Physics of Aquatic Systems II

Size: px
Start display at page:

Download "Physics of Aquatic Systems II"

Transcription

1 Contents of Session 9 Physics of Aquatic Systems II 9. Model concepts Werner Aeschbach-Hertig Institute of Environmental Physics University of Heidelberg 1 Model concepts used to interpret tritium data Fully mixed system (exponential model) Multicompartment models (linked mixed boxes) (Black) box or lumped parameter models Theory, types of models Applications Excel workbook for box models calculations Numerical model of hydrological systems in space and time Groundwater flow and transport models Literature: Mook, Vol. 3, ch. 2; Vol. 6, ch. 2 and 4 Kinzelbach et al., 22 and more literature on web. ( 2 Motivation for modeling Tracer ages in Lake Issyk-Kul "Naive" tracer dating ( 3 H, 3 H- 3 He, CFCs, SF 6, 85 Kr, 14 C, ) assumes isolated water parcels (no mixing). Hydrological systems always show some degree of mixing. Tracer ages usually deviate from "true" mean water ages. Problem becomes evident in: Tracer time series (e.g. tritium) Multitracer studies Solution: Use simple models concepts to relate tracer concentrations to mean water residence times. Classical case: Interpretation of tritium time series from Hofer et al., 22, L&O 47: Why do the different tracer ages deviate from each other? 4 Influence of mixing on transient gas tracer ages Non-linearity of the 3 H- 3 He age under mixing 25 τ = 4 τ = 3 τ = 2 τ = 15 2 γ = 3 H young / 3 H old 2 τ = 12 3 He [TU] 15 1 τ = 1 τ = 7 age [yr] 15 1 γ = 1/2 γ = 1 γ = 2 γ = 4 5 τ = 4 5 τ = 2 2-comp. mixing: effect depends on curvature (d 2 c/dt 2 ) of input fct. Linear increase of input: linear response of age on mixing SF 6 : d 2 c/dt 2 > : SF 6 ages tend to underestimate the true age CFCs in last ~1 yr: d 2 c/dt 2 < : CFC ages overestimate true age H [TU] fraction of the old component Age of mixture is biased towards the age of the 3 H-rich component Issyk-Kul: 3 H homogenous (γ = 1): slightly overestimated ages 6

2 Tracer ages in Lake Issyk-Kul Qualitative explanation of age deviations in Lake Issyk-Kul: CFCs: d 2 c/dt 2 < : apparent tracer age much too high SF 6 : d 2 c/dt 2 > : tracer age slightly too low 3 H- 3 He: γ = 1, tracer age slightly too high Tracer ages in the Ocean Good agreement between CFCs and 3 H- 3 He for low ages Older mixtures: 3 H- 3 He biased towards bomb peak age Maximum CFC age: ~ 5 yr 7 8 Tritium time series: Smoothing by mixing Example: Mixing of fast and slow runoff components in a river Mixed reactor model (exponential model) Simple model for tritium in aquatic systems: Fully mixed reservoir with constant throughflow, variable input concentration, and decay Q,C in V,C Q,C Mass balance: from Mook, 21 9 V: System volume [L 3 ] Q: Flow rate [L 3 T -1 ] k = Q/V: Exchange rate [T -1 ] τ = V/Q: Exchange time [T] C: System concentration [ML -3 ] C in : Input concentration [ML -3 ] C out = C: Output conc. [ML -3 ] λ = decay constant [T -1 ] 1 st order linear inhomog. diff. equation. General solution for C() = C : System in operation since infinite time: 1 Tritium output from mixed reactor (exp. model) Tritium time series from Wellenberg spring Input Samples 1 1 input decay exp mod τ = 3 exp mod τ = 7 exp mod τ =

3 8 7 6 Tritium time series from Wellenberg spring Input Samples Tritium time series in springs: exponential model τ = 3 τ = 6 τ = 1 Input Samples decay decay component model: C = f p C p + f g C g Tritium time series in rivers Precipitation (p): prompt (within-year) runoff, input curve Groundwater (g): long-term reservoir, exponential model Tritium time series in rivers Results of 2-component model Fractions of components Model parameters for old (groundwater) component f p f g from Mook, from Mook, Tritium time series in springs: multi-box models Grafendorf spring, Austria Generalisation: Box or lumped parameter models Input Hydr. System = Black Box Output Several boxes (cells, compartments) in series Each box fully mixed Total mean res. time: 7 yr from Kendall and McDonnell,

4 Box models: Mathematics Time axis: t = (present) time, t' = time span before t, age Input: c in ( t t ) Transfer/response function, age/transit time distribution (TTD): ( ) ( ) g t with g t dt = 1 Mean age or transit time: () τ = t g t d t Output (convolution of input and transfer function plus decay): c out ()= t c in ( t t ) e λ t g () t d t 19 Parameter τ: Age Piston-flow Model (PM) Picks out the input of one specific age Describes closed system, no mixing Piston-flow age τ = apparent tracer age 2 Exponential Model (EM) Parameter τ: Mean age Weight of input events decreases exponentially with age recent input (t' << τ): highest contribution to output very old input (t' >> τ): very small contribution to output Describes completely mixed system (mixed reactor) Model age τ = mean residence time in mixed system Dispersion Model (DM) Parameter τ: Mean age Parameter δ: Dispersion Weight of input events: ~ Gauss-type distribution highest contribution to output for certain input age t' decreasing contribution to output for younger/older input Describes throughflow system with limited mixing (dispersion) Model age τ = mean transit time 23 24

