Unique Difference Bases of Z

Size: px
Start display at page:

Download "Unique Difference Bases of Z"

Transcription

1 Journal of Integer Sequences, Vol. 14 (011), Article Unique Difference Bases of Z Chi-Wu Tang, Min Tang, 1 and Lei Wu Department of Mathematics Anhui Normal University Wuhu P. R. China tmzzz000@163.com Abstract For n Z, A Z, let δ A (n) denote the number of representations of n in the form n = a a, where a, a A. A set A Z is called a unique difference basis of Z if δ A (n) = 1 for all n 0 in Z. In this paper, we prove that there exists a unique difference basis of Z whose growth is logarithmic. These results show that the analogue of the Erdős-Turán conjecture fails to hold in (Z, ). 1 Introduction For sets A and B of integers and for any integer c, we define the set and the translations The counting function for the set A is For n Z, we write A B = {a b : a A,b B}, A c = {a c : a A}, c A = {c a : a A}. A(y,x) = card{a A : y a x}. δ A (n) = card{(a,a ) A A : a a = n}, 1 Corresponding author. The second author was supported by the National Natural Science Foundation of China, Grant No and the SF of the Education Department of Anhui Province, Grant No. KJ010A16. 1

2 σ A (n) = card{(a,a ) A A : a + a = n}. We call A Z a difference basis of Z if δ A (n) 1 for all n Z, and a unique difference basis of Z if δ A (n) = 1 for all n 0 in Z. We call A a subset of N an additive asymptotic basis of N if there is n 0 = n 0 (A) such that σ A (n) 1 for all n n 0. The celebrated Erdős- Turán conjecture [1] states that if A N is an additive asymptotic basis of N, then the representation function σ A (n) must be unbounded. In 1990, Ruzsa [5] constructed a basis of A N for which σ A (n) is bounded in the square mean. Pŭs [4] first established that the analogue of the Erdős-Turán conjecture fails to hold in some abelian groups. Nathanson [3] constructed a family of arbitrarily sparse unique additive representation bases for Z. In 004, Haddad and Helou [] showed that the analogue of the Erdős-Turán conjecture does not hold in a variety of additive groups derived from those of certain fields. Let K be a finite field of characteristic and G the additive group of K K. Recently, Chi-Wu Tang and Min Tang [6] proved there exists a set B G such that 1 δ B (g) 14 for all g 0. It is natural to consider the analogue of the Erdős-Turán conjecture in (Z, ). In this paper, we obtain the following results. Theorem 1. There exists a family of unique difference bases of Z. Theorem. There exists a unique difference basis A of Z such that log(3x + 3) log 5 < A(0,x) log(x + 3) for all x 1. Proof of Theorem 1. We shall construct an ascending sequence A 1 A of finite sets of nonnegative integers such that A k = k, for all k 1, We shall prove that the infinite set δ Ak (n) 1, for all n 0. A = k=1 is a unique difference basis of Z. We construct the sets A k by induction. Let A 1 = {0, 1}. We assume that for some k 1 we have constructed sets A 1 A k such that A i = i and δ Ai (n) 1 for all 1 i k and all integers n 0. We define the integers A k d k = max{a : a A k }, b k = min{ b : b A k A k }. To construct the set A k+1, we choose an integer c k such that c k > d k. Let A k+1 = A k {c k,b k + c k }.

3 Then A k+1 = k + = (k + 1) for all k 1, and A k [0,d k ], A k A k [ d k,d k ]. Note that A k+1 A k+1 = (A k A k ) (A k (b k + c k )) ((b k + c k ) A k ) (A k c k ) (c k A k ) {b k, b k }. (1) We shall show that A k+1 A k+1 is the disjoint union of the above six sets. If u A k A k, then d k u d k. () If v 1 A k (b k + c k ) and v (b k + c k ) A k, then there exist a,a A k such that v 1 = a (b k + c k ) and v = (b k + c k ) a. Since 0 a,a d k, we have If w 1 A k c k and w c k A k, similarly, we have b k c k v 1 b k c k + d k, (3) b k + c k d k v b k + c k. (4) c k w 1 c k + d k, (5) c k d k w c k. (6) For any n Z, if n A k A k, then n A k A k, thus by the definition of b k, we have b k A k A k and b k A k A k. (7) Assume (c k A k ) ((b k +c k ) A k ), then there exist a,a A k such that b k +c k a = c k a, b k = a a A k A k which contradicts with the fact b k A k A k. Similarly, we have (A k (b k + c k )) (A k c k ) =. Moreover, we have d k A k A k, hence b k d k. If b k < d k, it is easy to see that the set { b k,b k } is disjoint with the other five sets. If b k > d k, since d k A k A k and by the definition of b k, we have b k = d k + 1. Then c k d k (d k + 1) d k = d k + > b k and c k + d k (d k + 1) + d k = d k < b k, thus the set { b k,b k } is disjoint with the other five sets. By Eq. (1) (6) and the above discussion, we know that the sets A k A k, A k (b k + c k ), (b k +c k ) A k, A k c k, c k A k, {b k, b k } are pairwise disjoint. That is, δ Ak+1 (n) 1 for all integers n 0. Let A = A k. Then for all k 1, by (7) and the definition of b k, we have k=1 { b k + 1, b k +,, 1, 1,,b k,b k 1} A k A k A A, and the sequence {b k } k 1 is strictly increasing, since A k A k A k+1 A k+1 and ±b k A k+1 A k+1 but ±b k A k A k. Thus A is a difference basis of Z. If δ A (n) for some n, then by construction, δ Ak (n) for some k, which is impossible. Therefore, A is a unique difference basis of Z. It completes the proof of Theorem 1. 3

