Structural Break Detection in Time Series

Size: px
Start display at page:

Download "Structural Break Detection in Time Series"

Transcription

1 Srucural Break Deecion in Time Series Richard A. Davis Thomas ee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp:// This research suppored in par by an IBM faculy award. Monreal 5/05

2 Inroducion Seup Examples AR GARCH Sochasic volailiy Sae space models Model Selecion Using Minimum Descripion engh (MD General principles Applicaion o AR models wih breaks Opimizaion using Geneic Algorihms Basics Implemenaion for srucural break esimaion Simulaion resuls Applicaions Simulaion resuls for GARCH and SSM Monreal 5/05

3 Inroducion The Premise (in a general framework: Base model: P θ family or probabiliy models for a saionary ime series. Observaions: y... y n Segmened model: here exis an ineger m 0 and locaions τ 0 = < τ <... < τ m- < τ m = n such ha Y = X if τ - < τ where {X } is a saionary ime series wih probabiliy disr and θ θ. Obecive: esimae P θ m = number of segmens τ = locaion of h break poin θ = parameer vecor in h epoch Monreal 5/05 3

4 . Piecewise AR model: Y Examples = γ φ Y φp Y p σ ε if τ - < τ where τ 0 = < τ <... < τ m- < τ m = n and {ε } is IID(0. Goal: Esimae m = number of segmens τ = locaion of h break poin γ = level in h epoch p = order of AR process in h epoch ( φ = AR coefficiens in h K φ p epoch σ = scale in h epoch Monreal 5/05 4

5 Piecewise AR models (con Srucural breaks: Monreal 5/05 Kiagawa and Akaike (978 fiing locally saionary auoregressive models using AIC compuaions faciliaed by he use of he Householder ransformaion Davis Huang and Yao (995 likelihood raio es for esing a change in he parameers and/or order of an AR process. Kiagawa Takanami and Masumoo (00 signal exracion in seismology-esimae he arrival ime of a seismic signal. Ombao Raz von Sachs and Malow (00 orhogonal complex-valued ransforms ha are localized in ime and frequency- smooh localized complex exponenial (SEX ransform. applicaions o EEG ime series and speech daa. 5

6 Moivaion for using piecewise AR models: Piecewise AR is a special case of a piecewise saionary process (see Adak 998 m ~ Y = Y I ( / n n [ τ τ = where { } =... m is a sequence of saionary processes. I is Y argued in Ombao e al. (00 ha if {Y n } is a locally saionary process (in he sense of Dahlhaus hen here exiss a piecewise ~ saionary process } wih { Y n m n wih m n / n 0 as n ha approximaes {Y n } (in average mean square. Roughly speaking: {Y n } is a locally saionary process if i has a imevarying specrum ha is approximaely A(/nω where A(uω is a coninuous funcion in u. Monreal 5/05 6

7 . Segmened GARCH model: Examples (con Y σ = σ ε = ω α Y α p Y p β σ β q σ q if τ - < τ where τ 0 = < τ <... < τ m- < τ m = n and {ε } is IID(0. 3. Segmened sochasic volailiy model: Y = σ ε logσ = γ φ logσ φ p logσ p ν η if τ - < τ. 4. Segmened sae-space model (SVM a special case: p( y α = γ α... α φ α y... y φ = p p( y α p α is σ η specified if τ - < τ. Monreal 5/05 7

8 Model Selecion Using Minimum Descripion engh Basics of MD: Choose he model which maximizes he compression of he daa or equivalenly selec he model ha minimizes he code lengh of he daa (i.e. amoun of memory required o encode he daa. M = class of operaing models for y = (y... y n F (y = code lengh of y relaive o F M Typically his erm can be decomposed ino wo pieces (wo-par code where ( y = ( Fˆ y (ˆ e Fˆ F ( Fˆ y (ˆ e Fˆ = code lengh of he fied model for F = code lengh of he residuals based on he fied model Monreal 5/05 8

