CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78

Size: px
Start display at page:

Download "CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78"

Transcription

1 ourse HEMIL RETORS - PROBLEMS OF NON IDEL RETORS ccording to several experiments carried out in a continuous stirred tank reactor we suspect that the behavior of the reactor is not ideal. The response to a pulse tracer test is given by equation ( t) = 5t exp(.5t) (with t in min). It seems that the reactor can be modeled considering that the fluid elements of different ages do not mix with each other, appearing like if small batch reactors were operating inside the continuous reactor. a) Which fraction of the effluent remains in the reactor after the first minute after injection of the tracer? b) Which conversion could be achieved in this reactor if a second-order reaction were carried out in liquid phase with k o = 3.75 min -1? (k referred to-r ). 6.- The second-order reaction of dimerization B (r = -k ) takes place in liquid phase, with k = 0.01 dm 3 /(mol min) at the reaction temperature. The feeding is pure with a concentration of 8 mol/l. The theoretical volume of the reactor is 1000 L and the feeding rate for dimerization is 5 L/min. In order to better understand the behavior of the reactor, which does not behave ideally, a pulse tracer test has been performed with a volumetric flow rate of 5 L/min, and the results are shown in the following table: t (min) (mg/l) We want to know the limits within which the conversion can vary depending on the degree of micromixing pulse tracer test produces a signal with a parabolic shape that fits to the following equation (time in minutes, concentration in kmol/m 3 ): = ( t ), = 0, 0 t any other t alculate: a) The mean residence time. b) The equations for E(t), E(θ) and F(t). c) The conversion obtained under completely segregated flow conditions for a liquidphase reaction with a rate equation r = k, with k = 1 min -1. d) The parameters of the dispersion model that represent this curve, for closed-closed vessels.

2 64.- onsider the first-order reaction B carried out in a tubular reactor of 10 cm in diameter and 6.36 m in length in liquid phase. The kinetic constant is 0.5 min -1. pulse tracer test is performed in the reactor with the following results: t (min) (g/m 3 ) alculate the conversion in the system obtained using: a) the dispersion model for a closedclosed vessel, b) tanks-in-series model, c) ideal PFR model d) complete segregation model, e) ideal STR model In order to characterize the flow in a reactor a pulse tracer test was carried out, obtaining the following experimental values with a volumetric flow rate of 10 L/min: t (min) (mg/l) Based on these results it is suspected that the flow in this reactor could be modeled by a dispersion model or a tanks-in-series model. In the reactor, the reaction + B P is carried out in liquid phase. Since there is a large excess of B, the reaction can be considered pseudo first order. If the reactor behaved as an ideal PFR, it would yield a 99% conversion. Determine the conversion to be obtained in each of the following cases: a) ssuming a dispersion model for a closed-closed vessel. b) With the tanks-in-series model. c) From the direct use of the experimental tracer curve. d) With the model of an ideal STR We have a tank reactor of 6 m 3 that gives a conversion of 75% for the first-order reaction in liquid phase R. However, it is suspected that the mixture is incomplete and there is an undesirable flow pattern, since the reactor is stirred with a stir operating at low power. n experiment with pulse tracer input shows that this is so and provides the flow model shown schematically in the figure. alculate the conversion that can be obtained if the stirrer is replaced by a high-powered one to ensure the thorough mixing. What is the conversion in both cases if the fluid used is a macrofluid? 67.- tank of 860 L is used as a liquid-gas reactor. The gas bubbles rise through the reactor and exit the top part. The liquid flows in the opposite direction to the gas, with a volumetric

3 flow rate of 5 L/s. To get an idea of the pattern of fluid flow in this tank, a pulse tracer is injected (M = 150 g) at the entrance of the liquid and the concentration is measured at the exit as shown in the figure. a) Is this experiment well done? Is all the injected tracer collected? b) If so, calculate the fraction of reactor occupied by the liquid. c) Determine the E curve as a function of the concentration curve measured. d) Qualitatively, what do you think is happening in the reactor? e) If the liquid is a macrofluid ( 0 = mol/l) with rate constant k = 0.5 L/(mol min) (referring k to r ), what will be the final conversion? 68.- (exam feb 08) We want to perform in a tank reactor the liquid phase reaction B. It has been determined that the rate equation is: 0.5 r = (r in mol L -1 h -1 and in mol/l) In order to characterize the reactor, a pulse tracer test was performed, after which it was obtained that the tracer concentration measured versus time can be fitted to the following equation: ( t) = exp( t) ( in mg/l and t in h) a) alculate E(t) and the average time in the reactor t m. b) alculate F(t). Which fraction of the effluent will remain in the reactor after the first hour after injection of the tracer? c) alculate the conversion to be obtained in the reactor with the corresponding approximation of the reaction rate if the initial concentration of is low ( 0 = mol/l). d) alculate the expected conversion limits in the case of having a high initial concentration of ( 0 = 1 mol/l). e) ompare the results of parts c) and d) with the conversion to be obtained using the ideal STR model with the initial concentrations indicated in those parts. Suggestion: use time increments of 0.1 h (exam sep 07) onsider the following liquid-phase reactions taking place in parallel:

4 B r = k ( 1 ) r = k For a feeding stream containing only the reagent, determine the concentrations of this reagent according to the following models: a) Ideal STR. b) Ideal PFR. c) ompletely segregated flow with an E(t) identical to that obtained with a model of tanks in series for n =. d) Maximum mixedness model with the same E(t) used in the previous part. e) For the four previous cases, also determine the concentration of B, its yield (R) and selectivity (S). Data: 0 =.5 mol/l k 1 =3 L/(mol s) k =0.4 s -1 τ=1 s Suggestions: Present the model equations in terms of instead of ξ. In this case, for the complete segregation model ξ ( t), ξ can be replaced by ( t), in the equation governing the model. In the maximum mixedness model consider a value of λ λ = 10τ. B (exam feb 07) We have a reactor in which the elementary reaction B takes place in liquid phase with k = 0.15 min -1. The theoretical volume of the reactor is 430 L. In order to characterize the behavior of the reactor a pulse tracer test has been performed with a volumetric flow rate of 50 L/min. The concentrations measured at the exit of the reactor are the following ones: t (min) (mg/l) t (min) (mg/l) a) alculate and plot the corresponding curves E(t), F(t) and E(θ). b) alculate the degree of conversion for the reaction with the segregation model. c) Repeat the previous part using the maximum mixedness model. d) In view of the curves E and F, indicate a possible model which represents reasonably the behavior of the reactor. Determine the parameters of the model, compare the model with the actual behavior of the reactor and calculate the conversion using this model.

5 71.- (exam jul 08) onsider a tubular reactor with residence time τ = 10 s, where an irreversible first-order reaction products takes place in liquid phase, and whose rate constant (referred to the reaction rate r i ) is known, k = 0.1 s -1. a) The behavior of this reactor can be approximated to a PFR with laminar flow regime whose residence time distribution function is as follows: τ 0 t < E( t ) = 1 τ τ t 3 t alculate the average conversion using the segregation model. b) ompare the result in a) with the conversion that would result from the segregation model if the behavior of the reactor approaches that of an ideal STR and ideal PFR. c) Plot the cumulative distribution function F(t) for a laminar PFR, an ideal STR and an ideal PFR, and according to these curves comment on the appropriateness of approximating the residence time distribution of a laminar PFR with that corresponding to an ideal STR or an ideal PFR. 7.- The elementary reaction + B + D is carried out in a STR in which it is suspected there is bypass and dead volume. The table attached shows the step tracer concentrations at the output of the system. If the theoretical volume of the reactor is 1 m 3, the feeding volumetric flow rate is 0.1 m 3 /min, the rate constant is 0.8 m 3 /(kmol min) and the feeding consists of an equimolar solution of and B, with o = kmol/m 3, calculate the conversion that can be expected in the system. t (min) (mg/l) (exam jan 09) In a 10 L reactor the elementary reversible reaction B takes place in liquid phase at constant temperature. In order to determine whether the behavior of the reactor can be resembled to that of a continuous stirred tank reactor with dead volume and bypass a step tracer test has been performed using a volumetric input flow rate of L/min. The exit tracer concentrations are: 1 t (min) (mg/l) a) Obtain the model parameters and calculate the conversion at the outlet of the system for the reaction indicated using this model. b) Write the analytical expression of F(t) taking into account the previous model and obtain from it the analytical expression of E(t). Plot both functions. c) alculate the conversion to be obtained for the above reaction with the segregation model using the analytical expression of E(t) obtained in the previous part.