4 3 Proof of Theorem. We apply the method of Theorem 1 with c k = d k + 1 for all k 1. This is essentially a greedy algorithm construction, since at each iteration we choose the smallest possible value of c k. It is instructive to compute the first few sets A k. Since A 1 = {0, 1}, A 1 A 1 = { 1, 0, 1}, we have b 1 =,d 1 = 1, and c 1 = d =. Then A = {0, 1, 4, 6}, A A = { 6, 5, 4, 3,, 1, 0, 1,, 3, 4, 5, 6}, hence b = 7,d = 6, c = d + 1 = 7. The next iteration of the algorithm produces the sets A 3 = {0, 1, 4, 6, 14, 1}, A 3 A 3 = { 1, 0, 17, 15, 14, 13, 10, 8, so we obtain b 3 = 9,d 3 = 1,c 3 =, and 7, 7, 8, 10, 13, 14, 15, 17, 0, 1} (A A ), A 4 = {0, 1, 4, 6, 14, 1, 44, 53}. We shall compute upper and lower bounds for the counting function A(0, x). We observe that if x d 1 and k is the unique integer such that d k x < d k+1, by the construction of A, we know A k = k and A k+1 = A k {c k, c k + b k }, then { k, if d k x < c k, A(0,x) = A k+1 (0,x) = k + 1, if c k x < c k + b k = d k+1. For k 1, we have 1 < b k d k + 1 = c k and c k+1 = d k = c k + b k + 1, hence c k + < c k+1 3c k + 1. Since c 1 = d =, it follows by induction on k that and so k+1 c k 5 3k 1 1, log 6 ( ck ) k log c k + for all k 1. We obtain an upper bound for A(0,x) as follows. If d k x < c k, then c k x + 1, and log c k + A(0,x) = A k+1 (0,x) = k 4 = log(c k + ) log(x + 3).

5 If c k x < d k+1, then c k x, and A(0,x) = A k+1 (0,x) = k + 1 log c k log ( x 4 + 1) + 1 = log(x + 4) 3. Therefore, A(0,x) log(x + 3) for all x 1. Similarly, we obtain a lower bound for A(0,x). If d k x < c k, then log 6 ( ck + 1 A(0,x) = k 5 ) > (x + 1) 5 = log(3x + 3) If c k x < d k+1, then d k+1 = b k + c k 3c k. So c k 1 3 d k+1 > 1 3 x and log 5. A(0,x) = k + 1 log 6 ( ck ) + 1 > log 6 (x ) + 1 = log(x + 3) + 1 log 5. Therefore, A(0,x) > log(3x + 3) This completes the proof of Theorem. log 5 for all x 1. 4 Acknowledgements We would like to thank the referee for his/her many helpful suggestions. References [1] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), [] L. Haddad and C. Helou, Bases in some additive groups and the Erdős-Turán conjecture, J. Combin. Theory Series A 108 (004), [3] M. B. Nathanson, Unique representation bases for integers, Acta Arith. 108 (003), 1 8. [4] V. Pǔs, On multiplicative bases in abelian groups, Czech. Math. J. 41 (1991), [5] I. Z. Ruzsa, A just basis, Monatsh. Math 109 (1990), [6] Chi-Wu Tang and Min Tang, Note on a result of Haddad and Helou, Integers 10 (010), 9 3. Available electronically at 5

6 000 Mathematics Subject Classification: Primary 11B13; Secondary 11B34. Keywords: Erdős-Turán conjecture; difference bases; counting function. Received October 1 010; revised version received January Published in Journal of Integer Sequences, February Return to Journal of Integer Sequences home page. 6

arxiv:math/ v1 [math.nt] 6 May 2003

arxiv:math/ v1 [math.nt] 6 May 2003 arxiv:math/0305087v1 [math.nt] 6 May 003 The inverse problem for representation functions of additive bases Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx, New York 10468 Email:

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

Another Proof of Nathanson s Theorems

Another Proof of Nathanson s Theorems 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 14 (2011), Article 11.8.4 Another Proof of Nathanson s Theorems Quan-Hui Yang School of Mathematical Sciences Nanjing Normal University Nanjing 210046

More information

Integer Sequences Avoiding Prime Pairwise Sums

Integer Sequences Avoiding Prime Pairwise Sums 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 11 (008), Article 08.5.6 Integer Sequences Avoiding Prime Pairwise Sums Yong-Gao Chen 1 Department of Mathematics Nanjing Normal University Nanjing 10097

More information

THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS

THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A16 THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS Peter Hegarty Department of Mathematics, Chalmers University

More information

Some remarks on the Erdős Turán conjecture

Some remarks on the Erdős Turán conjecture ACTA ARITHMETICA LXIII.4 (1993) Some remarks on the Erdős Turán conjecture by Martin Helm (Mainz) Notation. In additive number theory an increasing sequence of natural numbers is called an asymptotic basis

More information

Fermat numbers and integers of the form a k + a l + p α

Fermat numbers and integers of the form a k + a l + p α ACTA ARITHMETICA * (200*) Fermat numbers and integers of the form a k + a l + p α by Yong-Gao Chen (Nanjing), Rui Feng (Nanjing) and Nicolas Templier (Montpellier) 1. Introduction. In 1849, A. de Polignac

More information

ON A PARTITION PROBLEM OF CANFIELD AND WILF. Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia

ON A PARTITION PROBLEM OF CANFIELD AND WILF. Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia #A11 INTEGERS 12A (2012): John Selfridge Memorial Issue ON A PARTITION PROBLEM OF CANFIELD AND WILF Željka Ljujić Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia z.ljujic20@uniandes.edu.co

More information

1 x i. i=1 EVEN NUMBERS RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA

1 x i. i=1 EVEN NUMBERS RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA Volume, Number 2, Pages 63 78 ISSN 75-0868 ON THE EQUATION n i= = IN DISTINCT ODD OR EVEN NUMBERS RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA Abstract. In this paper we combine theoretical

More information

On prime factors of subset sums

On prime factors of subset sums On prime factors of subset sums by P. Erdös, A. Sárközy and C.L. Stewart * 1 Introduction For any set X let X denote its cardinality and for any integer n larger than one let ω(n) denote the number of

More information

Combinatorial Number Theory in China

Combinatorial Number Theory in China Combinatorial Number Theory in China Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn http://math.nju.edu.cn/ zwsun Nov. 6, 2009 While in the past many of the basic combinatorial

More information

Solving a linear equation in a set of integers II

Solving a linear equation in a set of integers II ACTA ARITHMETICA LXXII.4 (1995) Solving a linear equation in a set of integers II by Imre Z. Ruzsa (Budapest) 1. Introduction. We continue the study of linear equations started in Part I of this paper.

More information

Sidon sets and C 4 -saturated graphs

Sidon sets and C 4 -saturated graphs Sidon sets and C 4 -saturated graphs arxiv:1810.056v1 [math.co] 11 Oct 018 David F. Daza Carlos A. Trujillo Universidad del Cauca, A.A. 755, Colombia. davidaza@unicauca.edu.co - trujillo@unicauca.edu.co

More information

h-fold sums from a set with few products

h-fold sums from a set with few products h-fold sums from a set with few products Dedicated to the memory of György Elekes Ernie Croot Derrick Hart January 7, 2010 1 Introduction Before we state our main theorems, we begin with some notation:

More information

On sets of integers whose shifted products are powers

On sets of integers whose shifted products are powers On sets of integers whose shifted products are powers C.L. Stewart 1 Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada, NL 3G1 Abstract Let N be a positive integer and let

More information

arxiv: v1 [math.co] 22 May 2014

arxiv: v1 [math.co] 22 May 2014 Using recurrence relations to count certain elements in symmetric groups arxiv:1405.5620v1 [math.co] 22 May 2014 S.P. GLASBY Abstract. We use the fact that certain cosets of the stabilizer of points are

More information

When Sets Can and Cannot Have Sum-Dominant Subsets

When Sets Can and Cannot Have Sum-Dominant Subsets 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 21 (2018), Article 18.8.2 When Sets Can and Cannot Have Sum-Dominant Subsets Hùng Việt Chu Department of Mathematics Washington and Lee University Lexington,

More information

On the maximal density of sum-free sets

On the maximal density of sum-free sets ACTA ARITHMETICA XCV.3 (2000) On the maximal density of sum-free sets by Tomasz Luczak (Poznań) and Tomasz Schoen (Kiel and Poznań) 1. Introduction. For a set A N, let A(n) = A {1,..., n} and { } P(A)

More information

THE DIRECT SUM, UNION AND INTERSECTION OF POSET MATROIDS

THE DIRECT SUM, UNION AND INTERSECTION OF POSET MATROIDS SOOCHOW JOURNAL OF MATHEMATICS Volume 28, No. 4, pp. 347-355, October 2002 THE DIRECT SUM, UNION AND INTERSECTION OF POSET MATROIDS BY HUA MAO 1,2 AND SANYANG LIU 2 Abstract. This paper first shows how

More information

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99 ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS N. HEGYVÁRI, F. HENNECART AND A. PLAGNE Abstract. We study the gaps in the sequence of sums of h pairwise distinct elements

More information

All Ramsey numbers for brooms in graphs

All Ramsey numbers for brooms in graphs All Ramsey numbers for brooms in graphs Pei Yu Department of Mathematics Tongji University Shanghai, China yupeizjy@16.com Yusheng Li Department of Mathematics Tongji University Shanghai, China li yusheng@tongji.edu.cn

More information

A NOTE ON B 2 [G] SETS. Gang Yu 1 Department of Mathematical Sciences, Kent State University, Kent, OH

A NOTE ON B 2 [G] SETS. Gang Yu 1 Department of Mathematical Sciences, Kent State University, Kent, OH INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (8), #A58 A NOTE ON B [G] SETS Gang Yu Department of Mathematical Sciences, Kent State University, Kent, OH 444 yu@math.kent.edu Received:

More information

Powers of 2 with five distinct summands

Powers of 2 with five distinct summands ACTA ARITHMETICA * (200*) Powers of 2 with five distinct summands by Vsevolod F. Lev (Haifa) 0. Summary. We show that every sufficiently large, finite set of positive integers of density larger than 1/3

More information

SETS WITH MORE SUMS THAN DIFFERENCES. Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York

SETS WITH MORE SUMS THAN DIFFERENCES. Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A05 SETS WITH MORE SUMS THAN DIFFERENCES Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York 10468 melvyn.nathanson@lehman.cuny.edu

More information

Acta Arith., 140(2009), no. 4, ON BIALOSTOCKI S CONJECTURE FOR ZERO-SUM SEQUENCES. 1. Introduction