9 9 Monreal 5/05 Illusraion Using a Simple Regression Model (see T. ee `0 Encoding he daa: (x y... (x n y n. Naïve case ( ( ( ( ( ( " (" n n n n y y x x y y x x naive = = K K. inear model; suppose y i = a 0 a x i i =... n. Then ( ( ( ( ( ( " (" 0 0 a a x x a a x x p n n = = = K 3. inear model wih noise; suppose y i = a 0 a x i ε i i =... n where {ε i }~IID N(0σ. Then If A < (y... (y n hen p= encoding scheme dominaes he naïve scheme K ˆ ˆ ˆ ˆ (ˆ (ˆ ( ˆ ( ˆ ( ( " (" 0 0 σ ε ε σ = = a a a a x x p n n A

10 Model Selecion Using Minimum Descripion engh (con Applied o he segmened AR model: Y = γ φ Y φp Y p σ ε if τ - < τ Firs erm ( Fˆ y : e n = τ τ - and ψ = ( γ φ K φp σ denoe he lengh of he h segmen and he parameer vecor of he h AR process respecively. Then ( Fˆ y = (m ( τ K τ = (m ( n K n m m ( p K p ( p K p m m ( ψˆ ( ψˆ y ( ψˆ m y ( ψˆ m y y Encoding: ineger I : log I bis (if I unbounded log I U bis (if I bounded by I U ME θˆ : ½ log N bis (where N = number of observaions used o compue θˆ ; Rissanen (989 Monreal 5/05 0

11 So m m p (Fˆ y = log m mlog n log p log = Second erm (ˆ e Fˆ : Using Shannon s classical resuls on informaion heory Rissanen demonsraes ha he code lengh of ê can be approximaed by he negaive of he log-likelihood of he fied model i.e. by (ˆ e Fˆ m = n = (log (πσˆ For fixed values of m (τ p... (τ m p m we define he MD as MD( m( τ p = log K( τ m p m m mlog n m = log p p log n m m n = = n n log (πσˆ The sraegy is o find he bes segmenaion ha minimizes MD(mτ p τ m p m. To speed hings up we use Y-W esimaes of AR parameers. Monreal 5/05

12 Opimizaion Using Geneic Algorihms Basics of GA: Class of opimizaion algorihms ha mimic naural evoluion. Sar wih an iniial se of chromosomes or populaion of possible soluions o he opimizaion problem. Paren chromosomes are randomly seleced (proporional o he rank of heir obecive funcion values and produce offspring using crossover or muaion operaions. Afer a sufficien number of offspring are produced o form a second generaion he process hen resars o produce a hird generaion. Monreal 5/05 Based on Darwin s heory of naural selecion he process should produce fuure generaions ha give a smaller (or larger obecive funcion.

13 Applicaion o Srucural Breaks (con Geneic Algorihm: Chromosome consiss of n genes each aking he value of (no break or p (order of AR process. Use naural selecion o find a near opimal soluion. Map he break poins wih a chromosome c via ( m ( τ p K ( τ m p m c = ( δ K δn ( m m δn where if nobreak poin a δ = p if break poin a ime = τ For example c = ( : 6 5 would correspond o a process as follows: andar order is p. AR( =:5; AR(0 =6:0; AR(0 =:4; AR(3 =5:0 Monreal 5/05 3

14 Implemenaion of Geneic Algorihm (con Generaion 0: Sar wih (00 randomly generaed chromosomes c... c wih associaed MD values MD(c... MD(c. Generaion : A new child in he nex generaion is formed from he chromosomes c... c of he previous generaion as follows: wih probabiliy π c crossover occurs. wo paren chromosomes c i and c are seleced a random wih probabiliies proporional o he ranks of MD(c i. k h gene of child is δ k = δ ik w.p. ½ and δ k w.p. ½ wih probabiliy π c muaion occurs. a paren chromosome c i is seleced k h gene of child is δ k = δ ik w.p. π ; w.p. π ;and p w.p. π π. Monreal 5/05 4