5 .4.35 Exponential Model (EM) Transfer functions transfer function g(t') τ = 3 τ = 1 τ = 3.5 transfer function g(t') t' [yr] Dispersion Model (DM), δ = 1 τ = 3 τ = 1 τ = 3 transfer function g(t') Dispersion Model (DM), δ =.1 τ = 3 τ = 1 τ = t' [yr] t' [yr] 26 Dispersion parameter in the DM Exponential-Piston-Flow Model (EPM) Dispersivity α [L] and dispersion coefficient D [L 2 /T]: D = α v 1-D, constant throughflow, flow path x, flow time t: v = x D = α x τ τ Peclet-Zahl Pe [-] (Advektion/Dispersion): Pe v x D = x α Dispersion parameters δ [-] und d [T]: δ D v x = α x = 1 d 4D Pe v 2 = 4α v = 4τ α x = 4τ 1 Pe = 4τδ Gelhar et al. (empirical): α.1x Pe 1 δ.1 d.4τ Box models: Dispersion parameters describe apparent dispersion hydrodynamic dispersion, size of recharge area, screen length 27 Parameter τ: Mean age Parameter η: η -1 = mixed fraction of system volume Serial combination of mixed system and piston flow 28 Other possible model types Mixing with "old" Water Quite frequent situation: All tracer concentrations too low Explanation: Mixing with "old", tracer free water "Old" = pre ~195 (no bomb- 3 H/ 14 C, FCKWs, SF 6, 85 Kr) Add-on to any box-modell (PM, EM, DM, EPM, ) Parameter β: Fraction of old water (1 - β: young water) young c(t,τ,δ, ) (1-β)Q (1-β). c(t,τ,δ, ) From: Ozyurt & Bayari, 23, Computers & Geosciences 29: old c = βq 3

6 Example: Tritium in limestone aquifer, Poland Applications of box models to time series One tracer in one well (spring) at several times Schneealpe Austria Zuber et al., 24, J. Hydrol. 286: Rank et al., 1992, IAEA proceedings, Maloszewski et al., 22, J. Hydrol. 256: Applications of box models to multi-tracer studies Several tracers from several wells at one time Output of exponential model at time of sampling, for both tracers and variable values of τ Explaining differences of apparent tracer ages Results of a sampling in 2: Tritium: 18.8 ±.9 TU; 3 He tri : equivalent to 56.6 ±.7 TU age: 25 yr F-12: equivalent to 39 ± 1 pptv age: 15 yr 85 Kr: 25.7 ± 1.1 dpm/cc Kr age: 12 yr How can this be explained? 33 Tool: Excel workbook "Boxmodel", developed by K. Zoellmann and W. Aeschbach-Hertig (downloadable from 34 Box models versus numerical system models Box models Simple calculations, few parameters No spatial resolution No information on internal, physical structure of system Numerical Modelling Flow and transport in time and space Complex model definition, high computational needs More unknown parameters needs more data 35 Numerical groundwater models Equations of groundwater flow and transport (& boundary cond.): h ( K h) = S w t c σ w = v c + ( D c) + + ( cin c) t n n Discretisation and numerical solution on 2-D or 3-D grid, using finite difference method: h h h2 h1 = x x x2 x1 c c c2 c1 = t t t t e e

7 Numerical groundwater models Spatial discretisation of model area Example: 2-D model of Locust Grove, Delmarva Stepwise procedure using tracer ages to improve model calibration 37 from Reilly et al., 1994, Water Resour. Res. 3: Steps 1&2: Flowmodel and pathline analysis Step 3: Transport model for tritium 2-D vertical grid Flow model calibrated using hydraulic heads Calibration of dispersivity A) α L = α T = Comparison of path travel times with CFC-ages B) α L = α T =.15 m Recalibration of flow model from Reilly et al., 1994, Water Resour. Res. 3: from Reilly et al., 1994, Water Resour. Res. 3: Summary Need for models Simple "piston-flow" ages can be misleading Correct interpretation in case of mixing requires modeling Box models Simple, appropriate for quick analysis, few data Useful to interpret multitracer data sets Numerical models Powerful tools, but difficult to constrain and calibrate Tracer data can lead to substantial improvements of models 41

Physics of Aquatic Systems II

Physics of Aquatic Systems II Physics of Aquatic ystems II 8. Dating young waters (shallow groundwater, lakes, upper ocean) Werner Aeschbach-Hertig Institute of Environmental Physics University of Heidelberg Contents of ession 8 Dating

More information

Physics of Aquatic Systems II

Physics of Aquatic Systems II Physics of Aquatic Systems II 10. C-Dating Werner Aeschbach-Hertig Institute of Environmental Physics University of Heidelberg 1 Contents of Session 10 General principles of C dating Conventional C age,

More information

Models of tritium behaviour in hydrological systems

Models of tritium behaviour in hydrological systems Models of tritium behaviour in hydrological systems HydroPredict 2012 Predictions for hydrology, ecology and WRM Vienna 24-27 September 2012 International Atomic Energy Agency L. Araguás, P.K. Aggarwal,

More information

Physics of Aquatic Systems II

Physics of Aquatic Systems II Contents of Session 5 Physics of Aquatic Systems II 5. Stable Isotopes - Applications Some examples of applications Stable isotopes as markers of water origin Stable isotopes in process studies Stable

More information

Dating of ground water

Dating of ground water PART 16 Dating of ground water Introduction Why date? - to determine when recharge occurred - to determine groundwater velocities - to reconstruct regional flow patterns How to do this? - decay of radioactive

More information

Physics of Lakes. Contents Introduction to Isotope Hydrology. 2. Introduction to Isotope Hydrology. Problems studied in Isotope Hydrology

Physics of Lakes. Contents Introduction to Isotope Hydrology. 2. Introduction to Isotope Hydrology. Problems studied in Isotope Hydrology Physics of Lakes Contents Introduction to Isotope Hydrology. Introduction to Isotope Hydrology 1. Tracers and Isotopes. Stable Isotopes. Radioisotopes and Dating Werner Aeschbach Hertig Bertram Boehrer

