Q Q D D Q Q D D Q E K Q D D D D Q E K Q E E G 111 G E K E Q Q K E Q Q Q Q Q Q K E E C C C Q Q Q Q C C C C Q A C Q Q Q Q M Q Q Q Q D A Q D D Q Q D D Q Q D D Q Q D E E K Q Q D D D E E K Q E E G 112 G E K E Q Q K E Q Q Q Q Q Q K C E C C Q Q Q Q C C C C Q A C Q Q Q Q Q M Q Q Q Q Q D A Q D D Q Q D D Q Q D D Q Q E D K Q Q Q D D E D K Q E E G 113 G E K E Q Q K E Q Q Q Q Q Q C C E C Q Q Q Q C C C C Q A C Q Q Q Q Q Q M Q Q Q Q Q Q D A Q D D Q Q D D Q Q D D Q E D D Q Q Q Q D E D D Q E E G 114 G E K E Q Q K E Q Q Q Q Q C C C E Q Q Q Q C C C C Q A C Q Q Q Q Q Q Q M Q Q Q Q Q Q Q D A Q D D Q Q D D Q Q D E E D D D Q Q Q Q E D D E E E G 115 G E K E Q Q K E Q Q Q Q C C C C E Q Q Q C C C C Q A C Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q D A Q D D Q Q D D Q Q E K D D D D Q Q Q E D D E K E G 116 G E K E Q Q K E Q Q Q C C C C C E Q Q C C C C Q A C Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q D A Q D D Q Q D D Q E K Q D D D D Q Q E D D E K E G 117 G E K E Q Q K E Q Q C C C C C C E Q C C C C Q A C Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q D A Q D D Q Q D E E K Q Q D D D D Q E D D E K E G 118 G E K E Q Q K E Q C C C C C C C E E C C C Q A C Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q D A Q D D Q Q E D K Q Q Q D D D E E D D E K E G 119 G E K E Q Q K E E C C C C C C C K E C C Q A C Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q D A Q D D Q E D D Q Q Q Q D D E K D D E K E G 120 G E K E Q Q K C E C C C C C C Q K E C Q A C Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q D A Q D E E D D D Q Q Q Q D E K Q D E K E G 121 G E K E Q Q C C E C C C C C Q Q K E Q A C Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q D A Q E K D D D D Q Q Q Q E K Q Q E K E G 122 G E K E Q C C C E C C C C Q Q Q K E A C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q D A E K Q D D D D Q Q Q E K Q Q E K E G 123 G E K E E C C C E C C C Q Q Q Q K U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U K Q Q D D D D Q Q E K Q Q E K E G 124 G E K C E C C C E C C Q Q Q Q Q A U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U A Q Q Q D D D D Q E K Q Q E K E G 125 G E E C E C C C E C Q Q Q Q Q A C U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U D A Q Q Q D D D E E K Q Q E K E G 126 G E E C E C C C E Q Q Q Q Q A C Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q D A Q Q Q D D E D K Q Q E K E G 127 G E E C E C C C E Q Q Q Q A C Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q D A Q Q Q D E D D Q Q E K E G 128 G E E C E C C C E Q Q Q A C Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q D A Q Q Q E D D D Q E K E G 129 G E E C E C C C E Q Q A C Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q D A Q Q E D D D E E K E G 130 G E E C E C C C E Q A C Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q D A Q E D D D E D K E G 131 G E E C E C C C E A C Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q D A E D D D E D E E G 132 G E E C E C C C U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U D D D E D E E G 133 G E E C E C C B U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U B D D E D E E G 134 G E E C E C B C U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U D B D E D E E G 135 G E E C E B C Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q D B E D E E G 136 G E E C I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I D E E G 137 G E E B I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I B E E G 138 G E I Q I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I Q I E G 139 G I I Q I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I Q I I G 140 I I I Q I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I Q I I I G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 1 G B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 2 G O B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 3 G O K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 4 G O K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 5 G O O C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 6 G E O Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 7 G E O Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 8 G E O O C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 9 G E K O Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 10 G E K O Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 11 G E K O O C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 12 G E K C O Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 13 G E E C O Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 14 G E E C O O C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 15 G E E C K O Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 16 G E E Q K O Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 17 G E E Q K O O C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 18 G E E Q K C O Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 19 G E E Q C C O Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 20 G E E E C C O O C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 21 G E K E C C K O Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 22 G E K E C Q K O Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 23 G E K E Q Q K O O C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 24 G E K E Q Q K C O Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 25 G E K E Q Q C C O Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 26 G E K E Q C C C O O C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 27 G E K E E C C C K O Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q 28 G E K C E C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q 29 G E E C E C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q 30 G E E C E Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q 31 G E E C E Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q 32 G E E C E Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q 33 G E E C E Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q 34 G E E C E E C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q 35 G E E C K E C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q 36 G E E Q K E C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q 37 G E E Q K E Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q 38 G E E Q K E Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q 39 G E E Q K E Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q 40 G E E Q K E Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q 41 G E E Q K E E C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K G 42 G E E Q K C E C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A G 43 G E E Q C C E C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A D G 44 G E E E C C E Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A K E G 45 G E K E C C E Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A D K E G 46 G E K E C C E Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A K D E E G 47 G E K E C C E Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q A D K Q E E G 48 G E K E C C E E C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q A K D D Q E E G 49 G E K E C C K E C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q A D K Q D E E E G 50 G E K E C Q K E C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q A K D D Q Q E K E G 51 G E K E Q Q K E Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q A D K Q D D Q E K E G 52 G E K E Q Q K E Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q A K D D Q Q D E E K E G 53 G E K E Q Q K E Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q A D K Q D D Q Q E D K E G 54 G E K E Q Q K E Q C C C C Q Q Q K C O Q Q C C Q Q C C Q A K D D Q Q D D Q E D E E G 55 G E K E Q Q K E E C C C Q Q Q Q C C O Q C C Q Q C C Q A D K Q D D Q Q D E E D E E G 56 G E K E Q Q K C E C C Q Q Q Q C C C O O C Q Q C C Q A K D D Q Q D D Q Q E K D E E G 57 G E K E Q Q C C E C Q Q Q Q C C C C K O Q Q C C Q A D K Q D D Q Q D D Q E K Q E E G 58 G E K E Q C C C E Q Q Q Q C C C C Q K O Q C C Q A K D D Q Q D D Q Q D E E K Q E E G 59 G E K E E C C C E Q Q Q C C C C Q Q K O O C Q A D K Q D D Q Q D D Q Q E D K Q E E G 60 G E K C E C C C E Q Q C C C C Q Q Q K C O Q A K D D Q Q D D Q Q D D Q E D D Q E E G 61 G E E C E C C C E Q C C C C Q Q Q Q C C O A D K Q D D Q Q D D Q Q D E E D D E E E G 62 G E E C E C C C E E C C C Q Q Q Q C C C W W D D Q Q D D Q Q D D Q Q E K D D E K E G 63 G E E C E C C C K E C C Q Q Q Q C C C B W W B D D Q Q D D Q Q D D Q E K Q D E K E G 64 G E E C E C C Q K E C Q Q Q Q C C C B C W W D B D D Q Q D D Q Q D E E K Q Q E K E G 65 G E E C E C Q Q K E Q Q Q Q C C C B C Q W W Q D B D D Q Q D D Q Q E D K Q Q E K E G 66 G E E C E Q Q Q K E Q Q Q C C C B C Q Q W W Q Q D B D D Q Q D D Q E D D Q Q E K E G 67 G E E C E Q Q Q K E Q Q C C C B C Q Q Q W W Q Q Q D B D D Q Q D E E D D D Q E K E G 68 G E E C E Q Q Q K E Q C C C B C Q Q Q Q W W Q Q Q Q D B D D Q Q E K D D D E E K E G 69 G E E C E Q Q Q K E E C C B C Q Q Q Q Q W W Q Q Q Q Q D B D D Q E K Q D D E D K E G 70 G E E C E Q Q Q K C E C B C Q Q Q Q Q Q W W Q Q Q Q Q Q D B D E E K Q Q D E D E E G 71 G E E C E Q Q Q C C E B C Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q D B E D K Q Q Q E D E E G 72 G E E C E Q Q C C C I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I D D Q Q Q E D E E G 73 G E E C E Q C C C B I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I B D D Q Q E D E E G 74 G E E C E E C C B C I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I D B D D Q E D E E G 75 G E E C K E C B C Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q D B D E E D E E G 76 G E E Q K E B C Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q D B E K D E E G 77 G E E Q K I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I K Q E E G 78 G E E Q A I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I A Q E E G 79 G E E A C I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I D A E E G 80 G E U U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U U E G 81 G I U U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U U I G 82 I I U U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U U I I /7 t = 0 t = 2-2 w1 w3 w2 w1 w2 w3 1/7 5 w4 t = -1 t = Figure 2: Space-time diagram for recursive-halvig markig o 1D array of legth (left) ad some sapshots for the markig o 42 (middle) ad 71 (right) cells, respectively. where k = 1,2,3,,. The -speed sigal w 1 arrives at C at time t = 1. The, the rightmost cell C also emits a ifiite set of sigals w 1,w 2,,w k,.., each propagatig i the left directio at 1/(2 k 1) speed, where k = 1,2,3,,. The readers ca fid that each crossig of two sigals, show i Fig. 2 (left), eables the markig at middle poits defied by the recursive-halvig. A fiite state realizatio for geeratig the ifiite set of sigals above is a well-kow techique employed i Balzer [1967], Gerke [1987], ad Waksma [1966] for the implemetatios of the optimum-time sychroizatio algorithms o 1D arrays. We have developed a simple implemetatio of the recursive-halvig markig o a 13-state, 314-rule cellular automato. I Fig. 2 (middle ad right) we preset several sapshots for the markig o 42 ad 71 cells, respectively. Thus we have: Lemma 3 There exists a 1D 13-state, 314-rule cellular automato that ca prit the recursive-halvig markig i ay cellular space of legth i 2 2 steps. A optimum-time complexity 2 2 eeded for sychroizig cellular space of legth i the classical WBG-type (Waksma [1966], Balzer [1967], ad Gerke [1987]) FSSP algorithms ca be iterpreted as follows: Let S be a cellular space of legth = , where 1 1. The first ceter mark i S is prited o cell C 1 +1 at time t 1D ceter = 3 1. Additioal 1 steps are required for the markigs thereafter,