6 Data: k 1 (direct reaction) = 1 min -1 k (reverse reaction) = 0.3 min -1 in parts a) and c) consider B0 = 0 to calculate conversion 74.- The elementary second-order reaction + B R + S is carried out in aqueous phase inside a tank of 4 m 3. For an equimolar mixture of and B ( o = Bo ) the conversion of reactants is 60%. Unfortunately, the stirring in the reactor is not good and tracer tests conducted indicate that the reactor can be modeled according to the scheme shown in the figure. Which size of an ideal STR would be equivalent to the available tank? 0.5 Q v 9 m 3 15 m The liquid-phase elementary reaction B is carried out in a non-ideal STR, where k = 0.03 min -1. The model is similar to that of two STR with exchange. Reagent is introduced into the reactor with a volumetric flow of 5 L/min and a concentration of 0.0 mol/l, being the total reactor volume equal to 1000 L. When conducting a pulse tracer test the results shown in the table were obtained. Which conversion will be obtained in the system? t (min) (mg/l) (exam jul 10) In a 10 L reactor we want to carry out the elementary reversible reaction 1 B in liquid phase at constant temperature, with a feeding stream containing only reagent. Previously, the behavior of this reactor is going to be characterized, for which a tracer is introduced by a pulse signal, and the variation of tracer concentration with time at the reactor exit is measured. Data collected in the tracer experiment are shown in the following table: t (min) (t) (mg/l) t (min) (t) (mg/l)

7 a) Determine the plot of the normalized function of the residence time distribution E(θ) and that of the normalized function of the cumulative distribution F(θ). Which fraction of tracer remains inside the reactor at 6 minutes? alculate the conversion achieved in the reactor with the following models: b) Tanks-in-series model. c) Maximum mixedness model. Note: for part c) use the expression of E(t) corresponding to the tanks-in-series model used in part b), and use time increments no longer than 0.5 minutes. Data of kinetic constants: k 1 (direct reaction) = min -1 k (reverse reaction) = 0.6 min (exam jan 10) second-order reaction in liquid phase with a single reagent (α = 1) is 7 3θ carried out in a reactor whose RTD is E ( θ ) = θ e. We have studied the behavior of this reactor using various models for a range of values for the parameter R = k, obtaining the following plot: t 0 Obtain the values of the following models: for the largest possible value of the parameter = k 0 t = 50 0 R using

8 a) Ideal STR b) Ideal PFR c) Segregation model d) Maximum mixedness model e) 3 STR in series f) Each of the above models assumes a certain degree of both micromixing and macromixing. Place a point for each model in the shaded area in the following figure. Explain the answer. Suggestions: - value of normalized time (θ) over 4 can be assumed as infinite time. -Part c) This part can be solved numerically but it is faster if it is done analytically using the following recommendations: 1- For the general equation of the segregation model, ξ and ξ (t) can be replaced by ( t) and, respectively The approximation dθ dθ + Rθ is valid for R > Rθ 3- Integration by parts is useful for an integrand with the following expression: ax u = x and dv = e dx. 0 ax xe. hoose -Part d) 1- The following expression can be used: E( θ ) = 1 F( θ ) 7 θ. 9 θ + 3θ The following expressions can transform the differential equation of the maximum mixedness model in terms of the normalized time (θ): dξ dξ -for the conversion degree of the key component: = f ( λ, ξ ) = t f ( λ, ξ ), and dλ dθ E( λ) E( θ ) 1 also: =. 1 F( λ) 1 F( θ ) t

9 3- This part can be solved using Excel, but it is also solved faster using Matlab. 4- If we solve the ordinary differential equation by using Excel, you must take an increment of the independent variable small enough, θ (exam jan 11) In a reactor of volume V = 10 L you want to carry out the reaction B in liquid phase at constant temperature. The feeding is introduced with a volumetric flow rate Q v of.5 L/min and it contains only reactant, with 0 = 0. mol/l. In order to characterize previously the behavior of the reactor, and suspecting that it behaves like a tank reactor with dead volume, a pulse tracer test is performed using the above Q v and we measure the variation of tracer concentration with time at the output of the reactor. The results obtained are shown in the following table: t (min) (t) (mg/l) t (min) (t) (mg/l) a) alculate and plot E(θ) and F(θ). Which fraction of tracer will be out at 4 minutes? b) Which is the dead volume of the tank? alculate the conversion achieved in the reactor using the following three models: Notes: c) Ideal STR with dead volume d) Segregation model e) Maximum mixedness model f) ompare the conversion values obtained with the above three models For parts d) and e) use the analytical expression of E(t) from the model of an ideal STR with dead volume. Kinetic equation of the reaction: r = k, being k =.5 L mol -1 min -1, with r in mol L -1 min -1 and in mol L -1

Review: Nonideal Flow in a CSTR

Review: Nonideal Flow in a CSTR L3- Review: Nonideal Flow in a CSTR Ideal CSTR: uniform reactant concentration throughout the vessel Real stirred tank Relatively high reactant concentration at the feed entrance Relatively low concentration

More information

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60 2011-2012 Course CHEMICL RECTORS - PROBLEMS OF RECTOR SSOCITION 47-60 47.- (exam jan 09) The elementary chemical reaction in liquid phase + B C is carried out in two equal sized CSTR connected in series.