More information

TRITIUM PEAK METHOD AND 3 H/ 3 HE DATING TECHNIQUE USE FOR ESTIMATING SHALLOW GROUNDWATER RECHARGE

TRITIUM PEAK METHOD AND 3 H/ 3 HE DATING TECHNIQUE USE FOR ESTIMATING SHALLOW GROUNDWATER RECHARGE TRITIUM PEAK METHOD AND H/ HE DATING TECHNIQUE USE FOR ESTIMATING SHALLOW GROUNDWATER RECHARGE László Kompár 1, Péter Szűcs 2, László Palcsu, József Deák 4 research fellow 1, DSc, head of department, professor

More information

Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples

Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples Frank Bryan Climate and Global Dynamics Division National Center for Atmospheric Research

More information

Physics of Aquatic Systems II

Physics of Aquatic Systems II Physics of quatic Systems II (Isotope Hydrology) 1. Introduction Isotopes Werner eschbach-hertig Institute of Environmental Physics University of Heidelberg Contents of P II 1. Introduction to Isotope

More information

Physics of Aquatic Systems

Physics of Aquatic Systems Physics of Aquatic Systems. Turbulent Transport in Surface Waters Contents of Session : Transport 4.1 Turbulent (eddy) fusion 4. Measurement of eddy fusivity in lakes Tracer methods (artificial tracer)

More information

Contents. 1 Introduction Stable Isotopes

Contents. 1 Introduction Stable Isotopes Contents 1 Introduction... 1 Part I Stable Isotopes 2 Isotope Geochemistry of Natural Waters... 11 2.1 Some Properties of Waters and Solutions... 11 2.1.1 The Notion of Activity and the Activity Coefficient...

More information

Chapter 17 Tritium, Carbon 14 and other "dyes" James Murray 5/15/01 Univ. Washington (note: Figures not included yet)

Chapter 17 Tritium, Carbon 14 and other dyes James Murray 5/15/01 Univ. Washington (note: Figures not included yet) Chapter 17 Tritium, Carbon 14 and other "dyes" James Murray 5/15/01 Univ. Washington (note: Figures not included yet) I. Cosmic Ray Production Cosmic ray interactions produce a wide range of nuclides in

More information

Physics of Aquatic Systems

Physics of Aquatic Systems Physics of Aquatic Systems 4. Turbulent Transport in Surface Waters Contents of Session 4: Transport 4.1 Turbulent (eddy) fusion 4. Measurement of eddy fusivity in lakes Tracer methods (artificial tracer)

More information

Tritium/3He dating of Danube bank. infiltration in the Szigetkös area, Hungary

Tritium/3He dating of Danube bank. infiltration in the Szigetkös area, Hungary Tritium/3He dating of Danube bank infiltration in the Szigetkös area, Hungary M. Stute 1,5, J. Deàk 2, K. Révész 3, J.K. Böhlke 3, É. Deseö 2, R. Weppernig 1, and P. Schlosser 1,4 1 Lamont-Doherty Earth

More information

content of the dissolved bicarbonates. The applicability of several models

content of the dissolved bicarbonates. The applicability of several models [RADIocARBoN, VOL 28, No. 2A, 1986, P 436-440] ON THE INITIAL ACTIVITY OF KARST AQUIFERS WITH SHORT MEAN RESIDENCE TIME INES KRAJCAR-BRONIC, NADA HORVATINCIC, DUSAN SRDOC, and BOGOMIL OBELIC Rudjer Boskovic

More information

Age constraints for groundwater using tritium concentrations:

Age constraints for groundwater using tritium concentrations: Anthropogenic Isotopes Reading: White s lectures #12 and 1 Faure and Mensing: Ch. 25 Also see: Ian D. Clark and P. Fritz, Environmental Isotopes in Hydrogeology, Lewis Publishers, 1997, 28 pages Guide

More information

Estimation of Flow Geometry, Swept Volume, and Surface Area from Tracer Tests

Estimation of Flow Geometry, Swept Volume, and Surface Area from Tracer Tests Estimation of Flow Geometry, Swept Volume, and Surface Area from Tracer Tests Paul W. Reimus, Los Alamos National Laboratory G. Michael Shook, Chevron Energy Technology Company 28 th Oil Shale Symposium

More information

Relationships among tracer ages

Relationships among tracer ages JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. C5, 3138, doi:10.1029/2002jc001325, 2003 Relationships among tracer ages Darryn W. Waugh Department of Earth and Planetary Sciences, Johns Hopkins University,

More information

Late Pleistocene - Holocene climate variations over central Europe reconstructed from groundwater data

Late Pleistocene - Holocene climate variations over central Europe reconstructed from groundwater data Late Pleistocene - Holocene climate variations over central Europe reconstructed from groundwater data J.A. Corcho Alvarado Institute of Radiation Physics, Univ. Hospital and Univ. of Lausanne, Switzerland

More information

Groundwater and climate dynamics derived from noble gas, 14 C and stable isotope data

Groundwater and climate dynamics derived from noble gas, 14 C and stable isotope data Klump et al., p. 1 Data Repository Item Groundwater and climate dynamics derived from noble gas, 14 C and stable isotope data Klump, S., Grundl, T., Purtschert, R., and Kipfer, R. Noble Gases as Environmental

More information

Improving noble gas based paleoclimate reconstruction and groundwater dating using 20 Ne/ 22 Ne ratios