15 Implemenaion of Geneic Algorihm (con Execuion of GA: Run GA unil convergence or unil a maximum number of generaions has been reached.. Various Sraegies: include he op en chromosomes from las generaion in nex generaion. use muliple islands in which populaions run independenly and hen allow migraion afer a fixed number of generaions. This implemenaion is amenable o parallel compuing. Monreal 5/05 5

16 Simulaion Examples-based on Ombao e al. (00 es cases. Piecewise saionary wih dyadic srucure: Consider a ime series following he model.9 Y if ε if < 53 Y if =.69Y.8Y ε if 53 < Y ε if.8y if where {ε } ~ IID N( Monreal 5/05 Time 6

17 . Piecewise sa (con Implemenaion: Sar wih NI = 50 islands each wih populaion size = 00. Afer every Mi = 5 generaions allow migraion. 4 Replace wors in Island 34 wih bes from Island Sopping rule: Sop when he max MD does no change for 0 consecuive migraions or afer 00 migraions. Span configuraion for model selecion: Max AR order K = 0 p m p π / p / / / / / / / / Monreal 5/05 7

18 . Piecewise sa (con GA resuls: 3 pieces breaks a τ =53; τ =769. Toal run ime 6.3 secs Fied model: φ φ σ - 5: : : True Model Fied Model Time Time Monreal 5/05 8

19 Simulaion Examples (con 3. Slowly varying AR( model: Y = ay. 8 Y ε if 04 where =. 8[ 0.5cos( π /04] and {ε } ~ IID N(0. a a_ Monreal 5/05 Time ime 9

20 3. Slowly varying AR( (con GA resuls: 3 pieces breaks a τ =93 τ =65. Toal run ime 7.45 secs Fied model: φ φ σ - 9: : : True Model Fied Model Monreal 5/ Time Time 0

21 3. Slowly varying AR( (con In he graph below righ we average he specogram over he GA fied models generaed from each of he 00 simulaed realizaions. True Model Average Model Frequency Time Time Monreal 5/05 4

22 Example: Monhly Deahs & Serious Inuries UK Daa: Y = number of monhly deahs and serious inuries in UK Jan `75 Dec `84 ( = 0 Remark: Sea bel legislaion inroduced in Feb `83 ( = 99. Couns Year Monreal 5/05 5

23 Example: Monhly Deahs & Serious Inuries UK Daa: Y = number of monhly deahs and serious inuries in UK Jan `75 Dec `84 ( = 0 Remark: Sea bel legislaion inroduced in Feb `83 ( = 99. Differenced Couns Year Resuls from GA: 3 pieces; ime = 4.4secs Piece : (= 98 IID; Piece : (=99 08 IID; Piece 3: =09 0 AR( Monreal 5/05 6

24 Examples Speech signal: GREASY G R EA S Y Time Monreal 5/05 7

25 Speech signal: GREASY n = 576 observaions m = 5 break poins Run ime = 8.0 secs G R EA S Y Time Monreal 5/ Time 8

26 Applicaion o GARCH (con Garch( model: Y σ = σ ε = ω α Y { ε }~ IID(0 β σ if τ - < τ σ.4. Y =.4. Y # of CPs 0.5 σ.6 σ GA % if if < < 000. AG % CP esimae = 506 Time AG = Andreou and Ghysels ( Monreal 5/05 9

27 Applicaion o GARCH (con Garch( model: Y σ = σ ε = ω α Y { ε }~ IID(0 β σ if τ - < τ σ.4. Y =.4. Y # of CPs 0.5 σ.8 σ GA % if if < < 000. AG % CP esimae = 50 Time AG = Andreou and Ghysels ( Monreal 5/05 30

28 Applicaion o GARCH (con More simulaion resuls for Garch( : Y = σ ε { ε }~ IID(0 σ.05.4y =.00.3Y.3σ.σ if < τ if τ < 000. τ Mean SE Med Freq 50 GA Berkes GA Berkes GA Berkes Berkes = Berkes Gombay Horvah and Kokoszka (004. Monreal 5/05 3