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 32! Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.!! 1! Lecture 32 Thursday

More information

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts Handouts Handout 1: Practical reactor performance deviates from that of ideal reactor s : Packed bed reactor Channeling CSTR & Batch Dead Zones, Bypass PFR deviation from plug flow dispersion Deviation

More information

Non-Ideal Reactors. Definitions * Segregated flow - fluid elements do not mix, have different residence times - Need Residence Time Distribution

Non-Ideal Reactors. Definitions * Segregated flow - fluid elements do not mix, have different residence times - Need Residence Time Distribution Non-Ideal Reactors Deviations from ideal reactor behavior - Tank Reactors: inadequate mixing, stagnant regions, bypassing or short-circuiting Tubular Reactors: mixing in longitudinal direction, incomplete

More information

Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors Chemical Reactions and Chemical Reactors George W. Roberts North Carolina State University Department of Chemical and Biomolecular Engineering WILEY John Wiley & Sons, Inc. x Contents 1. Reactions and

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

CHAPTER FIVE REACTION ENGINEERING

CHAPTER FIVE REACTION ENGINEERING 1 CHAPTER FIVE REACTION ENGINEERING 5.1. Determination of Kinetic Parameters of the Saponification Reaction in a PFR 5.3. Experimental and Numerical Determination of Kinetic Parameters of the Saponification

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 4 hemical Reaction Engineering (RE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. hapter 4 Lecture 4 Block 1

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON PHEN 612 SPRING 28 WEEK 12 LAURENT SIMON Mixing in Reactors Agitation, Mixing of Fluids and Power requirements Agitation and mixing are two of the most common operations in the processing industries Agitation:

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

To increase the concentration of product formed in a PFR, what should we do?

To increase the concentration of product formed in a PFR, what should we do? To produce more moles of product per time in a flow reactor system, what can we do? a) Use less catalyst b) Make the reactor bigger c) Make the flow rate through the reactor smaller To increase the concentration

More information

Mixing in Chemical Reactors

Mixing in Chemical Reactors Mixing in Chemical Reactors Copyright c 2016 by Nob Hill Publishing, LLC The three main reactor types developed thus far batch, continuous-stirredtank, and plug-flow reactors are useful for modeling many

More information

Mixing in Chemical Reactors

Mixing in Chemical Reactors Mixing in Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC The three main reactor types developed thus far batch, continuous-stirredtank, and plug-flow reactors are useful for modeling many

More information

Engineering Theory of Leaching

Engineering Theory of Leaching Engineering Theory of Leaching An approach to non-ideal reactors and scale- up of pressure leaching systems Presented by Lynton Gormely, P.Eng., Ph.D. The Problem given lab scale batch results, predict

More information

A First Course on Kinetics and Reaction Engineering Example 11.5

A First Course on Kinetics and Reaction Engineering Example 11.5 Example 11.5 Problem Purpose This problem illustrates the use of the age function measured using a step change stimulus to test whether a reactor conforms to the assumptions of the ideal PFR model. Then

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Models for Nonideal Reactors

Models for Nonideal Reactors Fogler_Web_Ch18.fm Page 1 Monday, October 9, 017 1:58 PM Models for Nonideal Reactors 18 Success is a journey, not a destination. Ben Sweetland Use the RTD to evaluate parameters. Overview. Not all tank

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10] Code No: RR320802 Set No. 1 III B.Tech II Semester Supplementary Examinations, November/December 2005 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS At the end of this week s lecture, students should be able to: Differentiate between the three ideal reactors Develop and apply the

More information

Chemical Reaction Engineering. Lecture 7

Chemical Reaction Engineering. Lecture 7 hemical Reaction Engineering Lecture 7 Home problem: nitroaniline synthesis the disappearance rate of orthonitrochlorobenzene [ ] d ONB ra k ONB NH dt Stoichiometric table: [ ][ ] 3 hange Remaining* oncentration**