6 156 A Optimum-Time FSSP Algorithm for Multi-Dimesioal Cellular Automata yieldig a fial sychroizatio at time t 1D opt = = 4 1 = 2 2. I the case = 2 1, where 1 1, the first ceter mark is prited simultaeously o cells C 1 ad C 1 +1 at time t 1D ceter = Additioal 1 1 steps are required for the markig ad sychroizatio thereafter, yieldig the fial sychroizatio at time t 1D opt = = = 2 2. t 1D ceter = { 3 1 S = , S = 2 1. Thus, additioal t 1D syc steps are required for the sychroizatio for a cellular space with the recursive-halvig marks: { 1 S = , t 1D syc = (3) 1 1 S = 2 1. (2) 1 t = 0 t = tsyc G G I I Q I Q Q Q M2 Q Q Q I Q I I G 0 1 G I I Q I Q Q Q2 M2 C2 Q Q I Q I I G 2 G I I Q I Q Q2 Q2 M2 C2 C2 Q I Q I I G 3 G I I Q I Q2 L2 Q2 M2 C2 R2 C2 I Q I I G 4 G I I Q M2 A2 L2 Q2 M2 C2 R2 B2 M2 Q I I G 5 G I I Q2 M2 B2 Q2 Q2 M2 C2 C2 A2 M2 C2 I I G 6 G I M2 Q2 M2 C2 M2 Q2 M2 C2 M2 Q2 M2 C2 M2 I G 7 G M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 G 8 F F F F F F F F F F F F F F F F F G U U U U Q Q U U Q Q Q Q Q Q M2 M2 Q Q Q Q Q Q U U Q Q U U U U G 1 G U U U U Q Q U U Q Q Q Q Q Q2 M2 M2 C2 Q Q Q Q Q U U Q Q U U U U G 2 G U U U U Q Q U U Q Q Q Q Q2 Q2 M2 M2 C2 C2 Q Q Q Q U U Q Q U U U U G 3 G U U U U Q Q U U Q Q Q Q2 L2 Q2 M2 M2 C2 R2 C2 Q Q Q U U Q Q U U U U G 4 G U U U U Q Q U U Q Q Q2 A2 L2 Q2 M2 M2 C2 R2 B2 C2 Q Q U U Q Q U U U U G 5 G U U U U Q Q U U Q Q2 L2 A2 Q2 Q2 M2 M2 C2 C2 B2 R2 C2 Q U U Q Q U U U U G 6 G U U U U Q Q U U Q2 A2 L2 L2 Q2 Q2 M2 M2 C2 C2 R2 R2 B2 C2 U U Q Q U U U U G 7 G U U U U Q Q U MM L2 A2 A2 L2 Q2 Q2 M2 M2 C2 C2 R2 B2 B2 R2 MM U Q Q U U U U G 8 G U U U U Q Q M2 M2 L2 L2 A2 Q2 Q2 Q2 M2 M2 C2 C2 C2 B2 R2 R2 M2 M2 Q Q U U U U G 9 G U U U U Q Q2 M2 M2 C2 L2 L2 Q2 L2 Q2 M2 M2 C2 R2 C2 R2 R2 Q2 M2 M2 C2 Q U U U U G 10 G U U U U Q2 Q2 M2 M2 C2 C2 L2 Q2 L2 Q2 M2 M2 C2 R2 C2 R2 Q2 Q2 M2 M2 C2 C2 U U U U G 11 G U U U MM L2 Q2 M2 M2 C2 R2 C2 Q2 L2 Q2 M2 M2 C2 R2 C2 Q2 L2 Q2 M2 M2 C2 R2 MM U U U G 12 G U U M2 M2 L2 Q2 M2 M2 C2 R2 M2 M2 L2 Q2 M2 M2 C2 R2 M2 M2 L2 Q2 M2 M2 C2 R2 M2 M2 U U G 13 G U MM M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 MM U G 14 G M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 G 15 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F Figure 3: Space-time diagram for sychroizig a cellular space with recursive-halvig markig (left) ad some sapshots for the sychroizatio o 17 (middle) ad 32 (right) cells, respectively. I this way, it ca be easily see that ay cellular space of legth with the recursive-halvig markig iitially with a geeral o a ceter cell or two geerals o adjacet ceter cells ca be sychroized i /2 1 optimum-steps. I Fig. 3, we illustrate a space-time diagram for sychroizig a cellular space with recursive-halvig markig (left) ad some sapshots for the sychroizatio o 17 (middle) ad 32 (right) cells, respectively. Thus we have: Lemma 4 Ay 1D cellular space S of legth with the recursive-halvig markig iitially with a geeral(s) o a ceter cell(s) i S ca be sychroized i /2 1 optimum-steps. As was see, the first markig of ceter cell(s) plays a importat role. We prit a special mark for the first ceter cell(s) of a give cellular space. O the other had, for the ceter cells geerated thereafter are marked with a differet symbol from the first oe. G Step 0 Step 1 Step 3 Step 2 Figure 4: Sychroizatio schema for 2D cellular automato.

