A NOTE ON B 2 [G] SETS. Gang Yu 1 Department of Mathematical Sciences, Kent State University, Kent, OH

Size: px
Start display at page:

Download "A NOTE ON B 2 [G] SETS. Gang Yu 1 Department of Mathematical Sciences, Kent State University, Kent, OH"

Transcription

1 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (8), #A58 A NOTE ON B [G] SETS Gang Yu Department of Mathematical Sciences, Kent State University, Kent, OH 444 yu@math.kent.edu Received: 7/5/8, Accepted: /3/8, Published: /5/8 Abstract Suppose g is a fixed positive integer. For N, a set A Z [, N] is called a B [g] set if every integer n has at most g distinct representations as n = a + b with a, b A and a b. In this note, we introduce a new idea to give a small improvement to the upper bound for the size of such A when g is small.. Introduction For positive integers g and N, a set A [N] (where [N] := {,,..., N}) is called a B [g] set if every integer n has at most g distinct representations as n = a + b with a, b A and a b. Note that B [] sets are just the classical Sidon sets, B [g] sets sometimes are also called generalized Sidon sets. Let F (g, N) be the largest cardinality of a B [g] set contained in [N]. The study for the asymptotic behavior of F (g, N) has attracted a lot of attentions. (See O Bryant s excellent survey paper [] for the complete up-to-date references.) In particular, from the works of Singer [3] and Erdös & Turán [7], we have known that F (, N) N as N. When g, it is believed that F (g, N) has an asymptotic formula as well. There is, however, a big gap between the currently best upper and lower bounds for F (g, N). There have been various constructions of B [g] sets with large cardinality (c.f., [3], [4], [5], [9], []), each of which gives a result F (g, N) (c + o()) gn for some constant c >. For the upper bound, J. Cilleruelo, I. Ruzsa and C. Trujillo [4] showed that F (g, N) gN. Combining the idea of [4] with the consideration of the fourth moment of the Fourier transform of a B [g] set, B. Green [8] improved the constant to 3.4. By a more careful analysis of the test function involved in Green s study, G. Martin and K. O Bryant showed that the constant can be further improved to In [4], the author introduced a new method to improve the constant to The author was supported by NSF grant DMS-633. In a recent preprint, Martin and O Bryant, using a better weight function than the one used in [4], are able to replace the 3.98 by

2 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (8), #A58 It should be remarked that an upper bound better than the ones listed above can be achieved when g is small. The most interesting is the case when g =. Cilleruelo [] and Helm (unpublished) independently showed that F (, N) 6N. Plagne [] was able to reduce the constant 6 to Later he and Habsieger [9] further improved this to In [8], Green proved a result that is still the best for small g, that is F (g, N).75(g )N, which yields F (, N) 5.5N. Here we give a small improvement to this last result of Green. More precisely, we prove the following result. Theorem.. For every g, we have In particular, we have F (g, N).7446(g )N. (.) F (, N) 5.74N. (.) This improvement to Green s bound is almost negligible. Nevertheless, we think it is worthwhile to introduce in this short note a new idea to bound F (g, N). It should be clear later that the bound (.) is not the limit of the method. It is unfortunate that we do not know how to get the optimal bound with this method, and we shall not be devoted to doing complicated numerical computation for a better bound, though in section 4, we shall indicate how a small improvement to Theorem. can be obtained by simply choosing a different weight function. Theorem.. For every g, we have F (g, N).747(g )N. (.3) Notation. As usual, for a real number t, e(t) = exp(πit). Throughout the paper, N is a sufficiently large integer, A [N] is a B [g] set. For a real number β, let f(β) = f A (β) = a A e(aβ). For any number n, d(n) = d A (n) is defined as the number of representations of n as a difference of two elements of A. A B means that A ( + o())b as N.. Preliminaries We first state an estimate for the fourth moment of f. Lemma.. Suppose ɛ (, ) is any fixed number. For any B [g] set A [N], we have ( ) f n 4 A (g )N A N A 4. (.) n N ɛ Proof. This is Lemma 3 of [4]. A proof has essentially been included in [8, 8].