More information

CHAPTER 4 EXPERIMENTAL METHODS

CHAPTER 4 EXPERIMENTAL METHODS 47 CHAPTER 4 EXPERIMENTAL METHODS 4.1 INTRODUCTION The experimental procedures employed in the present work are oriented towards the evaluation of residence time distribution in a static mixer and the

More information

Basic Concepts in Reactor Design

Basic Concepts in Reactor Design Basic Concepts in Reactor Design Lecture # 01 KBK (ChE) Ch. 8 1 / 32 Introduction Objectives Learning Objectives 1 Different types of reactors 2 Fundamental concepts used in reactor design 3 Design equations

More information

CBE 142: Chemical Kinetics & Reaction Engineering

CBE 142: Chemical Kinetics & Reaction Engineering CBE 142: Chemical Kinetics & Reaction Engineering Midterm #2 November 6 th 2014 This exam is worth 100 points and 20% of your course grade. Please read through the questions carefully before giving your

More information

Mixing in Chemical Reactors

Mixing in Chemical Reactors 1 / 131 Mixing in Chemical Reactors Copyright c 2018 by Nob Hill Publishing, LLC The three main reactor types developed thus far batch, continuous-stirred-tank, and plug-flow reactors are useful for modeling

More information

CE 329, Fall 2015 Second Mid-Term Exam

CE 329, Fall 2015 Second Mid-Term Exam CE 39, Fall 15 Second Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

Chemical Reaction Engineering

Chemical Reaction Engineering CHPTE 7 Chemical eaction Engineering (Gate 00). The conversion for a second order, irreversible reaction (constant volume) () k B, in batch mode is given by k C t o ( kcot) (C) k C t o + (D) kcot (B) k

More information

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS Starting Reference 1. P. A. Ramachandran and R. V. Chaudhari, Three-Phase Catalytic Reactors, Gordon and Breach Publishers, New York, (1983). 2. Nigam, K.D.P.

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 6 hemical Reaction Engineering (RE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 6 Tuesday 1/9/13 Block

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

Hydrogen Sulfide Removal from Waste Air by Oxidation reaction with Sodium Hypochlorite in CSTR

Hydrogen Sulfide Removal from Waste Air by Oxidation reaction with Sodium Hypochlorite in CSTR he9 The Forth PSU Engineering onference 8-9 December 5 ydrogen Sulfide Removal from Waste Air by Oxidation reaction with Sodium ypochlorite in STR harun Bunyakan* Juntima hungsiriporn Junya Intamanee azardous

More information

CSTR 1 CSTR 2 X A =?

CSTR 1 CSTR 2 X A =? hemical Engineering HE 33 F Applied Reaction Kinetics Fall 014 Problem Set 3 Due at the dropbox located in the hallway outside of WB 5 by Monday, Nov 3 rd, 014 at 5 pm Problem 1. onsider the following

More information

Problems Points (Max.) Points Received

Problems Points (Max.) Points Received Chemical Engineering 142 Chemical Kinetics and Reaction Engineering Midterm 1 Tuesday, October 8, 2013 8:10 am-9:30 am The exam is 100 points total. Please read through the questions very carefully before

More information

Chemical Kinetics and Reaction Engineering Midterm 1

Chemical Kinetics and Reaction Engineering Midterm 1 Page 1 Chemical & Biomolecular Engineering 142 Chemical Kinetics and Reaction Engineering Midterm 1 Tuesday, October 4, 2011 The exam is 100 points total and 20% of the course grade. Please read through

More information

Lecture 10 Kjemisk reaksjonsteknikk Chemical Reaction Engineering

Lecture 10 Kjemisk reaksjonsteknikk Chemical Reaction Engineering Lecture 10 Kjemisk reaksjonsteknikk hemical Reaction Engineering Review of previous lectures Procedure of RE data analysis Reactors for kinetic study Determining the Rate Law from Experimental Data Integral

More information

Predicting Continuous Leach Performance from Batch Data

Predicting Continuous Leach Performance from Batch Data Predicting Continuous Leach Performance from Batch Data An approach to non-ideal reactors and scale- up of leaching systems Presented by Lynton Gormely, P.Eng., Ph.D. The Problem given lab scale batch

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 29 September 2015 Print version EE 370 Environmental Engineering Principles Lecture #9 Material Balances I Reading: Mihelcic & Zimmerman, hapter 4 Davis & Masten, hapter 4 David Reckhow EE 370