Acta Arith., 140(2009), no. 4, ON BIALOSTOCKI S CONJECTURE FOR ZERO-SUM SEQUENCES. 1. Introduction Acta Arith., 140(009), no. 4, 39 334. ON BIALOSTOCKI S CONJECTURE FOR ZERO-SUM SEQUENCES SONG GUO AND ZHI-WEI SUN* arxiv:081.174v3 [math.co] 16 Dec 009 Abstract. Let n be a positive even integer, and let

More information

MONOCHROMATIC VS. MULTICOLORED PATHS. Hanno Lefmann* Department of Mathematics and Computer Science Emory University. Atlanta, Georgia 30332, USA

MONOCHROMATIC VS. MULTICOLORED PATHS. Hanno Lefmann* Department of Mathematics and Computer Science Emory University. Atlanta, Georgia 30332, USA MONOCHROMATIC VS. MULTICOLORED PATHS Hanno Lefmann* Department of Mathematics and Computer Science Emory University Atlanta, Georgia 30322, USA and School of Mathematics Georgia Institute of Technology

More information

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE J. Combin. Theory Ser. A 116(2009), no. 8, 1374 1381. A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE Hao Pan and Zhi-Wei Sun Department of Mathematics, Naning University Naning 210093, People s Republic

More information

arxiv: v1 [math.co] 28 Jan 2019

arxiv: v1 [math.co] 28 Jan 2019 THE BROWN-ERDŐS-SÓS CONJECTURE IN FINITE ABELIAN GROUPS arxiv:191.9871v1 [math.co] 28 Jan 219 JÓZSEF SOLYMOSI AND CHING WONG Abstract. The Brown-Erdős-Sós conjecture, one of the central conjectures in

More information

THE RELATIVE SIZES OF SUMSETS AND DIFFERENCE SETS. Merlijn Staps Department of Mathematics, Utrecht University, Utrecht, The Netherlands

THE RELATIVE SIZES OF SUMSETS AND DIFFERENCE SETS. Merlijn Staps Department of Mathematics, Utrecht University, Utrecht, The Netherlands #A42 INTEGERS 15 (2015) THE RELATIVE SIZES OF SUMSETS AND DIFFERENCE SETS Merlijn Staps Department of Mathematics, Utrecht University, Utrecht, The Netherlands M.Staps@uu.nl Received: 10/9/14, Revised:

More information

#A34 INTEGERS 13 (2013) A NOTE ON THE MULTIPLICATIVE STRUCTURE OF AN ADDITIVELY SHIFTED PRODUCT SET AA + 1

#A34 INTEGERS 13 (2013) A NOTE ON THE MULTIPLICATIVE STRUCTURE OF AN ADDITIVELY SHIFTED PRODUCT SET AA + 1 #A34 INTEGERS 13 (2013) A NOTE ON THE MULTIPLICATIVE STRUCTURE OF AN ADDITIVELY SHIFTED PRODUCT SET AA + 1 Steven Senger Department of Mathematics, University of Delaware, Newark, Deleware senger@math.udel.edu

More information

Walk through Combinatorics: Sumset inequalities.

Walk through Combinatorics: Sumset inequalities. Walk through Combinatorics: Sumset inequalities (Version 2b: revised 29 May 2018) The aim of additive combinatorics If A and B are two non-empty sets of numbers, their sumset is the set A+B def = {a+b

More information

THE UNIT DISTANCE PROBLEM ON SPHERES

THE UNIT DISTANCE PROBLEM ON SPHERES THE UNIT DISTANCE PROBLEM ON SPHERES KONRAD J. SWANEPOEL AND PAVEL VALTR Abstract. For any D > 1 and for any n 2 we construct a set of n points on a sphere in R 3 of diameter D determining at least cn

More information

An upper bound for B 2 [g] sets

An upper bound for B 2 [g] sets Journal of Number Theory 1 (007) 11 0 www.elsevier.com/locate/jnt An upper bound for B [g] sets Gang Yu Department of Mathematics, LeConte College, 153 Greene street, University of South Carolina, Columbia,

More information

Partitions of the set of nonnegative integers with the same representation functions

Partitions of the set of nonnegative integers with the same representation functions Partitions of the set of nonnegative integers with the same representation functions Sándor Z. Kiss, Csaba Sándor arxiv:1606.0699v [math.nt] 10 Aug 016 Abstract For a set of nonnegative integers S let

More information

On Subsequence Sums of a Zero-sum Free Sequence

On Subsequence Sums of a Zero-sum Free Sequence On Subsequence Sums of a Zero-sum Free Sequence Fang Sun Center for Combinatorics, LPMC Nankai University, Tianjin, P.R. China sunfang2005@1.com Submitted: Jan 1, 2007; Accepted: Jul 18, 2007; Published:

More information

The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The Degree of the Splitting Field of a Random Polynomial over a Finite Field The Degree of the Splitting Field of a Random Polynomial over a Finite Field John D. Dixon and Daniel Panario School of Mathematics and Statistics Carleton University, Ottawa, Canada {jdixon,daniel}@math.carleton.ca

More information

On Polynomial Pairs of Integers

On Polynomial Pairs of Integers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5 On Polynomial Pairs of Integers Martianus Frederic Ezerman Division of Mathematical Sciences School of Physical and Mathematical

More information

Universal convex coverings

Universal convex coverings Bull. London Math. Soc. 41 (2009) 987 992 C 2009 London Mathematical Society doi:10.1112/blms/bdp076 Universal convex coverings Roland Bacher Abstract In every dimension d 1, we establish the existence