7 H. Umeo, K. Nishide & K. Kubo A Optimum-Time 2D FSSP Algorithm A Overview of the Algorithm A 1 We assume that a iitial geeral G is o the orth-west corer cell C 11 of a give array of size m. The algorithm cosists of three phases: a markig phase, a pre-sychroizatio phase ad a fial sychroizatio phase. A overview of the 2D sychroizatio algorithm A 1 is as follows: Step 1. Start the recursive-halvig markig for cells o each row ad colum, fid a ceter cell(s) of the give array, ad geerate a ew geeral(s) o the ceter cell(s). Note that a crossig(s) of the ceter colum(s) with the ceter row(s) is a ceter cell(s) of the array. Step 2. Pre-sychroize the ceter colum(s) usig Lemma 4, which is iitiated by the geeral i Step 1. Every cell o the ceter colum(s) acts as a geeral at the followig Step 3. Step 3. Sychroize each row usig Lemma 4, iitiated by the geeral geerated i Step 2. This yields the fial sychroizatio of the array. G 1 1 i t = 0 1 t = 0 1 m t = 0 1 t = i-1 1/7 t = /7 1/7 t = m-1 t = 2-2 t = +1 +i-2 5 1/7 1/7 t = 2m+ 1-2 t = 2m+ 1-2 t = 2m+ 1-2 t = 2m+-3 t = 2m+-3 t = m t = 2m /7 Figure 5: Space-time diagrams for the sychroizatio algorithm o the 1st, ith, ad mth rows of a loger-tha-wide rectagle array of size m, respectively. Figure 4 illustrates the sychroizatio schema for 2D cellular automato. We assume that m =

8 158 A Optimum-Time FSSP Algorithm for Multi-Dimesioal Cellular Automata 2m 1 + 1, = , where m 1, 1 1. The algorithm operates as follows: 1. At time t = 0 a iitial geeral o the orth-west corer emits a -speed sigal alog the first row ad colum to prit recursive-halvig marks. Oce a ceter mark is prited, it is copied to the adjacet row ad colum. At time t = 3m 1 + 1, a ceter mark of the ceter colum of the array is marked, ad the ceter mark of the ceter row is marked at time t = m 1. The ceter of the array is marked at time t = t 2D ceter = max(3m 1 + 1,3 1 + m 1 ). 2. Usig Lemma 4, the ceter colum will be sychroized with a tetative pre-firig state at time t = t 2D ceter + m Oce the ceter colum could be sychroized with the pre-firig state, the the cell C i,1 +1 iitiates the sychroizatio for the ith row for each i such that 1 i m. Usig Lemma 4, for ay i,1 i m, the ith row will be sychroized at time t = t 2D ceter + m = max(3m 1 + 1,3 1 +m 1 )+m = max(2m 1 +1,2 1 +1)+2m = m ++max(m,) 3. Thus, the array ca be sychroized at time t = m + + max(m, ) 3 i optimum-steps. G 1 1 i m t = 0 1 t = 0 1 t = 0 1 t = i-1 t = m-1 1/7 t = +1-1 t = 2-2 t = m t = m /7 t = +1+i-2 t = m t = m t = m /7 1/7 t = m+2-3 1/7 5 1/7 Figure 6: Space-diagrams of the sychroizatio algorithm o the 1st, ith, ad mth rows of a widertha-log rectagle array of size m, respectively. Note that the sigal propagatio for the recursive-halvig markig ad the wake-up sigal for the sychroizatio are made by the same speed. Thus, the sychroizatio ca be performed successfully for each colum ad the array ca be sychroized i optimum steps. Figures 5 ad 6 illustrate a space-time diagram for the recursive-halvig markig ad the sychroizatio operatios o the 1st, ith, ad mth row of a loger-tha-wide ad wider-tha-log array, respectively. Oe ca see that