More information

Chemical Reaction Engineering. Lecture 2

Chemical Reaction Engineering. Lecture 2 hemical Reaction Engineering Lecture 2 General algorithm of hemical Reaction Engineering Mole balance Rate laws Stoichiometry Energy balance ombine and Solve lassification of reactions Phases involved:

More information

Models for Nonideal Reactors

Models for Nonideal Reactors Fogler_ECRE_CDROM.book Page 945 Wednesday, September 17, 8 5:1 PM Models for Nonideal Reactors 14 Success is a journey, not a destination. Ben Sweetland Use the RTD to evaluate parameters Overview Not

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Chemical Reactor flnolysis

Chemical Reactor flnolysis Introduction to Chemical Reactor flnolysis SECOND EDITION R.E. Hayes J.P. Mmbaga ^ ^ T..,«,,.«M.iirti,im.' TECHNISCHE INFORMATIONSBIBLIOTHEK UNWERSITATSBIBLIOTHEK HANNOVER i ii ii 1 J /0\ CRC Press ycf*

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. oday s lecture Gas Phase

More information

A MASTER'S REPORT MASTER OF SCIENCE. Major Professor CHEMICAL ENGINEERING" Tsai. Billy I. submitted in partial fulfillment of

A MASTER'S REPORT MASTER OF SCIENCE. Major Professor CHEMICAL ENGINEERING Tsai. Billy I. submitted in partial fulfillment of "EFFECT OF MIXING ON REACTOR PERFORMANCE" AND "APPLICATION OF LINEAR PROGRAMMING TO CHEMICAL ENGINEERING" by < -y Billy I Tsai B. S., National Taiwan University, 1963 A MASTER'S REPORT submitted in partial

More information

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code.

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code. ChE 344 Fall 014 Mid Term Exam II Wednesday, November 19, 014 Open Book Closed Notes (but one 3x5 note card), Closed Computer, Web, Home Problems and In-class Problems Name Honor Code: I have neither given

More information

Study on residence time distribution of CSTR using CFD

Study on residence time distribution of CSTR using CFD Indian Journal of Chemical Technology Vol. 3, March 16, pp. 114-1 Study on residence time distribution of CSTR using CFD Akhilesh Khapre*, Divya Rajavathsavai & Basudeb Munshi Department of Chemical Engineering,

More information

A First Course on Kinetics and Reaction Engineering Example 29.3

A First Course on Kinetics and Reaction Engineering Example 29.3 Example 29.3 Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this unit. It illustrates the analysis of a parallel reactor network and the effect

More information

A Unit Operations Lab Project that Combines the Concepts of Reactor Design and Transport Phenomena

A Unit Operations Lab Project that Combines the Concepts of Reactor Design and Transport Phenomena Session #2313 A Unit Operations Lab Project that Combines the Concepts of Reactor Design and Transport Phenomena Benjamin J. Lawrence, Sundararajan V. Madihally, R. Russell Rhinehart School of Chemical

More information

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering Lecture 5 Chemical Reaction Engineering g Lecture 5 The Scope The im of the Course: To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor) Reactors Pharmacokinetics

More information

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna. Chemical Reaction Engineering and Reactor Technology Tapio Salmi Abo Akademi Abo-Turku, Finland Jyri-Pekka Mikkola Umea University, Umea, Sweden Johan Warna Abo Akademi Abo-Turku, Finland CRC Press is

More information

MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL ABSTRACT

MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL ABSTRACT MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL B. K. Highina, I. M. Bugaje & B. Gutti Department of Chemical Engineering University of Maiduguri, Borno State,

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 21 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Web Lecture 21 Class Lecture

More information

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space

More information

Investigation of adiabatic batch reactor

Investigation of adiabatic batch reactor Investigation of adiabatic batch reactor Introduction The theory of chemical reactors is summarized in instructions to Investigation of chemical reactors. If a reactor operates adiabatically then no heat

More information

Determining of the Residence Time Distribution in CPC reactor type

Determining of the Residence Time Distribution in CPC reactor type Available online at www.sciencedirect.com Energy Procedia 18 (212 ) 368 376 Determining of the Residence Time Distribution in CPC reactor type Ouassila Benhabiles a*, Nadia Chekir a,walid Taane a a Solar

More information

ξ Da nc n = c Pe ξ = c o ( θ ) (95) c ξ = 0 (96) θ = 0 ; c= c i ξ ( ) (97) (98) Pe z = u L E z

ξ Da nc n = c Pe ξ = c o ( θ ) (95) c ξ = 0 (96) θ = 0 ; c= c i ξ ( ) (97) (98) Pe z = u L E z 5. THE AXIAL DISPERSION MODEL The axial dispersion model can readily be extended to apply to turbulent flow conditions. Under such conditions the velocity profile is almost flat and averaging with respect