Improving noble gas based paleoclimate reconstruction and groundwater dating using 20 Ne/ 22 Ne ratios Pergamon PII S0016-7037(02)00969-9 Geochimica et Cosmochimica Acta, Vol. 67, No. 4, pp. 587 600, 2002 Copyright 2002 Elsevier Science Ltd Printed in the USA. All rights reserved 0016-7037/02 $22.00.00

More information

Baseflow Analysis. Objectives. Baseflow definition and significance

Baseflow Analysis. Objectives. Baseflow definition and significance Objectives Baseflow Analysis. Understand the conceptual basis of baseflow analysis.. Estimate watershed-average hydraulic parameters and groundwater recharge rates. Baseflow definition and significance

More information

Radiogenic Isotopes as Tracers of Sources and Mixing in the Solid Earth, Hydrosphere, Biosphere

Radiogenic Isotopes as Tracers of Sources and Mixing in the Solid Earth, Hydrosphere, Biosphere Radiogenic Isotopes as Tracers of Sources and Mixing in the Solid Earth, Hydrosphere, Biosphere Reading: White, Lecture 22, part on the mathematics of binary mixing. Also: Faure, 1986, Chs. 9, 11 OR...

More information

Key words groundwater; hard-rock aquifer; weathered profile; major ions; residence time; numerical model; Basque Country, France

Key words groundwater; hard-rock aquifer; weathered profile; major ions; residence time; numerical model; Basque Country, France 386 Evolving Water Resources Systems: Understanding, Predicting and Managing Water Society Interactions Proceedings of ICWRS2014, Bologna, Italy, June 2014 (IAHS Publ. 364, 2014). Coupling hydrology, geochemistry

More information

New Mexico Tech Hyd 510

New Mexico Tech Hyd 510 Aside: The Total Differential Motivation: Where does the concept for exact ODEs come from? If a multivariate function u(x,y) has continuous partial derivatives, its differential, called a Total Derivative,

More information

Hydrogeochemical Tracers in Groundwater. Marcie Schabert, Tom Kotzer SRK Consulting SMA Environmental Forum October, 2018

Hydrogeochemical Tracers in Groundwater. Marcie Schabert, Tom Kotzer SRK Consulting SMA Environmental Forum October, 2018 Hydrogeochemical Tracers in Groundwater Marcie Schabert, Tom Kotzer SRK Consulting SMA Environmental Forum October, 2018 What is a Tracer? Used for Pathways: track water movement through a system Identify:

More information

RESOLUTION OF DIFFERENCES IN CONCENTRATION OF NATURALLY OCCURRING TRITIUM IN GROUNDWATER TRACER STUDIES

RESOLUTION OF DIFFERENCES IN CONCENTRATION OF NATURALLY OCCURRING TRITIUM IN GROUNDWATER TRACER STUDIES RESOLUTION OF DIFFERENCES IN CONCENTRATION OF NATURALLY OCCURRING TRITIUM IN GROUNDWATER TRACER STUDIES Michael P. Neary AUTHOR: Senior Research Scientist, Center for Applied Isotope Studies, University

More information

VISUAL SOLUTE TRANSPORT: A COMPUTER CODE FOR USE IN HYDROGEOLOGY CLASSES

VISUAL SOLUTE TRANSPORT: A COMPUTER CODE FOR USE IN HYDROGEOLOGY CLASSES VISUAL SOLUTE TRANSPORT: A COMPUTER CODE FOR USE IN HYDROGEOLOGY CLASSES Kathryn W. Thorbjarnarson Department of Geological Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California

More information

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT Second International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Mérida, México, March 3-April 2 Numerical Solution of the Two-Dimensional Time-Dependent

More information

arxiv: v1 [physics.flu-dyn] 18 Mar 2018

arxiv: v1 [physics.flu-dyn] 18 Mar 2018 APS Persistent incomplete mixing in reactive flows Alexandre M. Tartakovsky 1 and David Barajas-Solano 1 1 Pacific Northwest National Laboratory, Richland, WA 99352, USA arxiv:1803.06693v1 [physics.flu-dyn]

More information

Isotope Ratios as Tracers of Sources (and mixing of materials from different sources) in the Solid Earth, Hydrosphere, Biosphere

Isotope Ratios as Tracers of Sources (and mixing of materials from different sources) in the Solid Earth, Hydrosphere, Biosphere Isotope Ratios as Tracers of Sources (and mixing of materials from different sources) in the Solid Earth, Hydrosphere, Biosphere Reading: White, Chapter 7, section titled, Geochemistry of Two-Component

More information

1 BASIC CONCEPTS AND MODELS

1 BASIC CONCEPTS AND MODELS 1 BASIC CONCEPTS AND ODELS 1.1 INTRODUCTION This Volume III in the series of textbooks is focused on applications of environmental isotopes in surface water hydrology. The term environmental means that

More information

Rhodamine WT as a reactive tracer: laboratory study and field consequences

Rhodamine WT as a reactive tracer: laboratory study and field consequences Tracers and Modelling in Hydrogeology (Proceedings of the TraM'2000 Conference held at Liege, Belgium, May 2000). IAHS Publ. no. 262, 2000. 201 Rhodamine WT as a reactive tracer: laboratory study and field

More information

Hillslope Hydrology Q 1 Q Understand hillslope runoff processes. 2. Understand the contribution of groundwater to storm runoff.