9 H. Umeo, K. Nishide & K. Kubo 159 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 1 1G2G Q Q Q Q Q Q Q Q Q Q Q 1 1G2G 1B Q Q Q Q Q Q Q Q Q Q 1 1G2G 1O 1B Q Q Q Q Q Q Q Q Q 1 1G2G 1O 1K 1B Q Q Q Q Q Q Q Q 1 1G2G 1O 1K 1C 1B Q Q Q Q Q Q Q 1 1G2G 1O 1O 1C 1K 1B Q Q Q Q Q Q 1 1G2G 1E 1O Q 1K 1C 1B Q Q Q Q Q 2 Q Q Q Q Q Q Q Q Q Q Q Q 2 2B Q Q Q Q Q Q Q Q Q Q Q 2 2O Q Q Q Q Q Q Q Q Q Q Q 2 2O Q Q Q Q Q Q Q Q Q Q Q 2 2O Q Q Q Q Q Q Q Q Q Q Q 2 2O Q Q Q Q Q Q Q Q Q Q Q 2 2E Q Q Q Q Q Q Q Q Q Q Q 3 Q Q Q Q Q Q Q Q Q Q Q Q 3 Q Q Q Q Q Q Q Q Q Q Q Q 3 2B Q Q Q Q Q Q Q Q Q Q Q 3 2K Q Q Q Q Q Q Q Q Q Q Q 3 2K Q Q Q Q Q Q Q Q Q Q Q 3 2O Q Q Q Q Q Q Q Q Q Q Q 3 2O Q Q Q Q Q Q Q Q Q Q Q 4 Q Q Q Q Q Q Q Q Q Q Q Q 4 Q Q Q Q Q Q Q Q Q Q Q Q 4 Q Q Q Q Q Q Q Q Q Q Q Q 4 2B Q Q Q Q Q Q Q Q Q Q Q 4 2C Q Q Q Q Q Q Q Q Q Q Q 4 2C Q Q Q Q Q Q Q Q Q Q Q 4 Q Q Q Q Q Q Q Q Q Q Q Q 5 Q Q Q Q Q Q Q Q Q Q Q Q 5 Q Q Q Q Q Q Q Q Q Q Q Q 5 Q Q Q Q Q Q Q Q Q Q Q Q 5 Q Q Q Q Q Q Q Q Q Q Q Q 5 2B Q Q Q Q Q Q Q Q Q Q Q 5 2K Q Q Q Q Q Q Q Q Q Q Q 5 2K Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 6 2B Q Q Q Q Q Q Q Q Q Q Q 6 2C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 7 2B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = G2G 1E 1O Q 1C 1C 1K 1B Q Q Q Q 1 1G2G 1E 1O 1O 1C Q 1K 1C 1B Q Q Q 1 1G2G 1E 1K 1O Q Q 1C 1C 1K 1B Q Q 1 1G2G 1E 1K 1O Q 1C 1C Q 1K 1C 1B Q 1 1G2G 1E 1K 1O 1O 1C Q Q 1C 1C 1K 1G2G 1 1G2G 1E 1K 1C 1O Q Q 1C 1C Q 1A 1G2G 1 1G2G 1E 1E 1C 1O Q 1C 1C Q 1A 1D 1G2G 2 2E Q Q Q Q Q Q Q Q Q Q Q 2 2E Q Q Q Q Q Q Q Q Q Q Q 2 2E Q Q Q Q Q Q Q Q Q Q Q 2 2E Q Q Q Q Q Q Q Q Q Q Q 2 2E Q Q Q Q Q Q Q Q Q Q Q 2 2E Q Q Q Q Q Q Q Q Q Q 1G2x 2 2E Q Q Q Q Q Q Q Q Q Q 1G2x 3 2O Q Q Q Q Q Q Q Q Q Q Q 3 2O Q Q Q Q Q Q Q Q Q Q Q 3 2K Q Q Q Q Q Q Q Q Q Q Q 3 2K Q Q Q Q Q Q Q Q Q Q Q 3 2K Q Q Q Q Q Q Q Q Q Q Q 3 2K Q Q Q Q Q Q Q Q Q Q Q 3 2E Q Q Q Q Q Q Q Q Q Q 1G2x 4 Q Q Q Q Q Q Q Q Q Q Q Q 4 2O Q Q Q Q Q Q Q Q Q Q Q 4 2O Q Q Q Q Q Q Q Q Q Q Q 4 2O Q Q Q Q Q Q Q Q Q Q Q 4 2O Q Q Q Q Q Q Q Q Q Q Q 4 2C Q Q Q Q Q Q Q Q Q Q Q 4 2B Q Q Q Q Q Q Q Q Q Q Q 5 2C Q Q Q Q Q Q Q Q Q Q Q 5 2C Q Q Q Q Q Q Q Q Q Q Q 5 Q Q Q Q Q Q Q Q Q Q Q Q 5 Q Q Q Q Q Q Q Q Q Q Q Q 5 2O Q Q Q Q Q Q Q Q Q Q Q 5 2M Q Q Q Q Q Q Q Q Q Q Q 5 2x 2M Q Q Q Q Q Q Q Q Q Q 6 2C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 6 2C Q Q Q Q Q Q Q Q Q Q Q 6 2B Q Q Q Q Q Q Q Q Q Q Q 6 2D Q Q Q Q Q Q Q Q Q Q Q 6 2B Q Q Q Q Q Q Q Q Q Q Q 7 2K Q Q Q Q Q Q Q Q Q Q Q 7 2K Q Q Q Q Q Q Q Q Q Q Q 7 2C Q Q Q Q Q Q Q Q Q Q Q 7 2B Q Q Q Q Q Q Q Q Q Q Q 7 2K Q Q Q Q Q Q Q Q Q Q Q 7 2K Q Q Q Q Q Q Q Q Q Q Q 7 2E Q Q Q Q Q Q Q Q Q Q Q 8 2B Q Q Q Q Q Q Q Q Q Q Q 8 2C Q Q Q Q Q Q Q Q Q Q Q 8 2B Q Q Q Q Q Q Q Q Q Q Q 8 2D Q Q Q Q Q Q Q Q Q Q Q 8 2E Q Q Q Q Q Q Q Q Q Q Q 8 2E Q Q Q Q Q Q Q Q Q Q Q 8 2E Q Q Q Q Q Q Q Q Q Q Q Q Q Q 9 1G2G Q Q Q Q Q Q Q Q Q Q Q 9 1G2G1x2G Q Q Q Q Q Q Q Q Q Q 9 1G2G1x2G1x2G Q Q Q Q Q Q Q Q Q 9 1G2G1x2G1x2G1x2G Q Q Q Q Q Q Q Q 9 1G2G1x2G1x2G1x2G1x2G Q Q Q Q Q Q Q 9 1G2G1x2G1x2G1x2G1x2G1x2G Q Q Q Q Q Q t = 14 t = 15 t = 16 t = 17 t = 18 t = 19 t = G2G 1E 1E 1C 1O 1O 1C Q 1A 1K 1E 1G2G 1 1G2G 1E 1E 1C 1K 1O Q 1A 1D 1K 1E 1G2G 1 1G2G 1E 1E Q 1K 1O 1A 1K 1D 1E 1E 1G2G 1 1G2G 1E 1E Q 1K 1W 1M 1K Q 1E 1E 1G2G 1 1G2G 1E 1E Q 1A 1x 1x 1A Q 1E 1E 1G2G 1 1G2G 1E 1E 1A 1x 1x 1x 1x 1A 1E 1E 1G2G 1 1G2G 1E 1I 1U 1x 1x 1x 1x 1U 1I 1E 1G2G 2 2E Q Q Q Q Q Q Q Q Q Q 1G2x 2 2I Q Q Q Q Q Q Q Q Q Q 1G2x 2 2x 2I Q Q Q Q Q Q Q Q Q 1G2x 2 2x 2I 2I Q Q Q Q Q Q Q Q 1G2x 2 2x 2I 2I 2I Q 1W 1M Q Q Q Q 1G2x 2 2x 2I 2I 2I 2I 1W 1M Q Q Q Q 1G2x 2 2x 2I 2I 2I 2I 1W2I 1M Q Q Q Q 1G2x 3 2I Q Q Q Q Q Q Q Q Q Q 1G2x 3 2x 2I Q Q Q Q Q Q Q Q Q 1G2x 3 2x 2I 2I Q Q Q Q Q Q Q Q 1G2x 3 2x 2I 2I 2I Q Q Q Q Q Q Q 1G2x 3 2x 2I 2I 2I 2I Q Q Q Q Q Q 1G2x 3 2x 2I 2I 2I 2I 1W2I 1M Q Q Q Q 1G2x 3 2x 2I 2I 2I 2I 1W2I1M2I Q Q Q Q 1G2x 4 2x Q Q Q Q Q Q Q Q Q Q 1G2x 4 2x Q Q Q Q Q Q Q Q Q Q 1G2x 4 2x Q Q Q Q Q Q Q Q Q Q 1G2x 4 2x Q Q Q Q Q Q Q Q Q Q 1G2x 4 2x Q Q Q Q Q Q Q Q Q Q 1G2x 4 2x Q Q Q Q Q Q Q Q Q Q 1G2x 4 2x Q Q Q Q 1W 1M Q Q Q Q 1G2x 5 2x 2M 2M Q Q Q Q Q Q Q Q Q 5 2x 2M 2M 2M Q Q Q Q Q Q Q 1G2x 5 2x 2M 2M 2M 2M Q Q Q Q Q Q 1G2x 5 2x 2M 2M 2M 2M 2M Q Q Q Q Q 1G2x 5 2x 2M 2M 2M 2M 2M 2M Q Q Q Q 1G2x 5 2x 2M 2M 2M 2M 2M 2M 2M Q Q Q 1G2x 5 2x 2M 2M 2M 2M 2M 2M 2M 2M Q Q 1G2x 6 2x Q Q Q Q Q Q Q Q Q Q Q 6 2x Q Q Q Q Q Q Q Q Q Q Q 6 2x Q Q Q Q Q Q Q Q Q Q 1G2x 6 2x Q Q Q Q Q Q Q Q Q Q 1G2x 6 2x Q Q Q Q Q Q Q Q Q Q 1G2x 6 2x Q Q Q Q Q Q Q Q Q Q 1G2x 6 2x Q Q Q Q Q Q Q Q Q Q 1G2x 7 2I Q Q Q Q Q Q Q Q Q Q Q 7 2x 2I Q Q Q Q Q Q Q Q Q Q 7 2x 2I 2I Q Q Q Q Q Q Q Q Q 7 2x 2I 2I 2I Q Q Q Q Q Q Q 1G2x 7 2x 2I 2I 2I 2I Q Q Q Q Q Q 1G2x 7 2x 2I 2I 2I 2I 2I Q Q Q Q Q 1G2x 7 2x 2I 2I 2I 2I 2I 2I Q Q Q Q 1G2x 8 2E Q Q Q Q Q Q Q Q Q Q Q 8 2I Q Q Q Q Q Q Q Q Q Q Q 8 2x 2I Q Q Q Q Q Q Q Q Q Q 8 2x 2I 2I Q Q Q Q Q Q Q Q Q 8 2x 2I 2I 2I Q Q Q Q Q Q Q 1G2x 8 2x 2I 2I 2I 2I Q Q Q Q Q Q 1G2x 8 2x 2I 2I 2I 2I 2I Q Q Q Q Q 1G2x 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G Q Q Q Q Q 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G Q Q Q Q 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G Q Q Q 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G Q Q 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G Q 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1G2G 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1G2G t = 21 t = 22 t = 23 t = 24 t = 25 t = 26 t = G2G 1I 1x 1x 1x 1x 1x 1x 1x 1x 1I 1G2G 1 1G2G 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1G2G 1 1G2G 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1G2G 1 1G2G 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1G2G 1 1G2G 1x 1x 1x 1x M+ M+ 1x 1x 1x 1x 1G2G 1 1G2G 1x 1x 1x Q+ M+ M+ C+ 1x 1x 1x 1G2G 1 1G2G 1x 1x MM+ Q+ M+ M+ C+ MM+ 1x 1x 1G2G 2 2x 2I 1I2I 1U2I 2I 1W2I1M2I Q 1U 1I Q 1G2x 2 2x 1I2I 1I2I 1U2I 2I 1W2I1M2I 2I 1U 1I 1I 1G2x 2 2x 1I2I 1I2I 1U2I 2I 1W2I1M2I 2I 1U2I 1I 1I 1G2x 2 2x 1I2I 1I2I 1U2I 2I M- M- 2I 1U2I 1I2I 1I 1G2x 2 2x 1I2I 1I2I 1U2I 2I M+ M+ 2I 1U2I 1I2I 1I2I 1G2x 2 2x 1I2I 1I2I 1U2I Q+ M+ M+ C+ 1U2I 1I2I 1I2I 1G2x 2 2x 1I2I 1I2I MM+ Q+ M+ M+ C+ MM+ 1I2I 1I2I 1G2x 3 2x 2I 2I 2I 2I 1W2I1M2I 2I Q Q Q 1G2x 3 2x 2I 1I2I 1U2I 2I 1W2I1M2I 2I 1U2I 1I Q 1G2x 3 2x 1I2I 1I2I 1U2I 2I M- M- 2I 1U2I 1I2I 1I 1G2x 3 2x 1I2I 1I2I 1U2I 2I M- M- 2I 1U2I 1I2I 1I2I 1G2x 3 2x 1I2I 1I2I 1U2I 2I M+ M+ 2I 1U2I 1I2I 1I2I 1G2x 3 2x 1I2I 1I2I 1U2I Q+ M+ M+ C+ 1U2I 1I2I 1I2I 1G2x 3 2x 1I2I 1I2I MM+ Q+ M+ M+ C+ MM+ 1I2I 1I2I 1G2x 4 2x Q Q Q Q 1W 1M Q Q Q Q 1G2x 4 2x Q Q Q Q C- C- Q Q Q Q 1G2x 4 2x Q 1I 1U Q C- C- Q 1U 1I Q 1G2x 4 2x 1I 1I 1U Q M- M- Q 1U 1I 1I 1G2x 4 2x 1I 1I 1U Q M+ M+ Q 1U 1I 1I 1G2x 4 2x 1I 1I 1U Q+ M+ M+ C+ 1U 1I 1I 1G2x 4 2x 1I 1I MM+ Q+ M+ M+ C+ MM+ 1I 1I 1G2x 5 2x 2M 2M 2M 2M M^ M^ 2M 2M 2M Q 1G2x 5 2x 2M 2M 2M 2M M- M- 2M 2M 2M 2M 1G2x 5 2x 2M 2M 2M 2M M- M- 2M 2M 2M 2M 1G2x 5 2x 2M 1I2M1U2M2M M- M- 2M1U2M1I2M 2M 1G2x 5 2x 1I2M1I2M1U2M2M M+ M+ 2M1U2M1I2M1I2M1G2x 5 2x 1I2M1I2M1U2MQ+ M+ M+ C+1U2M1I2M1I2M1G2x 5 2x 1I2M1I2MMM+ Q+ M+ M+ C+ MM+1I2M1I2M1G2x 6 2x Q Q Q Q Q Q Q Q Q Q 1G2x 6 2x Q Q Q Q Q- Q- Q Q Q Q 1G2x 6 2x Q Q Q Q Q- Q- Q Q Q Q 1G2x 6 2x Q Q Q Q M- M- Q Q Q Q 1G2x 6 2x Q 1I 1U Q M+ M+ Q 1U 1I Q 1G2x 6 2x 1I 1I 1U Q+ M+ M+ C+ 1U 1I 1I 1G2x 6 2x 1I 1I MM+ Q+ M+ M+ C+ MM+ 1I 1I 1G2x 7 2x 2I 2I 2I 2I 2I 2I 2I Q Q Q 1G2x 7 2x 2I 2I 2I 2I 2I 2I 2I 2I Q Q 1G2x 7 2x 2I 2I 2I 2I M- M- 2I 2I 2I Q 1G2x 7 2x 2I 2I 2I 2I M- M- 2I 2I 2I 2I 1G2x 7 2x 2I 2I 2I 2I M+ M+ 2I 2I 2I 2I 1G2x 7 2x 2I 1I2I 1U2I Q+ M+ M+ C+ 1U2I 1I2I 2I 1G2x 7 2x 1I2I 1I2I MM+ Q+ M+ M+ C+ MM+ 1I2I 1I2I 1G2x 8 2x 2I 2I 2I 2I 2I 2I Q Q Q Q 1G2x 8 2x 2I 2I 2I 2I 2I 2I 2I Q Q Q 1G2x 8 2x 2I 2I 2I 2I 2I 2I 2I 2I Q Q 1G2x 8 2x 2I 2I 2I 2I M- M- 2I 2I 2I Q 1G2x 8 2x 2I 2I 2I 2I M+ M+ 2I 2I 2I 2I 1G2x 8 2x 2I 2I 2I Q+ M+ M+ C+ 2I 2I 2I 1G2x 8 2x 2I 1I2I MM+ Q+ M+ M+ C+ MM+ 1I2I 2I 1G2x 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1G2G 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1G2G 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1G2G 9 1G2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1x2G1G2G 9 1G2G1x2G1x2G1x2G1x2G M+ M+ 1x2G1x2G1x2G1x2G1G2G 9 1G2G1x2G1x2G1x2G Q+ M+ M+ C+ 1x2G1x2G1x2G1G2G 9 1G2G1x2G1x2G Q+ Q+ M+ M+ C+ C+ 1x2G1x2G1G2G t = 28 t = 29 t = G2G 1x M+ M+ Q+ M+ M+ C+ M+ M+ 1x 1G2G 1 1G2G M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2G 1 F F F F F F F F F F F F 2 2x 1I2I M+ M+ Q+ M+ M+ C+ M+ M+ 1I2I 1G2x 2 2x M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2x 2 F F F F F F F F F F F F 3 2x 1I2I M+ M+ Q+ M+ M+ C+ M+ M+ 1I2I 1G2x 3 2x M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2x 3 F F F F F F F F F F F F 4 2x 1I M+ M+ Q+ M+ M+ C+ M+ M+ 1I 1G2x 4 2x M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2x 4 F F F F F F F F F F F F 5 2x 1I2M M+ M+ Q+ M+ M+ C+ M+ M+ 1I2M1G2x 5 2x M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2x 5 F F F F F F F F F F F F 6 2x 1I M+ M+ Q+ M+ M+ C+ M+ M+ 1I 1G2x 6 2x M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2x 6 F F F F F F F F F F F F 7 2x 1I2I M+ M+ Q+ M+ M+ C+ M+ M+ 1I2I 1G2x 7 2x M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2x 7 F F F F F F F F F F F F 8 2x 1I2I M+ M+ Q+ M+ M+ C+ M+ M+ 1I2I 1G2x 8 2x M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2x 8 F F F F F F F F F F F F 9 1G2G1x2G M+ M+ Q+ M+ M+ C+ M+ M+ 1x2G1G2G 9 1G2G M+ M+ M+ M+ M+ M+ M+ M+ M+ M+ 1G2G 9 F F F F F F F F F F F F Figure 7: Sapshots for sychroizatio o a 9 12 array. each markig operatio has bee fiished before the arrival of the first wake-up sigal for the sychroizatio. The algorithm operates i optimum-steps i a similar way for the rectagles such as case 1: m = 2m 1 + 1, = 2 1, case 2: m = 2m 1, = , ad case 3: m = 2m 1, = 2 1. Thus, we ca establish the followig theorem. Theorem 5 The sychroizatio algorithm A 1 ca sychroize ay m rectagular array i optimum m + + max(m,) 3 steps. We have implemeted the algorithm A 1 o a 2D cellular automato havig 60 states ad local rules. I Figures 7 ad 8 we preset some sapshots of the sychroizatio processes of the algorithm o 9 12 ad 12 9 arrays, respectively. 5 Expasio to Multi-Dimesioal Arrays 5.1 Three-Dimesioal Arrays I this sectio, we show that there exists o algorithm that ca sychroize ay 3D array of size m l with a geeral at a arbitrary corer i less tha m + + l + max(m,,l) 4 steps. Theorem 6 The miimum time i which the firig squad sychroizatio could occur is o earlier tha m + + l + max(m,,l) 4 for ay 3D array of size m l with a geeral at a arbitrary corer cell. Proof. The proof is made by cotradictio. Without loss of geerality, we assume that l m. It is assumed that there is a cellular automato M that ca sychroize a array of size m 0 0 l 0 (l 0 m 0 0 ) at step t = t 0 such that:

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016 subcaptiofot+=small,labelformat=pares,labelsep=space,skip=6pt,list=0,hypcap=0 subcaptio ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, /6/06. Self-cojugate Partitios Recall that, give a partitio λ, we may

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

7. Modern Techniques. Data Encryption Standard (DES)

7. Modern Techniques. Data Encryption Standard (DES) 7. Moder Techiques. Data Ecryptio Stadard (DES) The objective of this chapter is to illustrate the priciples of moder covetioal ecryptio. For this purpose, we focus o the most widely used covetioal ecryptio

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Solutions to Final Exam Review Problems

Solutions to Final Exam Review Problems . Let f(x) 4+x. Solutios to Fial Exam Review Problems Math 5C, Witer 2007 (a) Fid the Maclauri series for f(x), ad compute its radius of covergece. Solutio. f(x) 4( ( x/4)) ( x/4) ( ) 4 4 + x. Sice the

More information

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B. Amme 3500 : System Dyamics ad Cotrol Root Locus Course Outlie Week Date Cotet Assigmet Notes Mar Itroductio 8 Mar Frequecy Domai Modellig 3 5 Mar Trasiet Performace ad the s-plae 4 Mar Block Diagrams Assig

More information

AN OPEN-PLUS-CLOSED-LOOP APPROACH TO SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC MAPS

AN OPEN-PLUS-CLOSED-LOOP APPROACH TO SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC MAPS http://www.paper.edu.c Iteratioal Joural of Bifurcatio ad Chaos, Vol. 1, No. 5 () 119 15 c World Scietific Publishig Compay AN OPEN-PLUS-CLOSED-LOOP APPROACH TO SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC

More information

Sigma notation. 2.1 Introduction

Sigma notation. 2.1 Introduction Sigma otatio. Itroductio We use sigma otatio to idicate the summatio process whe we have several (or ifiitely may) terms to add up. You may have see sigma otatio i earlier courses. It is used to idicate