More information

Chemical Kinetics and Reaction Engineering

Chemical Kinetics and Reaction Engineering Chemical Kinetics and Reaction Engineering MIDTERM EXAMINATION II Friday, April 9, 2010 The exam is 100 points total and 20% of the course grade. Please read through the questions carefully before giving

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

PFR with inter stage cooling: Example 8.6, with some modifications

PFR with inter stage cooling: Example 8.6, with some modifications PFR with inter stage cooling: Example 8.6, with some modifications Consider the following liquid phase elementary reaction: A B. It is an exothermic reaction with H = -2 kcal/mol. The feed is pure A, at

More information

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1 (Refer Slide Time: 00:19) Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay Lecture - 03 Design Equations-1 We are looking at advanced reaction engineering;

More information

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model Unit 33. Axial Dispersion Model Overview In the plug flow reactor model, concentration only varies in the axial direction, and the sole causes of that variation are convection and reaction. Unit 33 describes

More information

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS INTRODUCTION TO CHEMICAL PROCESS SIMULATORS DWSIM Chemical Process Simulator A. Carrero, N. Quirante, J. Javaloyes October 2016 Introduction to Chemical Process Simulators Contents Monday, October 3 rd

More information

Pre GATE Pre-GATE 2018

Pre GATE Pre-GATE 2018 Pre GATE-018 Chemical Engineering CH 1 Pre-GATE 018 Duration : 180 minutes Total Marks : 100 CODE: GATE18-1B Classroom Postal Course Test Series (Add : 61C, Kalusarai Near HauzKhas Metro, Delhi 9990657855)

More information

Minister E. Obonukut, Perpetua G. Bassey IJSRE Volume 4 Issue 1 January

Minister E. Obonukut, Perpetua G. Bassey IJSRE Volume 4 Issue 1 January Volume 4 Issue 1 Pages-4767-4777 January-216 ISSN (e): 2321-7545 Website: http://ijsae.in DOI: http://dx.doi.org/1.18535/ijsre/v4i1.2 Residence Time Distribution of A Tubular Reactor Authors Minister E.

More information

CE 329, Fall 2015 Assignment 16, Practice Exam

CE 329, Fall 2015 Assignment 16, Practice Exam CE 39, Fall 15 Assignment 16, Practice Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must

More information

A First Course on Kinetics and Reaction Engineering Example 26.3

A First Course on Kinetics and Reaction Engineering Example 26.3 Example 26.3 unit. Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this Problem Statement A perfectly insulated tubular reactor with a diameter

More information

NPTEL. Chemical Reaction Engineering II - Video course. Chemical Engineering. COURSE OUTLINE

NPTEL. Chemical Reaction Engineering II - Video course. Chemical Engineering.   COURSE OUTLINE NPTEL Syllabus Chemical Reaction Engineering II - Video course COURSE OUTLINE This is a typical second course in the subject of chemical reaction engineering with an emphasis on heterogeneous reaction

More information

A First Course on Kinetics and Reaction Engineering Example 30.1

A First Course on Kinetics and Reaction Engineering Example 30.1 Example 30.1 Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this unit. It illustrates the general approach to solving the design equations for

More information

IV B.Tech. I Semester Supplementary Examinations, February/March PROCESS MODELING AND SIMULATION (Chemical Engineering)

IV B.Tech. I Semester Supplementary Examinations, February/March PROCESS MODELING AND SIMULATION (Chemical Engineering) www..com www..com Code No: M0824/R07 Set No. 1 IV B.Tech. I Semester Supplementary Examinations, February/March - 2011 PROCESS MODELING AND SIMULATION (Chemical Engineering) Time: 3 Hours Max Marks: 80

More information

1/r plots: a brief reminder

1/r plots: a brief reminder L10-1 1/r plots: a brief reminder 1/r X target X L10-2 1/r plots: a brief reminder 1/r X target X L10-3 1/r plots: a brief reminder 1/r X target X Special Case: utocatalytic Reactions Let s assume a reaction

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

The Material Balance for Chemical Reactors

The Material Balance for Chemical Reactors The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

CEE 160L Introduction to Environmental Engineering and Science. Lecture 5 and 6 Mass Balances