Hillslope Hydrology Q 1 Q Understand hillslope runoff processes. 2. Understand the contribution of groundwater to storm runoff. Objectives Hillslope Hydrology Streams are the conduits of the surface and subsurface runoff generated in watersheds. SW-GW interaction needs to be understood from the watershed perspective. During a storm

More information

Pollution. Elixir Pollution 97 (2016)

Pollution. Elixir Pollution 97 (2016) 42253 Available online at www.elixirpublishers.com (Elixir International Journal) Pollution Elixir Pollution 97 (2016) 42253-42257 Analytical Solution of Temporally Dispersion of Solute through Semi- Infinite

More information

Process length scales as a framework for understanding flow, transport, and evolution of the karst Critical Zone Matt Covington University of Arkansas

Process length scales as a framework for understanding flow, transport, and evolution of the karst Critical Zone Matt Covington University of Arkansas Process length scales as a framework for understanding flow, transport, and evolution of the karst Critical Zone Matt Covington University of Arkansas Collaborators: Sid Jones (TDEC), Andrew Luhmann (U.

More information

Coupling TRIGRS and TOPMODEL in shallow landslide prediction. 1 Presenter: 王俊皓 Advisor: 李錫堤老師 Date: 2016/10/13

Coupling TRIGRS and TOPMODEL in shallow landslide prediction. 1 Presenter: 王俊皓 Advisor: 李錫堤老師 Date: 2016/10/13 Coupling TRIGRS and TOPMODEL in shallow landslide prediction 1 Presenter: 王俊皓 Advisor: 李錫堤老師 Date: 016/10/13 Outline Introduction Literature review Methodology Pre-result Future work Introduction 3 Motivation

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #5: Groundwater Flow Patterns. Local Flow System. Intermediate Flow System

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #5: Groundwater Flow Patterns. Local Flow System. Intermediate Flow System 1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #5: Groundwater Flow Patterns c Local Flow System 10,000 feet Intermediate Flow System Regional Flow System 20,000 feet Hydrologic section

More information

Residence Time Distribution in Dynamically Changing Hydrologic Systems

Residence Time Distribution in Dynamically Changing Hydrologic Systems Residence Time Distribution in Dynamically Changing Hydrologic Systems Jesus D. Gomez and John L. Wilson Hydrology Program New Mexico Tech December 2009 1 Introduction Age distributions (ADs) encapsulate

More information

Procedure for Radio Dating of Water Using Nuclear Hydrological Isotopes Techniques

Procedure for Radio Dating of Water Using Nuclear Hydrological Isotopes Techniques IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.olume 6, Issue 2 er. I (Mar-Apr. 2014), PP 49-53 Procedure for Radio Dating of Water Using Nuclear Hydrological Isotopes Techniques Muhammad

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

On the relationships between catchment scale and streamwater mean residence time

On the relationships between catchment scale and streamwater mean residence time HYDROLOGICAL PROCESSES Hydrol. Process. 17, 175 181 (2003) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/hyp.5085 On the relationships between catchment scale and streamwater

More information

Figure 1 Double-mass plots of precipitation at White Bear Lake from three gridded data sets (Daymet, HIDEN, and PRISM) versus the Minnesota Climate

Figure 1 Double-mass plots of precipitation at White Bear Lake from three gridded data sets (Daymet, HIDEN, and PRISM) versus the Minnesota Climate Figure 1 Double-mass plots of precipitation at White Bear Lake from three gridded data sets (Daymet, HIDEN, and PRISM) versus the Minnesota Climate Division 6 average. Straight lines through the plots

More information

Development and Application of Groundwater Flow and Solute Transport Models. Randolf Rausch

Development and Application of Groundwater Flow and Solute Transport Models. Randolf Rausch Development and Application of Groundwater Flow and Solute Transport Models Randolf Rausch Overview Groundwater Flow Modeling Solute Transport Modeling Inverse Problem in Groundwater Modeling Groundwater

More information

Second-Order Linear ODEs (Textbook, Chap 2)

Second-Order Linear ODEs (Textbook, Chap 2) Second-Order Linear ODEs (Textbook, Chap ) Motivation Recall from notes, pp. 58-59, the second example of a DE that we introduced there. d φ 1 1 φ = φ 0 dx λ λ Q w ' (a1) This equation represents conservation

More information

Dajun Qin a, Jeffrey V Turner b Liangfeng Han b and Zhonghe Pang b. Proceedings World Geothermal Congress 2005 Antalya, Turkey, April 2005

Dajun Qin a, Jeffrey V Turner b Liangfeng Han b and Zhonghe Pang b. Proceedings World Geothermal Congress 2005 Antalya, Turkey, April 2005 Proceedings World Geothermal Congress Antalya, Turkey, - April Inferring Young Groundwater from Deep Geothermal Water using CFCs and Isotope Data: Implication for Circulation of Groundwater in the Xi an

More information

CHARACTERIZATION OF HETEROGENEITIES AT THE CORE-SCALE USING THE EQUIVALENT STRATIFIED POROUS MEDIUM APPROACH

CHARACTERIZATION OF HETEROGENEITIES AT THE CORE-SCALE USING THE EQUIVALENT STRATIFIED POROUS MEDIUM APPROACH SCA006-49 /6 CHARACTERIZATION OF HETEROGENEITIES AT THE CORE-SCALE USING THE EQUIVALENT STRATIFIED POROUS MEDIUM APPROACH Mostafa FOURAR LEMTA Ecole des Mines de Nancy, Parc de Saurupt, 54 04 Nancy, France

More information

A Model for Non-Newtonian Flow in Porous Media at Different Flow Regimes

A Model for Non-Newtonian Flow in Porous Media at Different Flow Regimes A Model for Non-Newtonian Flow in Porous Media at Different Flow Regimes Quick introduction to polymer flooding Outline of talk Polymer behaviour in bulk versus porous medium Mathematical modeling of polymer

More information

Determination of the geomorphological instantaneous unit hydrograph using tracer experiments in a headwater basin

Determination of the geomorphological instantaneous unit hydrograph using tracer experiments in a headwater basin Hydrology, Water Resources and Ecology in Headwaters (Proceedings of the HeadWater'98 Conference held at Meran/Merano, Italy, April 1998). 1AHS Publ. no. 248, 1998. 327 Determination of the geomorphological