3 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (8), #A58 3 Now we introduce the idea with which we shall get the upper bound (.). Suppose w(t) is an even function, with continuous second derivative on [, ], and A [N] is a B [g] set. Suppose further that w(t)dt <, and d(n)w(n/n). (.) Lemma.. Suppose N is sufficiently large, A [N] is a B [g] set, and w(t) is a function satisfying the above conditions. Then we have where F (g, N) c w N, (.3) 4g c w = ). (.4) + w(t)dt dt ( ) (w(t)) w(t)dt Proof. Let w(t) = a + a m cos(mπt) be the Fourier expansion of w(t) on [, ]. Then we have d(n)w(n/n) = a ( ) m A + a m f. (.5) N Note that w(t) C [, ], we have a m = O(m ). Thus, for any positive ɛ <, we get from (.5) that d(n)w(n/n) = a A + Then, by Cauchy s inequality, we have d(n)w(n/n) a ( A + m N ɛ a m a m )( ( ) f m + O( A N ɛ ). N m N ɛ ( ) f m 4) + O( A N ɛ ). (.6) N Now from Lemma., (.6), and the condition (.), we have a ( A a m )((g )N A ) A 4. (.7) Also from the condition (.), we have a = w(t)dt <. Thus, by squaring both sides of (.7) and reforming the inequality, we get From Parseval s identity, A N (g ) + a. (.8) 4 am ) ) a m = (w(t)) dt w(t)dt.

4 4 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (8), #A58 Thus the right-hand side of (.8) is which gives the constant c w. 4g ), + w(t)dt dt ( ) (w(t)) w(t)dt 3. Proof of Theorem. Let w(t) be the even function given by w(t) = set A [N], we have d(n)w(n/n) = It is easy to see that 6 m= 4m + 3 m= 6 m= 6 w(t)dt = (4m + 3) π 4m + 3 cos ( ) (4m + 3)πn d(n) cos = N ( (4m + 3)πt 6 m= ). Then for any f( 4m+3 4N 4m + 3 ). = <. (3.) Thus w(t) satisfies all conditions required by Lemma.. Note that ( ) 6 cos (4m+3)πt (w(t)) 6 dt = dt = = (3.) (4m + 3) (4m + 3) m= Thus from (3.) and (3.) we have w(t)dt) (w(t)) dt w(t)dt) (.38) (.38) > which gives c w < m= 4g <.7446(g ) in Lemma., and Theorem. follows Some Remarks First of all, we remark that, for a sufficiently large K and an appropriate small constant δ, K cos ( (4m+3+δ)πt) w(t) = 4m δ m= is a slightly better choice for the weight function. For example, take K = and δ =.6, then we can replace the constant.7446 in Theorem. by.747. This is the result of Theorem.. The calculation in section 3, however, is much cleaner.

5 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (8), #A58 5 In the proofs of both theorems, we have chosen w(t) so that the sum of d(n) weighted by w(n/n) is a linear combination of f with positive coefficients. While it is hard to believe that such a weighted sum is o( A ), we do not know how to get a non-trivial lower bound for it. The upper bound for F (g, N) would be improved significantly if one had a good lower bound for this weighted sum. We also remark that, in the proof of Lemma., after getting (.5) we implicitly used the inequality d(n)w(n/n) a ( ) A + a m f m. N This surely is a waste if some Fourier coefficients a m are negative. We can at least drop those negative terms to get an upper bound better than that given by Lemma.. All those in the above remarks are easy to see. The difficulty is still about how to find a better weight function w(t). While we do not know how to optimize this method, seeking a better weight function is probably highly computational. At last, we remark that the function w(t) clearly does not have to satisfy the conditions (.). The idea in this paper, however, works only if one has a (relatively good) positive lower bound for ) d(n)w(n/n) w(t)dt A. References [] J. Cilleruelo, An upper bound for B [] sequences, J. Combin. Theory Ser. A, 89(), [] J. Cilleruelo, Gaps in dense Sidon sets, Integers, (), Paper A, 6pages (electronic). [3] J. Cilleruelo and J. Jiménez-Urroz, B h [g] sequences, Mathematika, 47(), 9 5. [4] J. Cilleruelo, I. Ruzsa and C. Trujillo, Upper and lower bounds for finite B h [g] sequences, J. Number Theory, 97(), [5] J. Cilleruelo and C. Trujillo, Infinite B [g] sequences, Israel J. Math. 6(), [6] P. Erdös, On a problem of Sidon in additive number theory and on some related problems (Addendum), J. London Math. Soc., 9(944), 8. [7] P. Erdös and Turàn, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc., 6(94), 5. [8] B. Green, The number of squares and B [g] sets, Acta Arith., (), [9] L. Habsieger and A. Plagne, Ensembles B []: l étau se resserre sets, Electronic J. Combin., (), pages. [] G. Martin and K. O Bryant, The symmetric subset problem in continuous Ramsey theory, Experiment. Math., 6(7), no., [] K. O Bryant, A complete annotated Bibliography of work related to Sidon sequences, Electronic J. Combin., (4), #DS. [] A. Plagne, A new upper bound for B [] sets, J. Combin. Theory Ser. A, 93(), [3] J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., 43(938), [4] G. Yu, An upper bound for B [g] sets, J. Number Theory, (7),.