CEE 160L Introduction to Environmental Engineering and Science. Lecture 5 and 6 Mass Balances CEE 160L Introduction to Environmental Engineering and Science Lecture 5 and 6 Mass Balances Mass Balance (MB) Very important tool Track pollutants in the environment Reactor/treatment design Basis: Law

More information

A First Course on Kinetics and Reaction Engineering Example 33.2

A First Course on Kinetics and Reaction Engineering Example 33.2 Example 33.2 Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this unit. Specifically, it illustrates the use of the ial dispersion model and shows

More information

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Module - 02 Flowsheet Synthesis (Conceptual Design of a Chemical

More information

Basics of Non-Ideal Flow

Basics of Non-Ideal Flow Chapter 11 Basics of Non-Ideal Flow So far we have treated two flow patterns, plug flow and mixed flow. These can give very different behavior (size of reactor, distribution of products). We like these

More information

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam Open Book, Notes, CD ROM, Disk, and Web Name Honor Code 1) /25 pts 2) /15 pts 3) /10 pts 4) / 3 pts 5) / 6 pts 6) / 8 pts 7) / 8 pts 8) / 5

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web ChE 344 Winter 011 Final Exam + Solution Monday, April 5, 011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this

More information

Figure Q3. Boundary conditions for a tubular reactor.

Figure Q3. Boundary conditions for a tubular reactor. 1. Please illustrate or explain the meaning the following questions: (a) (10%) Please proof the five dimensionless numbers in fluid transport by Buckingham method as Eu=f(Re, Fr, We, Ma). (b) (10%) Please

More information

Reactors. Reaction Classifications

Reactors. Reaction Classifications Reactors Reactions are usually the heart of the chemical processes in which relatively cheap raw materials are converted to more economically favorable products. In other cases, reactions play essential

More information

Thermodynamics revisited

Thermodynamics revisited Thermodynamics revisited How can I do an energy balance for a reactor system? 1 st law of thermodynamics (differential form): de de = = dq dq--dw dw Energy: de = du + de kin + de pot + de other du = Work:

More information

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19 A First Course on Kinetics and Reaction Engineering Class 20 on Unit 19 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going Part III - Chemical Reaction Engineering A. Ideal

More information

RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES

RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES J. Thereska*, E. Plasari** * Institute of Applied Nuclear Physics, Tirana, Albania ** Ecole Nationale

More information

Advanced Transport Phenomena Module 6 - Lecture 28

Advanced Transport Phenomena Module 6 - Lecture 28 Mass Transport: Non-Ideal Flow Reactors Advanced Transport Phenomena Module 6 - Lecture 28 Dr. R. Nagarajan Professor Dept of Chemical Engineering IIT Madras 1 Simplest approach: apply overall material/

More information

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow 2 / 153 The Material Balance for Chemical Reactors Copyright c 2018 by Nob Hill Publishing, LLC 1 / 153 General Mole Balance R j V Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name ChE 142 pril 11, 25 Midterm II (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name KEY By signing this sheet, you agree to adhere to the U.C. Berkeley Honor Code Signed Name_ KEY

More information

AIRLIFT BIOREACTORS. contents

AIRLIFT BIOREACTORS. contents AIRLIFT BIOREACTORS contents Introduction Fluid Dynamics Mass Transfer Airlift Reactor Selection and Design 1 INTRODUCTION airlift reactor (ALR) covers a wide range of gas liquid or gas liquid solid pneumatic

More information

ENTHALPY BALANCES WITH CHEMICAL REACTION

ENTHALPY BALANCES WITH CHEMICAL REACTION ENTHALPY BALANCES WITH CHEMICAL REACTION Calculation of the amount and temperature of combustion products Methane is burnt in 50 % excess of air. Considering that the process is adiabatic and all methane

More information

Final Polymer Processing

Final Polymer Processing 030319 Final Polymer Processing I) Blow molding is used to produce plastic bottles and a blow molding machine was seen during the Equistar tour. In blow molding a tubular parison is produced by extrusion

More information

FLOW REACTORS FOR HOMOGENOUS REACTION: PERFORMANCE EQUATIONS AND APPLICATIONS

FLOW REACTORS FOR HOMOGENOUS REACTION: PERFORMANCE EQUATIONS AND APPLICATIONS FLOW REACTORS FOR HOMOGENOUS REACTION: PERFORMANCE EQUATIONS AND APPLICATIONS At the end of this week s lecture, students should be able to: Develop and apply the performance equation for plug flow reactors.

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Today s lecture Complex

More information

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Module No. #05 Lecture No. #29 Non Isothermal Reactor Operation Let us continue

More information