More information

Squares in products with terms in an arithmetic progression

Squares in products with terms in an arithmetic progression ACTA ARITHMETICA LXXXVI. (998) Squares in products with terms in an arithmetic progression by N. Saradha (Mumbai). Introduction. Let d, k 2, l 2, n, y be integers with gcd(n, d) =. Erdős [4] and Rigge

More information

ON `-TH ORDER GAP BALANCING NUMBERS

ON `-TH ORDER GAP BALANCING NUMBERS #A56 INTEGERS 18 (018) ON `-TH ORDER GAP BALANCING NUMBERS S. S. Rout Institute of Mathematics and Applications, Bhubaneswar, Odisha, India lbs.sudhansu@gmail.com; sudhansu@iomaorissa.ac.in R. Thangadurai

More information

On reducible and primitive subsets of F p, II

On reducible and primitive subsets of F p, II On reducible and primitive subsets of F p, II by Katalin Gyarmati Eötvös Loránd University Department of Algebra and Number Theory and MTA-ELTE Geometric and Algebraic Combinatorics Research Group H-1117

More information

Representing integers as linear combinations of powers

Representing integers as linear combinations of powers ubl. Math. Debrecen Manuscript (August 15, 2011) Representing integers as linear combinations of powers By Lajos Hajdu and Robert Tijdeman Dedicated to rofessors K. Győry and A. Sárközy on their 70th birthdays

More information

Roth s Theorem on 3-term Arithmetic Progressions

Roth s Theorem on 3-term Arithmetic Progressions Roth s Theorem on 3-term Arithmetic Progressions Mustazee Rahman 1 Introduction This article is a discussion about the proof of a classical theorem of Roth s regarding the existence of three term arithmetic

More information

On the Mutually Commuting n-tuples. in Compact Groups

On the Mutually Commuting n-tuples. in Compact Groups International Journal of Algebra, Vol. 1, 2007, no. 6, 251-262 On the Mutually Commuting n-tuples in Compact roups A. Erfanian and R. Kamyabi-ol Centre of Excellency in Analysis on Algebraic Structures

More information

Some zero-sum constants with weights

Some zero-sum constants with weights Proc. Indian Acad. Sci. (Math. Sci.) Vol. 118, No. 2, May 2008, pp. 183 188. Printed in India Some zero-sum constants with weights S D ADHIKARI 1, R BALASUBRAMANIAN 2, F PAPPALARDI 3 andprath 2 1 Harish-Chandra

More information

Pair dominating graphs

Pair dominating graphs Pair dominating graphs Paul Balister Béla Bollobás July 25, 2004 Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 USA Abstract An oriented graph dominates pairs if for every

More information

An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n2

An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n2 1 47 6 11 Journal of Integer Sequences, Vol. 17 (014), Article 14.7.6 An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n Bakir Farhi Department of Mathematics

More information

Date: October 24, 2008, Friday Time: 10:40-12:30. Math 123 Abstract Mathematics I Midterm Exam I Solutions TOTAL

Date: October 24, 2008, Friday Time: 10:40-12:30. Math 123 Abstract Mathematics I Midterm Exam I Solutions TOTAL Date: October 24, 2008, Friday Time: 10:40-12:30 Ali Sinan Sertöz Math 123 Abstract Mathematics I Midterm Exam I Solutions 1 2 3 4 5 TOTAL 20 20 20 20 20 100 Please do not write anything inside the above

More information

Marvin L. Sahs Mathematics Department, Illinois State University, Normal, Illinois Papa A. Sissokho.

Marvin L. Sahs Mathematics Department, Illinois State University, Normal, Illinois Papa A. Sissokho. #A70 INTEGERS 13 (2013) A ZERO-SUM THEOREM OVER Z Marvin L. Sahs Mathematics Department, Illinois State University, Normal, Illinois marvinsahs@gmail.com Papa A. Sissokho Mathematics Department, Illinois

More information

Putnam Greedy Algorithms Cody Johnson. Greedy Algorithms. May 30, 2016 Cody Johnson.

Putnam Greedy Algorithms Cody Johnson. Greedy Algorithms. May 30, 2016 Cody Johnson. 1 Introduction Greedy Algorithms May 0, 2016 Cody Johnson ctj@math.cmu.edu A greedy algorithm is an algorithm that chooses the optimal choice in the short run. 2 Examples 1. Prove that every nonnegative

More information

A SHARP RESULT ON m-covers. Hao Pan and Zhi-Wei Sun

A SHARP RESULT ON m-covers. Hao Pan and Zhi-Wei Sun Proc. Amer. Math. Soc. 35(2007), no., 355 3520. A SHARP RESULT ON m-covers Hao Pan and Zhi-Wei Sun Abstract. Let A = a s + Z k s= be a finite system of arithmetic sequences which forms an m-cover of Z

More information

On a combinatorial method for counting smooth numbers in sets of integers

On a combinatorial method for counting smooth numbers in sets of integers On a combinatorial method for counting smooth numbers in sets of integers Ernie Croot February 2, 2007 Abstract In this paper we develop a method for determining the number of integers without large prime

More information

Maximum subsets of (0, 1] with no solutions to x + y = kz

Maximum subsets of (0, 1] with no solutions to x + y = kz Maximum subsets of 0, 1] with no solutions to x + y = z Fan R. K. Chung Department of Mathematics University of Pennsylvania Philadelphia, PA 19104 John L. Goldwasser West Virginia University Morgantown,