29 Applicaion o Parameer-Driven SS Models Sae Space Model Seup: Observaion equaion: p(y α = exp{α y b(α c(y }. Sae equaion: {α } follows he piecewise AR( model given by α = γ k φ k α - σ k ε if τ k- < τ k where = τ 0 < τ < < τ m < n and {ε } ~ IID N(0. Parameers: m = number of break poins τ k = locaion of break poins γ k = level in k h epoch φ k = AR coefficiens k h epoch σ k = scale in k h epoch Monreal 5/05 3

30 Applicaion o Srucural Breaks (con Esimaion: For (m τ... τ m fixed calculae he approximae likelihood evaluaed a he ME i.e. / Gn T * T * * T * a ( ψˆ;y n = exp{y nα { b( α c(yn} ( α µ Gn ( α µ /} ( K G n / where ˆ ˆ ψˆ = (ˆ γ K γˆ φ K φ σˆ K σˆ is he ME. m m m Goal: Opimize an obecive funcion over (m τ... τ m. use minimum descripion lengh (MD as an obecive funcion use geneic algorihm for opimizaion Monreal 5/05 33

31 Coun Daa Example Model: Y α Pois(exp{β α } α = φα - ε {ε }~IID N(0 σ y MD True model: ime Breaking Poin Y α ~ Pois(exp{.7 α } α =.5α - ε {ε }~IID N(0.3 < 50 Y α ~ Pois(exp{.7 α } α = -.5α - ε {ε }~IID N(0.3 > 50. Monreal 5/05 GA esimae 5 ime 67secs 34

32 SV Process Example Model: Y α N(0exp{α } α = γ φ α - ε {ε }~IID N(0 σ y MD ime Breaking Poin True model: Y α ~ N(0 exp{α } α = α - ε {ε }~IID N( Y α ~ N(0 exp{α } α = α - ε {ε }~IID N(0.5 > 750. GA esimae 754 ime 053 secs Monreal 5/05 35

33 SV Process Example Model: Y α N(0exp{α } α = γ φ α - ε {ε }~IID N(0 σ y MD ime Breaking Poin True model: Y α ~ N(0 exp{α } α = α - ε {ε }~IID N( Y α ~ N(0 exp{α } α = α - ε {ε }~IID N( > 50. GA esimae 5 ime 69s Monreal 5/05 36

34 SV Process Example-(con True model: Y α ~ N(0 exp{a } α = α - e {ε }~IID N( Y α N(0 exp{α } α = α - ε {ε }~IID N( > 50. Fied model based on no srucural break: Y α N(0 exp{α } α = α - ε {ε }~IID N( y original series y simulaed series ime ime Monreal 5/05 37

35 SV Process Example-(con Fied model based on no srucural break: Y α N(0 exp{α } α = α - ε {ε }~IID N( y simulaed series MD ime Breaking Poin Monreal 5/05 38

36 Summary Remarks. MD appears o be a good crierion for deecing srucural breaks.. Opimizaion using a geneic algorihm is well suied o find a near opimal value of MD. 3. This procedure exends easily o mulivariae problems. 4. While esimaing srucural breaks for nonlinear ime series models is more challenging his paradigm of using MD ogeher GA holds promise for break deecion in parameer-driven models and oher nonlinear models. Monreal 5/05 39

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by an IBM faculy

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by an IBM faculy

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by: Naional

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by an IBM faculy

More information

Structural Break Detection for a Class of Nonlinear Time Series Models

Structural Break Detection for a Class of Nonlinear Time Series Models Srucural Break Deecion for a Class of Nonlinear Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by an IBM faculy

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Columbia Universiy Thomas Lee Colorado Sae Universiy Gabriel Rodriguez-Yam Universidad Auónoma Chapingo (hp://www.sa.columbia.edu/~rdavis/lecures)

More information

Structural Break Detection in Time Series

Structural Break Detection in Time Series Srucural Break Deecion in Tie Series Richard A. Davis Thoas Lee Gabriel Rodriguez-Ya Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by an IBM faculy award.