An upper bound for B 2 [g] sets

An upper bound for B 2 [g] sets Journal of Number Theory 1 (007) 11 0 www.elsevier.com/locate/jnt An upper bound for B [g] sets Gang Yu Department of Mathematics, LeConte College, 153 Greene street, University of South Carolina, Columbia,

More information

Craig Timmons 1 Department of Mathematics and Statistics, California State University Sacramento, Sacramento, California

Craig Timmons 1 Department of Mathematics and Statistics, California State University Sacramento, Sacramento, California #A83 INTEGERS 6 (06) UPPER BOUNDS FOR B H [G]-SETS WITH SMALL H Craig Timmons Department of Mathematics and Statistics, California State University Sacramento, Sacramento, California craig.timmons@csus.edu

More information

A NUMERICAL NOTE ON UPPER BOUNDS FOR B 2 [g] SETS

A NUMERICAL NOTE ON UPPER BOUNDS FOR B 2 [g] SETS A UMERICAL OTE O UPPER BOUDS FOR B [g] SETS Laurent Habsieger, Alain Plagne To cite this version: Laurent Habsieger, Alain Plagne. A UMERICAL OTE O UPPER BOUDS FOR B [g] SETS. 016. HAL

More information

RECENT PROGRESS ON FINITE B h [g] SETS. 1. Introduction

RECENT PROGRESS ON FINITE B h [g] SETS. 1. Introduction RECENT PROGRESS ON FINITE B h [g] SETS ALAIN PLAGNE 1. Introduction At the very beginning, there was Simon Sidon. This Hungarian mathematician was born in 1892. According to Babai [1], he was employed

More information

Constructions of generalized Sidon sets

Constructions of generalized Sidon sets Journal of Combinatorial Theory, Series A 113 (2006) 591 607 www.elsevier.com/locate/jcta Constructions of generalized Sidon sets Greg Martin a, Kevin O Bryant b a Department of Mathematics, University

More information

Sidon sets and C 4 -saturated graphs

Sidon sets and C 4 -saturated graphs Sidon sets and C 4 -saturated graphs arxiv:1810.056v1 [math.co] 11 Oct 018 David F. Daza Carlos A. Trujillo Universidad del Cauca, A.A. 755, Colombia. davidaza@unicauca.edu.co - trujillo@unicauca.edu.co

More information

NEW UPPER BOUNDS FOR FINITE B h. Javier Cilleruelo

NEW UPPER BOUNDS FOR FINITE B h. Javier Cilleruelo NEW UPPER BOUNDS FOR FINITE B h SEQUENCES Javier Cilleruelo Abstract. Let F h N) be the maximum number of elements that can be selected from the set {,..., N} such that all the sums a + + a h, a a h are

More information

Some problems related to Singer sets

Some problems related to Singer sets Some problems related to Singer sets Alex Chmelnitzki October 24, 2005 Preface The following article describes some of the work I did in the summer 2005 for Prof. Ben Green, Bristol University. The work

More information

ARITHMETIC PROGRESSIONS IN SPARSE SUMSETS. Dedicated to Ron Graham on the occasion of his 70 th birthday

ARITHMETIC PROGRESSIONS IN SPARSE SUMSETS. Dedicated to Ron Graham on the occasion of his 70 th birthday ARITHMETIC PROGRESSIONS IN SPARSE SUMSETS Dedicated to Ron Graham on the occasion of his 70 th birthday Ernie Croot 1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 Imre Ruzsa

More information

Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type

Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type T. C. Brown Citation data: T.C. Brown, Behrend s theorem for sequences containing no k-element arithmetic

More information

Some remarks on the Erdős Turán conjecture

Some remarks on the Erdős Turán conjecture ACTA ARITHMETICA LXIII.4 (1993) Some remarks on the Erdős Turán conjecture by Martin Helm (Mainz) Notation. In additive number theory an increasing sequence of natural numbers is called an asymptotic basis

More information

A NEW PROOF OF ROTH S THEOREM ON ARITHMETIC PROGRESSIONS

A NEW PROOF OF ROTH S THEOREM ON ARITHMETIC PROGRESSIONS A NEW PROOF OF ROTH S THEOREM ON ARITHMETIC PROGRESSIONS ERNIE CROOT AND OLOF SISASK Abstract. We present a proof of Roth s theorem that follows a slightly different structure to the usual proofs, in that