More information

Irregular Sets of Integers Generated by the Greedy Algorithm

Irregular Sets of Integers Generated by the Greedy Algorithm MATHEMATICS OF COMPUTATION VOLUME 40, NUMBER 162 APRIL 1983, PAGES 667-676 Irregular Sets of Integers Generated by the Greedy Algorithm By Joseph L. Gerver Abstract. The greedy algorithm was used to generate

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Slow P -point Ultrafilters

Slow P -point Ultrafilters Slow P -point Ultrafilters Renling Jin College of Charleston jinr@cofc.edu Abstract We answer a question of Blass, Di Nasso, and Forti [2, 7] by proving, assuming Continuum Hypothesis or Martin s Axiom,

More information

A proof of strong Goldbach conjecture and twin prime conjecture

A proof of strong Goldbach conjecture and twin prime conjecture A proof of strong Goldbach conjecture and twin prime conjecture Pingyuan Zhou E-mail:zhoupingyuan49@hotmail.com Abstract In this paper we give a proof of the strong Goldbach conjecture by studying limit

More information

Maximum union-free subfamilies

Maximum union-free subfamilies Maximum union-free subfamilies Jacob Fox Choongbum Lee Benny Sudakov Abstract An old problem of Moser asks: how large of a union-free subfamily does every family of m sets have? A family of sets is called

More information

DIMENSIONS OF JULIA SETS OF HYPERBOLIC ENTIRE FUNCTIONS

DIMENSIONS OF JULIA SETS OF HYPERBOLIC ENTIRE FUNCTIONS Bull. London Math. Soc. 36 2004 263 270 C 2004 London Mathematical Society DOI: 10.1112/S0024609303002698 DIMENSIONS OF JULIA SETS OF HYPERBOLIC ENTIRE FUNCTIONS GWYNETH M. STALLARD Abstract It is known

More information

Some problems related to Singer sets

Some problems related to Singer sets Some problems related to Singer sets Alex Chmelnitzki October 24, 2005 Preface The following article describes some of the work I did in the summer 2005 for Prof. Ben Green, Bristol University. The work

More information

SUMSETS MOD p ØYSTEIN J. RØDSETH

SUMSETS MOD p ØYSTEIN J. RØDSETH SUMSETS MOD p ØYSTEIN J. RØDSETH Abstract. In this paper we present some basic addition theorems modulo a prime p and look at various proof techniques. We open with the Cauchy-Davenport theorem and a proof

More information

Subset sums modulo a prime

Subset sums modulo a prime ACTA ARITHMETICA 131.4 (2008) Subset sums modulo a prime by Hoi H. Nguyen, Endre Szemerédi and Van H. Vu (Piscataway, NJ) 1. Introduction. Let G be an additive group and A be a subset of G. We denote by

More information

Turán s problem and Ramsey numbers for trees. Zhi-Hong Sun 1, Lin-Lin Wang 2 and Yi-Li Wu 3

Turán s problem and Ramsey numbers for trees. Zhi-Hong Sun 1, Lin-Lin Wang 2 and Yi-Li Wu 3 Colloquium Mathematicum 139(015, no, 73-98 Turán s problem and Ramsey numbers for trees Zhi-Hong Sun 1, Lin-Lin Wang and Yi-Li Wu 3 1 School of Mathematical Sciences, Huaiyin Normal University, Huaian,

More information

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu**

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu** 4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN Robin Thomas* Xingxing Yu** School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332, USA May 1991, revised 23 October 1993. Published

More information

LINEAR EQUATIONS WITH UNKNOWNS FROM A MULTIPLICATIVE GROUP IN A FUNCTION FIELD. To Professor Wolfgang Schmidt on his 75th birthday

LINEAR EQUATIONS WITH UNKNOWNS FROM A MULTIPLICATIVE GROUP IN A FUNCTION FIELD. To Professor Wolfgang Schmidt on his 75th birthday LINEAR EQUATIONS WITH UNKNOWNS FROM A MULTIPLICATIVE GROUP IN A FUNCTION FIELD JAN-HENDRIK EVERTSE AND UMBERTO ZANNIER To Professor Wolfgang Schmidt on his 75th birthday 1. Introduction Let K be a field

More information

ON MATCHINGS IN GROUPS

ON MATCHINGS IN GROUPS ON MATCHINGS IN GROUPS JOZSEF LOSONCZY Abstract. A matching property conceived for lattices is examined in the context of an arbitrary abelian group. The Dyson e-transform and the Cauchy Davenport inequality

More information

DIFFERENCES OF MULTIPLE FIBONACCI NUMBERS. Hannah Alpert Department of Mathematics, University of Chicago,Chicago, IL

DIFFERENCES OF MULTIPLE FIBONACCI NUMBERS. Hannah Alpert Department of Mathematics, University of Chicago,Chicago, IL #A57 INTEGERS 9 (2009), 745-749 DIFFERENCES OF MULTIPLE FIBONACCI NUMBERS Hannah Alpert Department of Mathematics, University of Chicago,Chicago, IL hcalpert@uchicago.edu Received: 9/11/09, Revised: 10/8/09,

More information

Extensions of covariantly finite subcategories

Extensions of covariantly finite subcategories Arch. Math. 93 (2009), 29 35 c 2009 Birkhäuser Verlag Basel/Switzerland 0003-889X/09/010029-7 published online June 26, 2009 DOI 10.1007/s00013-009-0013-8 Archiv der Mathematik Extensions of covariantly

More information

In this paper, we show that the bound given in Theorem A also holds for a class of abelian groups of rank 4.