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

MODULE - 9 LECTURE NOTES 2 GENETIC ALGORITHMS

MODULE - 9 LECTURE NOTES 2 GENETIC ALGORITHMS 1 MODULE - 9 LECTURE NOTES 2 GENETIC ALGORITHMS INTRODUCTION Mos real world opimizaion problems involve complexiies like discree, coninuous or mixed variables, muliple conflicing objecives, non-lineariy,

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen Mulivariae Regular Variaion wih Applicaion o Financial Time Series Models Richard A. Davis Colorado Sae Universiy Bojan Basrak Eurandom Thomas Mikosch Universiy of Groningen Ouline + Characerisics of some

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Regular Variation and Financial Time Series Models

Regular Variation and Financial Time Series Models Regular Variaion and Financial Time Series Models Richard A. Davis Colorado Sae Universiy www.sa.colosae.edu/~rdavis Thomas Mikosch Universiy of Copenhagen Bojan Basrak Eurandom Ouline Characerisics of

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Capacity Constraints

Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Capacity Constraints IJCSI Inernaional Journal of Compuer Science Issues, Vol 9, Issue 1, No 1, January 2012 wwwijcsiorg 18 Applying Geneic Algorihms for Invenory Lo-Sizing Problem wih Supplier Selecion under Sorage Capaciy

More information

Robert Kollmann. 6 September 2017

Robert Kollmann. 6 September 2017 Appendix: Supplemenary maerial for Tracable Likelihood-Based Esimaion of Non- Linear DSGE Models Economics Leers (available online 6 Sepember 207) hp://dx.doi.org/0.06/j.econle.207.08.027 Rober Kollmann

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Asymptotic Equipartition Property - Seminar 3, part 1

Asymptotic Equipartition Property - Seminar 3, part 1 Asympoic Equipariion Propery - Seminar 3, par 1 Ocober 22, 2013 Problem 1 (Calculaion of ypical se) To clarify he noion of a ypical se A (n) ε and he smalles se of high probabiliy B (n), we will calculae

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad,

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad, GINI MEAN DIFFEENCE AND EWMA CHATS Muhammad iaz, Deparmen of Saisics, Quaid-e-Azam Universiy Islamabad, Pakisan. E-Mail: riaz76qau@yahoo.com Saddam Akbar Abbasi, Deparmen of Saisics, Quaid-e-Azam Universiy

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Crossing the Bridge between Similar Games

Crossing the Bridge between Similar Games Crossing he Bridge beween Similar Games Jan-David Quesel, Marin Fränzle, and Werner Damm Universiy of Oldenburg, Deparmen of Compuing Science, Germany CMACS Seminar CMU, Pisburgh, PA, USA 2nd December

More information

Space-time Galerkin POD for optimal control of Burgers equation. April 27, 2017 Absolventen Seminar Numerische Mathematik, TU Berlin

Space-time Galerkin POD for optimal control of Burgers equation. April 27, 2017 Absolventen Seminar Numerische Mathematik, TU Berlin Space-ime Galerkin POD for opimal conrol of Burgers equaion Manuel Baumann Peer Benner Jan Heiland April 27, 207 Absolvenen Seminar Numerische Mahemaik, TU Berlin Ouline. Inroducion 2. Opimal Space Time

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

Isolated-word speech recognition using hidden Markov models

Isolated-word speech recognition using hidden Markov models Isolaed-word speech recogniion using hidden Markov models Håkon Sandsmark December 18, 21 1 Inroducion Speech recogniion is a challenging problem on which much work has been done he las decades. Some of

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN Inernaional Journal of Applied Economerics and Quaniaive Sudies. Vol.1-3(004) STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN 001-004 OBARA, Takashi * Absrac The

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Stability. Coefficients may change over time. Evolution of the economy Policy changes

Stability. Coefficients may change over time. Evolution of the economy Policy changes Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza Chaper 7 Reed-Solomon Code Spring 9 Ammar Abu-Hudrouss Islamic Universiy Gaza ١ Inroducion A Reed Solomon code is a special case of a BCH code in which he lengh of he code is one less han he size of he