More information

Identification of hydrogeological models: application to tracer test analysis in a karst aquifer

Identification of hydrogeological models: application to tracer test analysis in a karst aquifer Calibration and Reliability in Groundwater Modelling: From Uncertainty to Decision Making (Proceedings of ModelCARE 2005, The Hague, The Netherlands, June 2005). IAHS Publ. 304, 2006. 59 Identification

More information

Simulation of hydrologic and water quality processes in watershed systems using linked SWAT-MODFLOW-RT3D model

Simulation of hydrologic and water quality processes in watershed systems using linked SWAT-MODFLOW-RT3D model Simulation of hydrologic and water quality processes in watershed systems using linked model Ryan Bailey, Assistant Professor Xiaolu Wei, PhD student Rosemary Records, PhD student Mazdak Arabi, Associate

More information

Effect of correlated observation error on parameters, predictions, and uncertainty

Effect of correlated observation error on parameters, predictions, and uncertainty WATER RESOURCES RESEARCH, VOL. 49, 6339 6355, doi:10.1002/wrcr.20499, 2013 Effect of correlated observation error on parameters, predictions, and uncertainty Claire R. Tiedeman 1 and Christopher T. Green

More information

Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers

Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers 1210 Notes Limnol. Oceanogr., 47(4), 2002, 1210 1216 2002, by the American Society of Limnology and Oceanography, Inc. Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers

More information

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Overview Stellar Mass-to-Light (M/L) ratios from SEDs Comparing different SED fitting techniques Comparing

More information

Intensity-Duration-Frequency (IDF) Curves Example

Intensity-Duration-Frequency (IDF) Curves Example Intensity-Duration-Frequency (IDF) Curves Example Intensity-Duration-Frequency (IDF) curves describe the relationship between rainfall intensity, rainfall duration, and return period (or its inverse, probability

More information

Groundwater. (x 1000 km 3 /y) Reservoirs. Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Groundwater. (x 1000 km 3 /y) Reservoirs. Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle Chapter 13 Oceans Cover >70% of Surface Groundwater and the Hydrologic Cycle Oceans are only 0.025% of Mass Groundwater Groundwater is liquid water that lies in the subsurface in fractures in rocks and

More information

Ciaran Harman Johns Hopkins University Department of Geography and Environmental Engineering

Ciaran Harman Johns Hopkins University Department of Geography and Environmental Engineering Modeling unsteady lumped transport with time-varying transit time distributions Ciaran Harman Johns Hopkins University Department of Geography and Environmental Engineering Two views of transport Eulerian

More information

Hydrogeology and Simulated Effects of Future Water Use and Drought in the North Fork Red River Alluvial Aquifer: Progress Report

Hydrogeology and Simulated Effects of Future Water Use and Drought in the North Fork Red River Alluvial Aquifer: Progress Report Hydrogeology and Simulated Effects of Future Water Use and Drought in the North Fork Red River Alluvial Aquifer: Progress Report Developed in partnership with the Oklahoma Water Resources Board S. Jerrod

More information

Building a European-wide hydrological model

Building a European-wide hydrological model Building a European-wide hydrological model 2010 International SWAT Conference, Seoul - South Korea Christine Kuendig Eawag: Swiss Federal Institute of Aquatic Science and Technology Contribution to GENESIS

More information

Isotope characterization of shallow aquifers in the Horombe region, South of Madagascar

Isotope characterization of shallow aquifers in the Horombe region, South of Madagascar 1 Isotope characterization of shallow aquifers in the Horombe region, South of Madagascar L.P. Fareze, J. Rajaobelison, V. Ramaroson, Raoelina Andriambololona,G. Andriamiarintsoa Madagascar-I.N.S.T.N.,

More information

RATE OF FLUID FLOW THROUGH POROUS MEDIA

RATE OF FLUID FLOW THROUGH POROUS MEDIA RATE OF FLUID FLOW THROUGH POROUS MEDIA Submitted by Xu Ming Xin Kiong Min Yi Kimberly Yip Juen Chen Nicole A project presented to the Singapore Mathematical Society Essay Competition 2013 1 Abstract Fluid

More information

Large-scale dispersion in a sandy aquifer: Simulation of subsurface transport of environmental tritium

Large-scale dispersion in a sandy aquifer: Simulation of subsurface transport of environmental tritium WATER RESOURCES RESEARCH, VOL. 32, NO. 11, PAGES 3253 3266, NOVEMBER 1996 Large-scale dispersion in a sandy aquifer: Simulation of subsurface transport of environmental tritium Peter Engesgaard and Karsten

More information

Tracers and Isotopes in Urban Hydrology

Tracers and Isotopes in Urban Hydrology Tracers and Isotopes in Urban Hydrology What is a hydrologic tracer? Any substance that can be used for tracking water movement is a tracer An ideal tracer behaves exactly as the traced material behaves

More information

11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments

11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments 11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments M. Camporese (University of Padova), G. Cassiani* (University of Padova), R. Deiana

More information

On the Numerical Solution of the ADZ Model

On the Numerical Solution of the ADZ Model PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-7 (401), 2007 On the Numerical Solution of the ADZ Model Steve WALLIS Heriot-Watt University Riccarton, Edinburgh, EH14 4AS, UK e-mail: s.g.wallis@hw.ac.uk Abstract

More information

A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem

A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem Calibration and Reliability in Groundwater Modelling (Proceedings of the ModelCARE 99 Conference held at Zurich, Switzerland, September 1999). IAHS Publ. no. 265, 2000. 157 A hybrid Marquardt-Simulated