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

A PROOF OF ROTH S THEOREM ON ARITHMETIC PROGRESSIONS

A PROOF OF ROTH S THEOREM ON ARITHMETIC PROGRESSIONS A PROOF OF ROTH S THEOREM ON ARITHMETIC PROGRESSIONS ERNIE CROOT AND OLOF SISASK Abstract. We present a proof of Roth s theorem that follows a slightly different structure to the usual proofs, in that

More information

Unique Difference Bases of Z

Unique Difference Bases of Z 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 14 (011), Article 11.1.8 Unique Difference Bases of Z Chi-Wu Tang, Min Tang, 1 and Lei Wu Department of Mathematics Anhui Normal University Wuhu 41000 P.

More information

arxiv: v2 [math.nt] 4 Nov 2012

arxiv: v2 [math.nt] 4 Nov 2012 INVERSE ERDŐS-FUCHS THEOREM FOR k-fold SUMSETS arxiv:12093233v2 [mathnt] 4 Nov 2012 LI-XIA DAI AND HAO PAN Abstract We generalize a result of Ruzsa on the inverse Erdős-Fuchs theorem for k-fold sumsets

More information

THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS

THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A16 THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS Peter Hegarty Department of Mathematics, Chalmers University

More information

SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS

SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS DERRICK HART, ALEX IOSEVICH, AND JOZSEF SOLYMOSI Abstract. We establish improved sum-product bounds in finite fields using incidence theorems

More information

#A28 INTEGERS 13 (2013) ADDITIVE ENERGY AND THE FALCONER DISTANCE PROBLEM IN FINITE FIELDS

#A28 INTEGERS 13 (2013) ADDITIVE ENERGY AND THE FALCONER DISTANCE PROBLEM IN FINITE FIELDS #A28 INTEGERS 13 (2013) ADDITIVE ENERGY AND THE FALCONER DISTANCE PROBLEM IN FINITE FIELDS Doowon Koh Department of Mathematics, Chungbuk National University, Cheongju city, Chungbuk-Do, Korea koh131@chungbuk.ac.kr

More information

Solving a linear equation in a set of integers II

Solving a linear equation in a set of integers II ACTA ARITHMETICA LXXII.4 (1995) Solving a linear equation in a set of integers II by Imre Z. Ruzsa (Budapest) 1. Introduction. We continue the study of linear equations started in Part I of this paper.

More information

On prime factors of subset sums

On prime factors of subset sums On prime factors of subset sums by P. Erdös, A. Sárközy and C.L. Stewart * 1 Introduction For any set X let X denote its cardinality and for any integer n larger than one let ω(n) denote the number of

More information

A. Iosevich and I. Laba January 9, Introduction

A. Iosevich and I. Laba January 9, Introduction K-DISTANCE SETS, FALCONER CONJECTURE, AND DISCRETE ANALOGS A. Iosevich and I. Laba January 9, 004 Abstract. In this paper we prove a series of results on the size of distance sets corresponding to sets

More information

On sets of integers whose shifted products are powers

On sets of integers whose shifted products are powers On sets of integers whose shifted products are powers C.L. Stewart 1 Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada, NL 3G1 Abstract Let N be a positive integer and let

More information

On reducible and primitive subsets of F p, II

On reducible and primitive subsets of F p, II On reducible and primitive subsets of F p, II by Katalin Gyarmati Eötvös Loránd University Department of Algebra and Number Theory and MTA-ELTE Geometric and Algebraic Combinatorics Research Group H-1117

More information

arxiv:math/ v3 [math.co] 15 Oct 2006

arxiv:math/ v3 [math.co] 15 Oct 2006 arxiv:math/060946v3 [math.co] 15 Oct 006 and SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS DERRICK HART, ALEX IOSEVICH, AND JOZSEF SOLYMOSI Abstract. We establish improved sum-product bounds

More information

A proof of a partition conjecture of Bateman and Erdős

A proof of a partition conjecture of Bateman and Erdős proof of a partition conjecture of Bateman and Erdős Jason P. Bell Department of Mathematics University of California, San Diego La Jolla C, 92093-0112. US jbell@math.ucsd.edu 1 Proposed Running Head:

More information

SUMSETS MOD p ØYSTEIN J. RØDSETH

SUMSETS MOD p ØYSTEIN J. RØDSETH SUMSETS MOD p ØYSTEIN J. RØDSETH Abstract. In this paper we present some basic addition theorems modulo a prime p and look at various proof techniques. We open with the Cauchy-Davenport theorem and a proof