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

Particle Swarm Optimization Combining Diversification and Intensification for Nonlinear Integer Programming Problems

Particle Swarm Optimization Combining Diversification and Intensification for Nonlinear Integer Programming Problems Paricle Swarm Opimizaion Combining Diversificaion and Inensificaion for Nonlinear Ineger Programming Problems Takeshi Masui, Masaoshi Sakawa, Kosuke Kao and Koichi Masumoo Hiroshima Universiy 1-4-1, Kagamiyama,

More information

MATHEMATICAL DESCRIPTION OF THEORETICAL METHODS OF RESERVE ECONOMY OF CONSIGNMENT STORES

MATHEMATICAL DESCRIPTION OF THEORETICAL METHODS OF RESERVE ECONOMY OF CONSIGNMENT STORES MAHEMAICAL DESCIPION OF HEOEICAL MEHODS OF ESEVE ECONOMY OF CONSIGNMEN SOES Péer elek, József Cselényi, György Demeer Universiy of Miskolc, Deparmen of Maerials Handling and Logisics Absrac: Opimizaion

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type EMS SCM join meeing Barcelona, May 28-30, 2015 On sochasic parial differenial equaions of parabolic ype Isván Gyöngy School of Mahemaics and Maxwell Insiue Edinburgh Universiy 1 I. Filering problem II.

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Improvement of Forecasting Accuracy by the Utilization of Genetic Algorithm with an Application to the Sanitary Materials Data

Improvement of Forecasting Accuracy by the Utilization of Genetic Algorithm with an Application to the Sanitary Materials Data Volume 4 No. 4, April 4 ISSN 4985 Inernaional Journal of Informaion and Communicaion Technology Research 4 ICT Journal. All righs reserved hp://www.esjournals.org Improvemen of Forecasing Accuracy by he

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

A new improved filter for target tracking: compressed iterative particle filter

A new improved filter for target tracking: compressed iterative particle filter Vol.3, No.4, 301-306 (011) hp://d.doi.org/10.436/ns.011.34039 Naural Science A ne improved filer for arge racking: compressed ieraive paricle filer Hongbo Zhu 1 *, Hai Zhao, Dan Liu, Chunhe Song 1 Sofare

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Space

Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Space Inernaional Journal of Indusrial and Manufacuring Engineering Applying Geneic Algorihms for Invenory Lo-Sizing Problem wih Supplier Selecion under Sorage Space Vichai Rungreunganaun and Chirawa Woarawichai

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

III. Module 3. Empirical and Theoretical Techniques

III. Module 3. Empirical and Theoretical Techniques III. Module 3. Empirical and Theoreical Techniques Applied Saisical Techniques 3. Auocorrelaion Correcions Persisence affecs sandard errors. The radiional response is o rea he auocorrelaion as a echnical

More information

Kalman filtering for maximum likelihood estimation given corrupted observations.

Kalman filtering for maximum likelihood estimation given corrupted observations. alman filering maimum likelihood esimaion given corruped observaions... Holmes Naional Marine isheries Service Inroducion he alman filer is used o eend likelihood esimaion o cases wih hidden saes such

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

MANY FACET, COMMON LATENT TRAIT POLYTOMOUS IRT MODEL AND EM ALGORITHM. Dimitar Atanasov

MANY FACET, COMMON LATENT TRAIT POLYTOMOUS IRT MODEL AND EM ALGORITHM. Dimitar Atanasov Pliska Sud. Mah. Bulgar. 20 (2011), 5 12 STUDIA MATHEMATICA BULGARICA MANY FACET, COMMON LATENT TRAIT POLYTOMOUS IRT MODEL AND EM ALGORITHM Dimiar Aanasov There are many areas of assessmen where he level

More information

Single-Pass-Based Heuristic Algorithms for Group Flexible Flow-shop Scheduling Problems

Single-Pass-Based Heuristic Algorithms for Group Flexible Flow-shop Scheduling Problems Single-Pass-Based Heurisic Algorihms for Group Flexible Flow-shop Scheduling Problems PEI-YING HUANG, TZUNG-PEI HONG 2 and CHENG-YAN KAO, 3 Deparmen of Compuer Science and Informaion Engineering Naional

More information

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear In The name of God Lecure4: Percepron and AALIE r. Majid MjidGhoshunih Inroducion The Rosenbla s LMS algorihm for Percepron 958 is buil around a linear neuron a neuron ih a linear acivaion funcion. Hoever,

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

. Now define y j = log x j, and solve the iteration.