In this paper, we show that the bound given in Theorem A also holds for a class of abelian groups of rank 4. SUBSEQUENCE SUMS OF ZERO-SUM FREE SEQUENCES OVER FINITE ABELIAN GROUPS YONGKE QU, XINGWU XIA, LIN XUE, AND QINGHAI ZHONG Abstract. Let G be a finite abelian group of rank r and let X be a zero-sum free

More information

SOME VARIANTS OF LAGRANGE S FOUR SQUARES THEOREM

SOME VARIANTS OF LAGRANGE S FOUR SQUARES THEOREM Acta Arith. 183(018), no. 4, 339 36. SOME VARIANTS OF LAGRANGE S FOUR SQUARES THEOREM YU-CHEN SUN AND ZHI-WEI SUN Abstract. Lagrange s four squares theorem is a classical theorem in number theory. Recently,

More information

Decomposing oriented graphs into transitive tournaments

Decomposing oriented graphs into transitive tournaments Decomposing oriented graphs into transitive tournaments Raphael Yuster Department of Mathematics University of Haifa Haifa 39105, Israel Abstract For an oriented graph G with n vertices, let f(g) denote

More information

Global Attractivity of a Higher-Order Nonlinear Difference Equation

Global Attractivity of a Higher-Order Nonlinear Difference Equation International Journal of Difference Equations ISSN 0973-6069, Volume 5, Number 1, pp. 95 101 (010) http://campus.mst.edu/ijde Global Attractivity of a Higher-Order Nonlinear Difference Equation Xiu-Mei

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Providence College Math/CS Colloquium April 2, 2014

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Providence College Math/CS Colloquium April 2, 2014 Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Providence College Math/CS Colloquium April 2, 2014 Let s begin with products. Take the N N multiplication table. It has

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA International Number Theory Conference in Memory of Alf van der Poorten, AM 12 16 March, 2012 CARMA, the University of Newcastle

More information

THE STRUCTURE OF RAINBOW-FREE COLORINGS FOR LINEAR EQUATIONS ON THREE VARIABLES IN Z p. Mario Huicochea CINNMA, Querétaro, México

THE STRUCTURE OF RAINBOW-FREE COLORINGS FOR LINEAR EQUATIONS ON THREE VARIABLES IN Z p. Mario Huicochea CINNMA, Querétaro, México #A8 INTEGERS 15A (2015) THE STRUCTURE OF RAINBOW-FREE COLORINGS FOR LINEAR EQUATIONS ON THREE VARIABLES IN Z p Mario Huicochea CINNMA, Querétaro, México dym@cimat.mx Amanda Montejano UNAM Facultad de Ciencias

More information

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES Y. O. HAMIDOUNE AND J. RUÉ Abstract. Let A be a finite nonempty set of integers. An asymptotic estimate of several dilates sum size was obtained

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Some Arithmetic Functions Involving Exponential Divisors

Some Arithmetic Functions Involving Exponential Divisors 2 3 47 6 23 Journal of Integer Sequences, Vol. 3 200, Article 0.3.7 Some Arithmetic Functions Involving Exponential Divisors Xiaodong Cao Department of Mathematics and Physics Beijing Institute of Petro-Chemical

More information

New upper bound for sums of dilates

New upper bound for sums of dilates New upper bound for sums of dilates Albert Bush Yi Zhao Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303, USA albertbush@gmail.com yzhao6@gsu.edu Submitted: Nov 2, 2016;

More information

A Collection of MTA ELTE GAC manuscripts

A Collection of MTA ELTE GAC manuscripts A Collection of MTA ELTE GAC manuscripts Katalin Gyarmati, András Sárközy On reducible and primitive subsets of F p, I 014 MTA ELTE Geometric and Algebraic Combinatorics Research Group Hungarian Academy

More information

Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type

Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type T. C. Brown Citation data: T.C. Brown, Behrend s theorem for sequences containing no k-element arithmetic

More information

On the Equation =<#>(«+ k)

On the Equation =<#>(«+ k) MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 11, APRIL 1972 On the Equation =(«+ k) By M. Lai and P. Gillard Abstract. The number of solutions of the equation (n) = >(n + k), for k ä 30, at intervals

More information

Multicolour Ramsey Numbers of Odd Cycles

Multicolour Ramsey Numbers of Odd Cycles Multicolour Ramsey Numbers of Odd Cycles JOHNSON, JR; Day, A 2017 Elsevier Inc This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Combinatorial Theory, Series

More information

Math 105A HW 1 Solutions

Math 105A HW 1 Solutions Sect. 1.1.3: # 2, 3 (Page 7-8 Math 105A HW 1 Solutions 2(a ( Statement: Each positive integers has a unique prime factorization. n N: n = 1 or ( R N, p 1,..., p R P such that n = p 1 p R and ( n, R, S

More information

1 i<j k (g ih j g j h i ) 0.

1 i<j k (g ih j g j h i ) 0. CONSECUTIVE PRIMES IN TUPLES WILLIAM D. BANKS, TRISTAN FREIBERG, AND CAROLINE L. TURNAGE-BUTTERBAUGH Abstract. In a stunning new advance towards the Prime k-tuple Conjecture, Maynard and Tao have shown

More information

2 ERDOS AND NATHANSON k > 2. Then there is a partition of the set of positive kth powers In k I n > } = A, u A Z such that Waring's problem holds inde

2 ERDOS AND NATHANSON k > 2. Then there is a partition of the set of positive kth powers In k I n > } = A, u A Z such that Waring's problem holds inde JOURNAL OF NUMBER THEORY 2, - ( 88) Partitions of Bases into Disjoint Unions of Bases* PAUL ERDÓS Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary AND MELVYN B. NATHANSON

More information

Joshua N. Cooper Department of Mathematics, Courant Institute of Mathematics, New York University, New York, NY 10012, USA.