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

Some remarks for codes and lattices over imaginary quadratic

Some remarks for codes and lattices over imaginary quadratic Some remarks for codes ad lattices over imagiary quadratic fields Toy Shaska Oaklad Uiversity, Rochester, MI, USA. Caleb Shor Wester New Eglad Uiversity, Sprigfield, MA, USA. shaska@oaklad.edu Abstract

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

Fortgeschrittene Datenstrukturen Vorlesung 11

Fortgeschrittene Datenstrukturen Vorlesung 11 Fortgeschrittee Datestruture Vorlesug 11 Schriftführer: Marti Weider 19.01.2012 1 Succict Data Structures (ctd.) 1.1 Select-Queries A slightly differet approach, compared to ra, is used for select. B represets

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

MATH 1910 Workshop Solution

MATH 1910 Workshop Solution MATH 90 Workshop Solutio Fractals Itroductio: Fractals are atural pheomea or mathematical sets which exhibit (amog other properties) self similarity: o matter how much we zoom i, the structure remais the

More information

LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES

LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES J Lodo Math Soc (2 50, (1994, 465 476 LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES Jerzy Wojciechowski Abstract I [5] Abbott ad Katchalski ask if there exists a costat c >

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Lecture XVI - Lifting of paths and homotopies

Lecture XVI - Lifting of paths and homotopies Lecture XVI - Liftig of paths ad homotopies I the last lecture we discussed the liftig problem ad proved that the lift if it exists is uiquely determied by its value at oe poit. I this lecture we shall

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

CSE 202 Homework 1 Matthias Springer, A Yes, there does always exist a perfect matching without a strong instability.

CSE 202 Homework 1 Matthias Springer, A Yes, there does always exist a perfect matching without a strong instability. CSE 0 Homework 1 Matthias Spriger, A9950078 1 Problem 1 Notatio a b meas that a is matched to b. a < b c meas that b likes c more tha a. Equality idicates a tie. Strog istability Yes, there does always

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

10.6 ALTERNATING SERIES

10.6 ALTERNATING SERIES 0.6 Alteratig Series Cotemporary Calculus 0.6 ALTERNATING SERIES I the last two sectios we cosidered tests for the covergece of series whose terms were all positive. I this sectio we examie series whose

More information

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row:

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row: Math 5-4 Tue Feb 4 Cotiue with sectio 36 Determiats The effective way to compute determiats for larger-sized matrices without lots of zeroes is to ot use the defiitio, but rather to use the followig facts,

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

PROPERTIES OF AN EULER SQUARE

PROPERTIES OF AN EULER SQUARE PROPERTIES OF N EULER SQURE bout 0 the mathematicia Leoard Euler discussed the properties a x array of letters or itegers ow kow as a Euler or Graeco-Lati Square Such squares have the property that every

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term. 0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row:

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row: Math 50-004 Tue Feb 4 Cotiue with sectio 36 Determiats The effective way to compute determiats for larger-sized matrices without lots of zeroes is to ot use the defiitio, but rather to use the followig

More information

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples arxiv:10021383v2 [mathnt] 9 Feb 2010 A aalog of the arithmetic triagle obtaied by replacig the products by the least commo multiples Bair FARHI bairfarhi@gmailcom MSC: 11A05 Keywords: Al-Karaji s triagle;

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

EE260: Digital Design, Spring n MUX Gate n Rudimentary functions n Binary Decoders. n Binary Encoders n Priority Encoders

EE260: Digital Design, Spring n MUX Gate n Rudimentary functions n Binary Decoders. n Binary Encoders n Priority Encoders EE260: Digital Desig, Sprig 2018 EE 260: Itroductio to Digital Desig MUXs, Ecoders, Decoders Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Overview of Ecoder ad Decoder MUX Gate

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

SEQUENCE AND SERIES NCERT

SEQUENCE AND SERIES NCERT 9. Overview By a sequece, we mea a arragemet of umbers i a defiite order accordig to some rule. We deote the terms of a sequece by a, a,..., etc., the subscript deotes the positio of the term. I view of

More information

Solutions to Final Exam

Solutions to Final Exam Solutios to Fial Exam 1. Three married couples are seated together at the couter at Moty s Blue Plate Dier, occupyig six cosecutive seats. How may arragemets are there with o wife sittig ext to her ow

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

ADVANCED SOFTWARE ENGINEERING

ADVANCED SOFTWARE ENGINEERING ADVANCED SOFTWARE ENGINEERING COMP 3705 Exercise Usage-based Testig ad Reliability Versio 1.0-040406 Departmet of Computer Ssciece Sada Narayaappa, Aeliese Adrews Versio 1.1-050405 Departmet of Commuicatio

More information

The Binomial Theorem

The Binomial Theorem The Biomial Theorem Robert Marti Itroductio The Biomial Theorem is used to expad biomials, that is, brackets cosistig of two distict terms The formula for the Biomial Theorem is as follows: (a + b ( k

More information

You may work in pairs or purely individually for this assignment.

You may work in pairs or purely individually for this assignment. CS 04 Problem Solvig i Computer Sciece OOC Assigmet 6: Recurreces You may work i pairs or purely idividually for this assigmet. Prepare your aswers to the followig questios i a plai ASCII text file or

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

On Some Properties of Digital Roots

On Some Properties of Digital Roots Advaces i Pure Mathematics, 04, 4, 95-30 Published Olie Jue 04 i SciRes. http://www.scirp.org/joural/apm http://dx.doi.org/0.436/apm.04.46039 O Some Properties of Digital Roots Ilha M. Izmirli Departmet

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Large holes in quasi-random graphs

Large holes in quasi-random graphs Large holes i quasi-radom graphs Joaa Polcy Departmet of Discrete Mathematics Adam Mickiewicz Uiversity Pozań, Polad joaska@amuedupl Submitted: Nov 23, 2006; Accepted: Apr 10, 2008; Published: Apr 18,

More information

End-of-Year Contest. ERHS Math Club. May 5, 2009

End-of-Year Contest. ERHS Math Club. May 5, 2009 Ed-of-Year Cotest ERHS Math Club May 5, 009 Problem 1: There are 9 cois. Oe is fake ad weighs a little less tha the others. Fid the fake coi by weighigs. Solutio: Separate the 9 cois ito 3 groups (A, B,

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

~W I F

~W I F A FIBONACCI PROPERTY OF WYTHOFF PAIRS ROBERT SILBER North Carolia State Uiversity, Raleigh, North Carolia 27607 I this paper we poit out aother of those fasciatig "coicideces" which are so characteristically

More information

Solutions to Math 347 Practice Problems for the final

Solutions to Math 347 Practice Problems for the final Solutios to Math 347 Practice Problems for the fial 1) True or False: a) There exist itegers x,y such that 50x + 76y = 6. True: the gcd of 50 ad 76 is, ad 6 is a multiple of. b) The ifiimum of a set is

More information

CSI 2101 Discrete Structures Winter Homework Assignment #4 (100 points, weight 5%) Due: Thursday, April 5, at 1:00pm (in lecture)