More information

Roth s theorem on 3-arithmetic progressions. CIMPA Research school Shillong 2013

Roth s theorem on 3-arithmetic progressions. CIMPA Research school Shillong 2013 Roth s theorem on 3-arithmetic progressions CIPA Research school Shillong 2013 Anne de Roton Institut Elie Cartan Université de Lorraine France 2 1. Introduction. In 1953, K. Roth [6] proved the following

More information

A SUM-PRODUCT ESTIMATE IN ALGEBRAIC DIVISION ALGEBRAS OVER R. Department of Mathematics University of California Riverside, CA

A SUM-PRODUCT ESTIMATE IN ALGEBRAIC DIVISION ALGEBRAS OVER R. Department of Mathematics University of California Riverside, CA A SUM-PRODUCT ESTIMATE IN ALGEBRAIC DIVISION ALGEBRAS OVER R 1 Mei-Chu Chang Department of Mathematics University of California Riverside, CA 951 mcc@math.ucr.edu Let A be a finite subset of an integral

More information

CALCULATIONS FOR NEWMAN POLYNOMIALS

CALCULATIONS FOR NEWMAN POLYNOMIALS iauliai Math. Semin., 4 (12), 2009, 157165 CALCULATIONS FOR NEWMAN POLYNOMIALS Tomas PLANKIS Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; e-mail: topl@hypernet.lt Abstract. In this paper,

More information

Arithmetic progressions in sumsets

Arithmetic progressions in sumsets ACTA ARITHMETICA LX.2 (1991) Arithmetic progressions in sumsets by Imre Z. Ruzsa* (Budapest) 1. Introduction. Let A, B [1, N] be sets of integers, A = B = cn. Bourgain [2] proved that A + B always contains

More information

Ramsey-type problem for an almost monochromatic K 4

Ramsey-type problem for an almost monochromatic K 4 Ramsey-type problem for an almost monochromatic K 4 Jacob Fox Benny Sudakov Abstract In this short note we prove that there is a constant c such that every k-edge-coloring of the complete graph K n with

More information

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT Journal of Prime Research in Mathematics Vol. 8 202, 28-35 GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT JORGE JIMÉNEZ URROZ, FLORIAN LUCA 2, MICHEL

More information

Hausdorff operators in H p spaces, 0 < p < 1

Hausdorff operators in H p spaces, 0 < p < 1 Hausdorff operators in H p spaces, 0 < p < 1 Elijah Liflyand joint work with Akihiko Miyachi Bar-Ilan University June, 2018 Elijah Liflyand joint work with Akihiko Miyachi (Bar-Ilan University) Hausdorff

More information

Roth s Theorem on Arithmetic Progressions

Roth s Theorem on Arithmetic Progressions September 25, 2014 The Theorema of Szemerédi and Roth For Λ N the (upper asymptotic) density of Λ is the number σ(λ) := lim sup N Λ [1, N] N [0, 1] The Theorema of Szemerédi and Roth For Λ N the (upper

More information

A simple branching process approach to the phase transition in G n,p

A simple branching process approach to the phase transition in G n,p A simple branching process approach to the phase transition in G n,p Béla Bollobás Department of Pure Mathematics and Mathematical Statistics Wilberforce Road, Cambridge CB3 0WB, UK b.bollobas@dpmms.cam.ac.uk

More information

Upper Bounds for Partitions into k-th Powers Elementary Methods

Upper Bounds for Partitions into k-th Powers Elementary Methods Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 9, 433-438 Upper Bounds for Partitions into -th Powers Elementary Methods Rafael Jaimczu División Matemática, Universidad Nacional de Luján Buenos Aires,

More information

arxiv: v1 [math.co] 18 Dec 2018

arxiv: v1 [math.co] 18 Dec 2018 A Construction for Difference Sets with Local Properties Sara Fish Ben Lund Adam Sheffer arxiv:181.07651v1 [math.co] 18 Dec 018 Abstract We construct finite sets of real numbers that have a small difference

More information

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99 ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS N. HEGYVÁRI, F. HENNECART AND A. PLAGNE Abstract. We study the gaps in the sequence of sums of h pairwise distinct elements

More information

On the maximal density of sum-free sets

On the maximal density of sum-free sets ACTA ARITHMETICA XCV.3 (2000) On the maximal density of sum-free sets by Tomasz Luczak (Poznań) and Tomasz Schoen (Kiel and Poznań) 1. Introduction. For a set A N, let A(n) = A {1,..., n} and { } P(A)