Joshua N. Cooper Department of Mathematics, Courant Institute of Mathematics, New York University, New York, NY 10012, USA. CONTINUED FRACTIONS WITH PARTIAL QUOTIENTS BOUNDED IN AVERAGE Joshua N. Cooper Department of Mathematics, Courant Institute of Mathematics, New York University, New York, NY 10012, USA cooper@cims.nyu.edu

More information

Ultrafilters maximal for finite embeddability

Ultrafilters maximal for finite embeddability 1 16 ISSN 1759-9008 1 Ultrafilters maximal for finite embeddability LORENZO LUPERI BAGLINI Abstract: In this paper we study a notion of preorder that arises in combinatorial number theory, namely the finite

More information

Problems in additive number theory, V: Affinely inequivalent MSTD sets

Problems in additive number theory, V: Affinely inequivalent MSTD sets W N North-Western European Journal of Mathematics E M J Problems in additive number theory, V: Affinely inequivalent MSTD sets Melvyn B Nathanson 1 Received: November 9, 2016/Accepted: June 26, 2017/Online:

More information

arxiv: v2 [math.nt] 4 Nov 2012

arxiv: v2 [math.nt] 4 Nov 2012 INVERSE ERDŐS-FUCHS THEOREM FOR k-fold SUMSETS arxiv:12093233v2 [mathnt] 4 Nov 2012 LI-XIA DAI AND HAO PAN Abstract We generalize a result of Ruzsa on the inverse Erdős-Fuchs theorem for k-fold sumsets

More information

A SUM-PRODUCT ESTIMATE IN ALGEBRAIC DIVISION ALGEBRAS OVER R. Department of Mathematics University of California Riverside, CA

A SUM-PRODUCT ESTIMATE IN ALGEBRAIC DIVISION ALGEBRAS OVER R. Department of Mathematics University of California Riverside, CA A SUM-PRODUCT ESTIMATE IN ALGEBRAIC DIVISION ALGEBRAS OVER R 1 Mei-Chu Chang Department of Mathematics University of California Riverside, CA 951 mcc@math.ucr.edu Let A be a finite subset of an integral

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Dartmouth Mathematics Society May 16, 2012

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Dartmouth Mathematics Society May 16, 2012 Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Dartmouth Mathematics Society May 16, 2012 Based on joint work with P. Kurlberg, J. C. Lagarias, & A. Schinzel Let s begin

More information

Bipartite Graph Tiling

Bipartite Graph Tiling Bipartite Graph Tiling Yi Zhao Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303 December 4, 008 Abstract For each s, there exists m 0 such that the following holds for

More information

arxiv:math/ v3 [math.nt] 16 Sep 2007

arxiv:math/ v3 [math.nt] 16 Sep 2007 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A01 AFFINE INVARIANTS, RELATIVELY PRIME SETS, AND A PHI FUNCTION FOR SUBSETS OF {1,2,,N} arxiv:math/0608150v3 [mathnt] 16 Sep 2007

More information

Equidivisible consecutive integers

Equidivisible consecutive integers & Equidivisible consecutive integers Ivo Düntsch Department of Computer Science Brock University St Catherines, Ontario, L2S 3A1, Canada duentsch@cosc.brocku.ca Roger B. Eggleton Department of Mathematics

More information

arxiv:math/ v3 [math.co] 15 Oct 2006

arxiv:math/ v3 [math.co] 15 Oct 2006 arxiv:math/060946v3 [math.co] 15 Oct 006 and SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS DERRICK HART, ALEX IOSEVICH, AND JOZSEF SOLYMOSI Abstract. We establish improved sum-product bounds

More information

#A42 INTEGERS 10 (2010), ON THE ITERATION OF A FUNCTION RELATED TO EULER S

#A42 INTEGERS 10 (2010), ON THE ITERATION OF A FUNCTION RELATED TO EULER S #A42 INTEGERS 10 (2010), 497-515 ON THE ITERATION OF A FUNCTION RELATED TO EULER S φ-function Joshua Harrington Department of Mathematics, University of South Carolina, Columbia, SC 29208 jh3293@yahoo.com

More information

An Erdős-Stone Type Conjecture for Graphic Sequences

An Erdős-Stone Type Conjecture for Graphic Sequences An Erdős-Stone Type Conjecture for Graphic Sequences John R. Schmitt 1,2 Department of Mathematics Middlebury College Middlebury, VT 05753, USA Michael Ferrara 3 Department of Mathematical Sciences University

More information

Lusin sequences under CH and under Martin s Axiom

Lusin sequences under CH and under Martin s Axiom F U N D A M E N T A MATHEMATICAE 169 (2001) Lusin sequences under CH and under Martin s Axiom by Uri Abraham (Beer-Sheva) and Saharon Shelah (Jerusalem) Abstract. Assuming the continuum hypothesis there

More information

ENGEL SERIES EXPANSIONS OF LAURENT SERIES AND HAUSDORFF DIMENSIONS

ENGEL SERIES EXPANSIONS OF LAURENT SERIES AND HAUSDORFF DIMENSIONS J. Aust. Math. Soc. 75 (2003), 1 7 ENGEL SERIES EXPANSIONS OF LAURENT SERIES AND HAUSDORFF DIMENSIONS JUN WU (Received 11 September 2001; revised 22 April 2002) Communicated by W. W. L. Chen Abstract For

More information