CSI 2101 Discrete Structures Winter Homework Assignment #4 (100 points, weight 5%) Due: Thursday, April 5, at 1:00pm (in lecture) CSI 101 Discrete Structures Witer 01 Prof. Lucia Moura Uiversity of Ottawa Homework Assigmet #4 (100 poits, weight %) Due: Thursday, April, at 1:00pm (i lecture) Program verificatio, Recurrece Relatios

More information

Some examples of vector spaces

Some examples of vector spaces Roberto s Notes o Liear Algebra Chapter 11: Vector spaces Sectio 2 Some examples of vector spaces What you eed to kow already: The te axioms eeded to idetify a vector space. What you ca lear here: Some

More information

Math 25 Solutions to practice problems

Math 25 Solutions to practice problems Math 5: Advaced Calculus UC Davis, Sprig 0 Math 5 Solutios to practice problems Questio For = 0,,, 3,... ad 0 k defie umbers C k C k =! k!( k)! (for k = 0 ad k = we defie C 0 = C = ). by = ( )... ( k +

More information

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES Peter M. Maurer Why Hashig is θ(). As i biary search, hashig assumes that keys are stored i a array which is idexed by a iteger. However, hashig attempts to bypass

More information

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals.

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals. Discrete-ime Sigals ad Systems Discrete-ime Sigals ad Systems Dr. Deepa Kudur Uiversity of oroto Referece: Sectios. -.5 of Joh G. Proakis ad Dimitris G. Maolakis, Digital Sigal Processig: Priciples, Algorithms,

More information

NAME: ALGEBRA 350 BLOCK 7. Simplifying Radicals Packet PART 1: ROOTS

NAME: ALGEBRA 350 BLOCK 7. Simplifying Radicals Packet PART 1: ROOTS NAME: ALGEBRA 50 BLOCK 7 DATE: Simplifyig Radicals Packet PART 1: ROOTS READ: A square root of a umber b is a solutio of the equatio x = b. Every positive umber b has two square roots, deoted b ad b or

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Random assignment with integer costs

Random assignment with integer costs Radom assigmet with iteger costs Robert Parviaie Departmet of Mathematics, Uppsala Uiversity P.O. Box 480, SE-7506 Uppsala, Swede robert.parviaie@math.uu.se Jue 4, 200 Abstract The radom assigmet problem

More information

Commutativity in Permutation Groups

Commutativity in Permutation Groups Commutativity i Permutatio Groups Richard Wito, PhD Abstract I the group Sym(S) of permutatios o a oempty set S, fixed poits ad trasiet poits are defied Prelimiary results o fixed ad trasiet poits are

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

If we want to add up the area of four rectangles, we could find the area of each rectangle and then write this sum symbolically as:

If we want to add up the area of four rectangles, we could find the area of each rectangle and then write this sum symbolically as: Sigma Notatio: If we wat to add up the area of four rectagles, we could fid the area of each rectagle ad the write this sum symbolically as: Sum A A A A Liewise, the sum of the areas of te triagles could

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Worksheet on Generating Functions

Worksheet on Generating Functions Worksheet o Geeratig Fuctios October 26, 205 This worksheet is adapted from otes/exercises by Nat Thiem. Derivatives of Geeratig Fuctios. If the sequece a 0, a, a 2,... has ordiary geeratig fuctio A(x,

More information

gcd(n, k) = 1 Kwang Ho Kim 1 and Sihem Mesnager 2 Pyongyang, Democratic People s Republic of Korea

gcd(n, k) = 1 Kwang Ho Kim 1 and Sihem Mesnager 2 Pyongyang, Democratic People s Republic of Korea Solvig x 2k + + x + a = 0 i F 2 gcd, k = with Kwag Ho Kim ad Sihem Mesager 2 Istitute of Mathematics, State Academy of Scieces ad PGItech Corp., Pyogyag, Democratic People s Republic of Korea khk.cryptech@gmail.com

More information

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction Chapter 2 Periodic poits of toral automorphisms 2.1 Geeral itroductio The automorphisms of the two-dimesioal torus are rich mathematical objects possessig iterestig geometric, algebraic, topological ad

More information

4 The Sperner property.

4 The Sperner property. 4 The Sperer property. I this sectio we cosider a surprisig applicatio of certai adjacecy matrices to some problems i extremal set theory. A importat role will also be played by fiite groups. I geeral,

More information

On Generalized Fibonacci Numbers

On Generalized Fibonacci Numbers Applied Mathematical Scieces, Vol. 9, 215, o. 73, 3611-3622 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.5299 O Geeralized Fiboacci Numbers Jerico B. Bacai ad Julius Fergy T. Rabago Departmet

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Math 116 Practice for Exam 3

Math 116 Practice for Exam 3 Math 6 Practice for Eam 3 Geerated April 4, 26 Name: SOLUTIONS Istructor: Sectio Number:. This eam has questios. Note that the problems are ot of equal difficulty, so you may wat to skip over ad retur

More information

Weakly Connected Closed Geodetic Numbers of Graphs

Weakly Connected Closed Geodetic Numbers of Graphs Iteratioal Joural of Mathematical Aalysis Vol 10, 016, o 6, 57-70 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/101988/ijma01651193 Weakly Coected Closed Geodetic Numbers of Graphs Rachel M Pataga 1, Imelda

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

2.4 - Sequences and Series

2.4 - Sequences and Series 2.4 - Sequeces ad Series Sequeces A sequece is a ordered list of elemets. Defiitio 1 A sequece is a fuctio from a subset of the set of itegers (usually either the set 80, 1, 2, 3,... < or the set 81, 2,

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals Math 1314 Lesso 16 Area ad Riema Sums ad Lesso 17 Riema Sums Usig GeoGebra; Defiite Itegrals The secod questio studied i calculus is the area questio. If a regio coforms to a kow formula from geometry,

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

c. Explain the basic Newsvendor model. Why is it useful for SC models? e. What additional research do you believe will be helpful in this area?

c. Explain the basic Newsvendor model. Why is it useful for SC models? e. What additional research do you believe will be helpful in this area? 1. Research Methodology a. What is meat by the supply chai (SC) coordiatio problem ad does it apply to all types of SC s? Does the Bullwhip effect relate to all types of SC s? Also does it relate to SC

More information

Calculus with Analytic Geometry 2

Calculus with Analytic Geometry 2 Calculus with Aalytic Geometry Fial Eam Study Guide ad Sample Problems Solutios The date for the fial eam is December, 7, 4-6:3p.m. BU Note. The fial eam will cosist of eercises, ad some theoretical questios,

More information

Math 116 Second Midterm November 13, 2017

Math 116 Second Midterm November 13, 2017 Math 6 Secod Midterm November 3, 7 EXAM SOLUTIONS. Do ot ope this exam util you are told to do so.. Do ot write your ame aywhere o this exam. 3. This exam has pages icludig this cover. There are problems.

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall Iteratioal Mathematical Forum, Vol. 9, 04, o. 3, 465-475 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/imf.04.48 Similarity Solutios to Usteady Pseudoplastic Flow Near a Movig Wall W. Robi Egieerig

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information