More information

On Some Mean Value Results for the Zeta-Function and a Divisor Problem

On Some Mean Value Results for the Zeta-Function and a Divisor Problem Filomat 3:8 (26), 235 2327 DOI.2298/FIL6835I Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Some Mean Value Results for the

More information

arxiv:math/ v1 [math.nt] 6 May 2003

arxiv:math/ v1 [math.nt] 6 May 2003 arxiv:math/0305087v1 [math.nt] 6 May 003 The inverse problem for representation functions of additive bases Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx, New York 10468 Email:

More information

On a combinatorial method for counting smooth numbers in sets of integers

On a combinatorial method for counting smooth numbers in sets of integers On a combinatorial method for counting smooth numbers in sets of integers Ernie Croot February 2, 2007 Abstract In this paper we develop a method for determining the number of integers without large prime

More information

New infinite families of Candelabra Systems with block size 6 and stem size 2

New infinite families of Candelabra Systems with block size 6 and stem size 2 New infinite families of Candelabra Systems with block size 6 and stem size 2 Niranjan Balachandran Department of Mathematics The Ohio State University Columbus OH USA 4210 email:niranj@math.ohio-state.edu

More information

FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE. 1. Introduction Recall that a Carmichael number is a composite number n for which

FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE. 1. Introduction Recall that a Carmichael number is a composite number n for which FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE THOMAS WRIGHT Abstract. In light of the recent work by Maynard and Tao on the Dickson k-tuples conjecture, we show that with a small improvement

More information

SZEMERÉDI-TROTTER INCIDENCE THEOREM AND APPLICATIONS

SZEMERÉDI-TROTTER INCIDENCE THEOREM AND APPLICATIONS SZEMERÉDI-TROTTER INCIDENCE THEOREM AND APPLICATIONS PAUL H. KOESTER Given a finite set of points P R 2 and a finite family of lines L, we define the set of incidences of P and L by I(P, L) = {(p, l) P

More information

The Number of Independent Sets in a Regular Graph

The Number of Independent Sets in a Regular Graph Combinatorics, Probability and Computing (2010) 19, 315 320. c Cambridge University Press 2009 doi:10.1017/s0963548309990538 The Number of Independent Sets in a Regular Graph YUFEI ZHAO Department of Mathematics,

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Dartmouth Mathematics Society May 16, 2012

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Dartmouth Mathematics Society May 16, 2012 Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Dartmouth Mathematics Society May 16, 2012 Based on joint work with P. Kurlberg, J. C. Lagarias, & A. Schinzel Let s begin

More information

On the fundamental domain of a discrete group, Proc. Amer. Math. Soc. 41 (1973), Catalan s equation in K(t), Amer. Math.

On the fundamental domain of a discrete group, Proc. Amer. Math. Soc. 41 (1973), Catalan s equation in K(t), Amer. Math. Melvyn B. Nathanson: Books Monographs 1. Additive Number Theory: The Classical Bases, Graduate Texts in Mathematics, Vol. 164, Springer-Verlag, New York, 1996. 2. Additive Number Theory: Inverse Problems

More information

On distribution functions of ξ(3/2) n mod 1

On distribution functions of ξ(3/2) n mod 1 ACTA ARITHMETICA LXXXI. (997) On distribution functions of ξ(3/2) n mod by Oto Strauch (Bratislava). Preliminary remarks. The question about distribution of (3/2) n mod is most difficult. We present a

More information

WRONSKIANS AND THE RIEMANN HYPOTHESIS

WRONSKIANS AND THE RIEMANN HYPOTHESIS WRONSKIANS AND THE RIEMANN HYPOTHESIS JOHN NUTTALL Abstract. We have previously proposed that the sign-regularity properties of a function Φ(t) related to the transform of the ζ-function could be the key

More information

Bounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers

Bounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers 3 47 6 3 Journal of Integer Seuences, Vol. (7), rticle 7..3 ounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers Roger Woodford Department of Mathematics University

More information

MONOCHROMATIC SCHUR TRIPLES IN RANDOMLY PERTURBED DENSE SETS OF INTEGERS

MONOCHROMATIC SCHUR TRIPLES IN RANDOMLY PERTURBED DENSE SETS OF INTEGERS MONOCHROMATIC SCHUR TRIPLES IN RANDOMLY PERTURBED DENSE SETS OF INTEGERS ELAD AIGNER-HOREV AND YURY PERSON Abstract. Given a dense subset A of the first n positive integers, we provide a short proof showing