More information

5.11 Stable Isotope Applications in Hydrologic Studies

5.11 Stable Isotope Applications in Hydrologic Studies 5.11 Stable Isotope Applications in Hydrologic Studies C. Kendall and D. H. Doctor United States Geological Survey, Menlo Park, CA, USA 5.11.1 INTRODUCTION 320 5.11.1.1 Environmental Isotopes as Tracers

More information

8 NATURAL ABUNDANCE OF RADIOACTIVE ISOTOPES OF C AND H

8 NATURAL ABUNDANCE OF RADIOACTIVE ISOTOPES OF C AND H 8 NATURAL ABUNDANCE OF RADIOACTIVE ISOTOPES OF C AND H In this chapter the two nuclides, C and 3 H, will be treated that are the most relevant in the hydrological cycle. Chapter 12 contains a survey of

More information

SMOW. δd = 8 δ 18 O δ 18 O. Craig 1961

SMOW. δd = 8 δ 18 O δ 18 O. Craig 1961 SMOW δd δd = 8 δ 18 O + 10 δ 18 O Craig 1961 " # 18 O "T $ 0.695 / deg " #D "T $ 5.6 / deg "# 18 O "T $ 0.695 / deg "#D "T $ 5.6 / deg Dansgaard 1964 -9-27 Little Am. 43 m -24.2 C Wilkes 1168 m -18.6 C

More information

ENVIRONMENTAL ISOTOPE APPLICATIONS IN HYDROLOGY: AN OVERVIEW OF THE IAEA'S ACTIVITIES, EXPERIENCES, AND PROSPECTS

ENVIRONMENTAL ISOTOPE APPLICATIONS IN HYDROLOGY: AN OVERVIEW OF THE IAEA'S ACTIVITIES, EXPERIENCES, AND PROSPECTS Tracers in Hydrology (Proceedings of the Yokohama Symposium, July 1993) IAHS Publ. no. 215, 1993. ENVIRONMENTAL ISOTOPE APPLICATIONS IN HYDROLOGY: AN OVERVIEW OF THE IAEA'S ACTIVITIES, EXPERIENCES, AND

More information

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan Write Down Your NAME, Last First Circle Your DIVISION Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan ME315 Heat and Mass Transfer School of Mechanical Engineering Purdue University

More information

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting IOP Conference Series: Earth and Environmental Science Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting To cite this article: Ph Stanzel et al

More information

Advanced numerical methods for transport and reaction in porous media. Peter Frolkovič University of Heidelberg

Advanced numerical methods for transport and reaction in porous media. Peter Frolkovič University of Heidelberg Advanced numerical methods for transport and reaction in porous media Peter Frolkovič University of Heidelberg Content R 3 T a software package for numerical simulation of radioactive contaminant transport

More information

EVALUATION OF MIXING PERFORMANCE IN A MAGNETIC MIXER BASED ON INFORMATION ENTROPY

EVALUATION OF MIXING PERFORMANCE IN A MAGNETIC MIXER BASED ON INFORMATION ENTROPY 14 th European Conference on Mixing Warszawa, 1-13 September 212 EVALUATION OF MIXING PERFORMANCE IN A MAGNETIC MIXER BASED ON INFORMATION ENTROPY Rafał Rakoczy, Stanisław Masiuk, Marian Kordas a West

More information

RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES

RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES J. Thereska*, E. Plasari** * Institute of Applied Nuclear Physics, Tirana, Albania ** Ecole Nationale

More information

CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78

CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78 011-01 ourse HEMIL RETORS - PROBLEMS OF NON IDEL RETORS 61-78 61.- ccording to several experiments carried out in a continuous stirred tank reactor we suspect that the behavior of the reactor is not ideal.

More information

Challenges in Calibrating a Large Watershed Model with Varying Hydrogeologic Conditions

Challenges in Calibrating a Large Watershed Model with Varying Hydrogeologic Conditions Challenges in Calibrating a Large Watershed Model with Varying Hydrogeologic Conditions Presented by Johnathan R. Bumgarner, P.G., Celine A.L. Louwers, & Monica P. Suarez, P.E. In cooperation with the

More information

Transactions on Ecology and the Environment vol 7, 1995 WIT Press, ISSN

Transactions on Ecology and the Environment vol 7, 1995 WIT Press,   ISSN Non-Fickian tracer dispersion in a karst conduit embedded in a porous medium A.P. Belov*, T.C. Atkinson* "Department of Mathematics and Computing, University of Glamorgan, Pontypridd, Mid Glamorgan, CF3

More information

Karst Topography In order to understand karst topography we must first have a basic understanding of the water cycle, the formation of limestone (carb

Karst Topography In order to understand karst topography we must first have a basic understanding of the water cycle, the formation of limestone (carb Karst Topography The formation of caves and other associated features in limestone bedrock is called karst topography. Limestone, a sedimentary rock made mostly of the mineral calcite and small amounts

More information

The use of 18 0 as a groundwater tracer in the Marlborough Region

The use of 18 0 as a groundwater tracer in the Marlborough Region The use of 18 0 as a groundwater tracer in the Marlborough Region M. K. Stewart GNS Science Report 2006/3 March 2006 BIBLIOGRAPHIC REFERENCE Stewart, M. K. 2006 The use of 18 O as a groundwater tracer

More information

Vibrations Qualifying Exam Study Material

Vibrations Qualifying Exam Study Material Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors

More information

SPADES: Swift Production Data Analysis and Diagnostics Engine for Shale Reservoirs

SPADES: Swift Production Data Analysis and Diagnostics Engine for Shale Reservoirs SPADES: Swift Production Data Analysis and Diagnostics Engine for Shale Reservoirs Xu Xue April 8, 017 Motivation Production data analysis software for shale gas/oil reservoirs Model free analysis of production