. Now define y j = log x j, and solve the iteration. Problem 1: (Disribued Resource Allocaion (ALOHA!)) (Adaped from M& U, Problem 5.11) In his problem, we sudy a simple disribued proocol for allocaing agens o shared resources, wherein agens conend for resources

More information

A Framework for Efficient Document Ranking Using Order and Non Order Based Fitness Function

A Framework for Efficient Document Ranking Using Order and Non Order Based Fitness Function A Framework for Efficien Documen Ranking Using Order and Non Order Based Finess Funcion Hazra Imran, Adii Sharan Absrac One cenral problem of informaion rerieval is o deermine he relevance of documens

More information

A Hop Constrained Min-Sum Arborescence with Outage Costs

A Hop Constrained Min-Sum Arborescence with Outage Costs A Hop Consrained Min-Sum Arborescence wih Ouage Coss Rakesh Kawara Minnesoa Sae Universiy, Mankao, MN 56001 Email: Kawara@mnsu.edu Absrac The hop consrained min-sum arborescence wih ouage coss problem

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Hybrid Control and Switched Systems. Lecture #3 What can go wrong? Trajectories of hybrid systems

Hybrid Control and Switched Systems. Lecture #3 What can go wrong? Trajectories of hybrid systems Hybrid Conrol and Swiched Sysems Lecure #3 Wha can go wrong? Trajecories of hybrid sysems João P. Hespanha Universiy of California a Sana Barbara Summary 1. Trajecories of hybrid sysems: Soluion o a hybrid

More information

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix Wha Ties Reurn Volailiies o Price Valuaions and Fundamenals? On-Line Appendix Alexander David Haskayne School of Business, Universiy of Calgary Piero Veronesi Universiy of Chicago Booh School of Business,

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Expectation- Maximization & Baum-Welch. Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15

Expectation- Maximization & Baum-Welch. Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15 Expecaion- Maximizaion & Baum-Welch Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15 1 The goal Inpu: incomplee daa originaing from a probabiliy disribuion wih some unknown parameers Wan o find

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of 4 Soluionbank Edexcel AS and A Level Modular Mahemaics Exercise A, Quesion Quesion: Skech he graphs of (a) y = e x + (b) y = 4e x (c) y = e x 3 (d) y = 4 e x (e) y = 6 + 0e x (f) y = 00e x + 0

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

Reconstructing the power grid dynamic model from sparse measurements

Reconstructing the power grid dynamic model from sparse measurements Reconsrucing he power grid dynamic model from sparse measuremens Andrey Lokhov wih Michael Cherkov, Deepjyoi Deka, Sidhan Misra, Marc Vuffray Los Alamos Naional Laboraory Banff, Canada Moivaion: learning

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

Particle Swarm Optimization

Particle Swarm Optimization Paricle Swarm Opimizaion Speaker: Jeng-Shyang Pan Deparmen of Elecronic Engineering, Kaohsiung Universiy of Applied Science, Taiwan Email: jspan@cc.kuas.edu.w 7/26/2004 ppso 1 Wha is he Paricle Swarm Opimizaion

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Appendix to Creating Work Breaks From Available Idleness

Appendix to Creating Work Breaks From Available Idleness Appendix o Creaing Work Breaks From Available Idleness Xu Sun and Ward Whi Deparmen of Indusrial Engineering and Operaions Research, Columbia Universiy, New York, NY, 127; {xs2235,ww24}@columbia.edu Sepember

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information