More information

Combinatorial Number Theory in China

Combinatorial Number Theory in China Combinatorial Number Theory in China Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn http://math.nju.edu.cn/ zwsun Nov. 6, 2009 While in the past many of the basic combinatorial

More information

Long Arithmetic Progressions in A + A + A with A a Prime Subset 1. Zhen Cui, Hongze Li and Boqing Xue 2

Long Arithmetic Progressions in A + A + A with A a Prime Subset 1. Zhen Cui, Hongze Li and Boqing Xue 2 Long Arithmetic Progressions in A + A + A with A a Prime Subset 1 Zhen Cui, Hongze Li and Boqing Xue 2 Abstract If A is a dense subset of the integers, then A + A + A contains long arithmetic progressions.

More information

On the Fractional Parts of a n /n

On the Fractional Parts of a n /n On the Fractional Parts of a n /n Javier Cilleruelo Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Universidad Autónoma de Madrid 28049-Madrid, Spain franciscojavier.cilleruelo@uam.es Angel Kumchev

More information

arxiv: v2 [math.nt] 4 Jun 2016

arxiv: v2 [math.nt] 4 Jun 2016 ON THE p-adic VALUATION OF STIRLING NUMBERS OF THE FIRST KIND PAOLO LEONETTI AND CARLO SANNA arxiv:605.07424v2 [math.nt] 4 Jun 206 Abstract. For all integers n k, define H(n, k) := /(i i k ), where the

More information

c 2010 Society for Industrial and Applied Mathematics

c 2010 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 24, No. 3, pp. 1038 1045 c 2010 Society for Industrial and Applied Mathematics SET SYSTEMS WITHOUT A STRONG SIMPLEX TAO JIANG, OLEG PIKHURKO, AND ZELEALEM YILMA Abstract. A

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The Degree of the Splitting Field of a Random Polynomial over a Finite Field The Degree of the Splitting Field of a Random Polynomial over a Finite Field John D. Dixon and Daniel Panario School of Mathematics and Statistics Carleton University, Ottawa, Canada {jdixon,daniel}@math.carleton.ca

More information

On some inequalities between prime numbers

On some inequalities between prime numbers On some inequalities between prime numbers Martin Maulhardt July 204 ABSTRACT. In 948 Erdős and Turán proved that in the set of prime numbers the inequality p n+2 p n+ < p n+ p n is satisfied infinitely

More information

A lattice point problem and additive number theory

A lattice point problem and additive number theory A lattice point problem and additive number theory Noga Alon and Moshe Dubiner Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract

More information

GENERALIZATIONS OF SOME ZERO-SUM THEOREMS. Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad , INDIA

GENERALIZATIONS OF SOME ZERO-SUM THEOREMS. Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad , INDIA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A52 GENERALIZATIONS OF SOME ZERO-SUM THEOREMS Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad

More information

Off-diagonal hypergraph Ramsey numbers

Off-diagonal hypergraph Ramsey numbers Off-diagonal hypergraph Ramsey numbers Dhruv Mubayi Andrew Suk Abstract The Ramsey number r k (s, n) is the minimum such that every red-blue coloring of the k- subsets of {1,..., } contains a red set of

More information

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Moses Charikar Konstantin Makarychev Yury Makarychev Princeton University Abstract In this paper we present approximation algorithms

More information

Ergodic theorem involving additive and multiplicative groups of a field and

Ergodic theorem involving additive and multiplicative groups of a field and Ergod. Th. & Dynam. Sys. (207), 37, 673 692 doi:0.07/etds.205.68 c Cambridge University Press, 205 Ergodic theorem involving additive and multiplicative groups of a field and {x + y, x y} patterns VITALY

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA International Number Theory Conference in Memory of Alf van der Poorten, AM 12 16 March, 2012 CARMA, the University of Newcastle

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Providence College Math/CS Colloquium April 2, 2014

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Providence College Math/CS Colloquium April 2, 2014 Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Providence College Math/CS Colloquium April 2, 2014 Let s begin with products. Take the N N multiplication table. It has

More information

On the number of dominating Fourier coefficients of two newforms

On the number of dominating Fourier coefficients of two newforms On the number of dominating Fourier coefficients of two newforms Liubomir Chiriac Abstract Let f = n 1 λ f (n)n (k 1 1)/2 q n and g = n 1 λg(n)n(k 2 1)/2 q n be two newforms with real Fourier coeffcients.