More information

Develop a lumped parameter model of the following differential equation using Eulers, Huens, and the 4 th order Runga Kutta Method:

Develop a lumped parameter model of the following differential equation using Eulers, Huens, and the 4 th order Runga Kutta Method: Homework 2 Assigned: 2/1/2012 Due: 3/13/2012 Part 1. Comparison of Euler, Huen, and 4 th Order RK methods Develop a lumped parameter model of the following differential equation using Eulers, Huens, and

More information

The theoretical relation between unstable solutes and groundwater age

The theoretical relation between unstable solutes and groundwater age WATER RESOURCES RESEARCH, VOL. 47, W0523, doi:0.029/200wr00039, 20 The theoretical relation between unstable solutes and groundwater age Arash Massoudieh and Timothy R. Ginn 2 Received 25 September 200;

More information

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η Neutron reproduction factor k eff = 1.000 What is: Migration length? Critical size? How does the geometry affect the reproduction factor? x 0.9 Thermal utilization factor f x 0.9 Resonance escape probability

More information

Hydrology Measurements

Hydrology Measurements Hydrology Measurements Stefan Uhlenbrook Introduction to Isotope Hydrology Introduction to Isotope Hydrology Stefan Uhlenbrook, Ph, MSc, habil. Professor of Hydrology UNESCO-IHE Institute for Water Education

More information

Analytical solutions for water flow and solute transport in the unsaturated zone

Analytical solutions for water flow and solute transport in the unsaturated zone Models for Assessing and Monitoring Groundwater Quality (Procsedines of a Boulder Symposium July 1995). IAHS Publ. no. 227, 1995. 125 Analytical solutions for water flow and solute transport in the unsaturated

More information

Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models

Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models WATER RESOURCES RESEARCH, VOL. 40, W01504, doi:10.1029/2003wr002199, 2004 Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models Matthew J. Simpson 1

More information

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle Chapter 17 Oceans Cover >70% of Surface Groundwater and the Hydrologic Cycle Vasey s Paradise, GCNP Oceans are only 0.025% of Mass Groundwater Groundwater is liquid water that lies in the subsurface in

More information

(1) School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

(1) School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK The dynamics of hyporheic exchange flows during storm events in a strongly gaining urban river Mark O. Cuthbert 1, V. Durand 1,2, M.-F. Aller 1,3, R. B. Greswell 1, M. O. Rivett 1 and R. Mackay 1 (1) School

More information

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 5 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

THREE-DIMENSIONAL FINITE DIFFERENCE MODEL FOR TRANSPORT OF CONSERVATIVE POLLUTANTS

THREE-DIMENSIONAL FINITE DIFFERENCE MODEL FOR TRANSPORT OF CONSERVATIVE POLLUTANTS Pergamon Ocean Engng, Vol. 25, No. 6, pp. 425 442, 1998 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain 0029 8018/98 $19.00 + 0.00 PII: S0029 8018(97)00008 5 THREE-DIMENSIONAL FINITE

More information

Two-Step Calibration Method for SWAT

Two-Step Calibration Method for SWAT SWAT 2005 Zurich, Switzerland July 14 th, 2005 Two-Step Calibration Method for SWAT Francisco Olivera, Ph.D. Assistant Professor Huidae Cho Graduate Student Department of Civil Engineering Texas A&M University

More information

The hidden streamflow challenge in catchment hydrology: a call to action for stream water transit time analysis

The hidden streamflow challenge in catchment hydrology: a call to action for stream water transit time analysis HYDROLOGICAL PROCESSES Published online 20 March 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hyp.9262 The hidden streamflow challenge in catchment hydrology: a call to action for

More information

Rainfall-runoff model with non-linear reservoir

Rainfall-runoff model with non-linear reservoir Rainfall-runoff model with non-linear reservoir R.J.Oosterbaan On website https://www.waterlog.info Theory of the RainOff model to be found on https://www.waterlog.info/rainoff.htm Introduction The runoff

More information

Climatic change certainty versus climatic uncertainty and inferences in hydrological studies and water resources management

Climatic change certainty versus climatic uncertainty and inferences in hydrological studies and water resources management European Geosciences Union 1st General Assembly Nice, France, 25-3 April 4 HS6 Impacts of climate change on hydrological response and on water resources management Climatic change certainty versus climatic

More information

Climatic change certainty versus climatic uncertainty and inferences in hydrological studies and water resources management

Climatic change certainty versus climatic uncertainty and inferences in hydrological studies and water resources management European Geosciences Union 1st General Assembly Nice, France, 25-30 April 2004 HS6 Impacts of climate change on hydrological response and on water resources management Climatic change certainty versus

More information

Rainfall variability and uncertainty in water resource assessments in South Africa

Rainfall variability and uncertainty in water resource assessments in South Africa New Approaches to Hydrological Prediction in Data-sparse Regions (Proc. of Symposium HS.2 at the Joint IAHS & IAH Convention, Hyderabad, India, September 2009). IAHS Publ. 333, 2009. 287 Rainfall variability

More information

ABB Los Gatos Research Triple Isotope Water Analyzer (TIWA)

ABB Los Gatos Research Triple Isotope Water Analyzer (TIWA) ABB MEASUREMENT & ANALYTICS APPLICATION NOTE ABB Los Gatos Research Triple Isotope Water Analyzer (TIWA) ABB s Triple Isotope Water Analyzer (TIWA) participates in IAEA WICO Intercomparison Measurement

More information

A real-time flood forecasting system based on GIS and DEM

A real-time flood forecasting system based on GIS and DEM Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, 2001. 439 A real-time flood forecasting system based on GIS and DEM SANDRA

More information