More information

Freiman s theorem in torsion-free groups

Freiman s theorem in torsion-free groups Freiman s theorem in torsion-free groups Mercede MAJ UNIVERSITÀ DEGLI STUDI DI SALERNO ADDITIVE COMBINATORICS IN BORDEAUX Institut de Mathématiques de Bordeaux April, 11-15, 2016 Gregory Freiman, Tel Aviv

More information

Maximum union-free subfamilies

Maximum union-free subfamilies Maximum union-free subfamilies Jacob Fox Choongbum Lee Benny Sudakov Abstract An old problem of Moser asks: how large of a union-free subfamily does every family of m sets have? A family of sets is called

More information

arxiv:math/ v1 [math.nt] 20 Mar 2007

arxiv:math/ v1 [math.nt] 20 Mar 2007 arxiv:math/0703614v1 [math.nt] 20 Mar 2007 and A SLIGHT IMPROVEMENT TO GARAEV S SUM PRODUCT ESTIMATE Nets Hawk Katz and Chun-Yen Shen Indiana University 0 Introduction Let A be a subset of F p, the field

More information

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China. Received 8 July 2005; accepted 2 February 2006

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China. Received 8 July 2005; accepted 2 February 2006 Adv in Appl Math 382007, no 2, 267 274 A CONNECTION BETWEEN COVERS OF THE INTEGERS AND UNIT FRACTIONS Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing 20093, People s Republic of China

More information

arxiv: v2 [math.nt] 18 Dec 2014

arxiv: v2 [math.nt] 18 Dec 2014 1 B h [] modular sets from B h modular sets arxiv:1411.5741v2 [math.nt] 18 Dec 2014 Nidia Y. Caicedo Jhonny C. Gómez Carlos A. Gómez Carlos A. Trujillo Universidad del Valle, A.A. 25360, Colombia. Universidad

More information

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE To George Andrews, who has been a great inspiration, on the occasion of his 70th birthday Abstract.

More information

Some Elementary Problems (Solved and Unsolved) in Number Theory and Geometry

Some Elementary Problems (Solved and Unsolved) in Number Theory and Geometry Some Elementary Problems (Solved and Unsolved) in Number Theory and Geometry Paul Erdös The Hungarian Academy of Science and Technion, Haifa Dedicated to the memory of Prof. J. Gillis Mathematics is full

More information

PRIME-REPRESENTING FUNCTIONS

PRIME-REPRESENTING FUNCTIONS Acta Math. Hungar., 128 (4) (2010), 307 314. DOI: 10.1007/s10474-010-9191-x First published online March 18, 2010 PRIME-REPRESENTING FUNCTIONS K. MATOMÄKI Department of Mathematics, University of Turu,

More information

Problems in additive number theory, V: Affinely inequivalent MSTD sets

Problems in additive number theory, V: Affinely inequivalent MSTD sets W N North-Western European Journal of Mathematics E M J Problems in additive number theory, V: Affinely inequivalent MSTD sets Melvyn B Nathanson 1 Received: November 9, 2016/Accepted: June 26, 2017/Online:

More information

Counting subgroups of the multiplicative group

Counting subgroups of the multiplicative group Counting subgroups of the multiplicative group Lee Troupe joint w/ Greg Martin University of British Columbia West Coast Number Theory 2017 Question from I. Shparlinski to G. Martin, circa 2009: How many

More information

#A34 INTEGERS 13 (2013) A NOTE ON THE MULTIPLICATIVE STRUCTURE OF AN ADDITIVELY SHIFTED PRODUCT SET AA + 1

#A34 INTEGERS 13 (2013) A NOTE ON THE MULTIPLICATIVE STRUCTURE OF AN ADDITIVELY SHIFTED PRODUCT SET AA + 1 #A34 INTEGERS 13 (2013) A NOTE ON THE MULTIPLICATIVE STRUCTURE OF AN ADDITIVELY SHIFTED PRODUCT SET AA + 1 Steven Senger Department of Mathematics, University of Delaware, Newark, Deleware senger@math.udel.edu

More information

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime J. Cilleruelo and M. Z. Garaev Abstract We obtain a sharp upper bound estimate of the form Hp o(1)

More information

#A36 INTEGERS 11 (2011) NUMBER OF WEIGHTED SUBSEQUENCE SUMS WITH WEIGHTS IN {1, 1} Sukumar Das Adhikari

#A36 INTEGERS 11 (2011) NUMBER OF WEIGHTED SUBSEQUENCE SUMS WITH WEIGHTS IN {1, 1} Sukumar Das Adhikari #A36 INTEGERS 11 (2011) NUMBER OF WEIGHTED SUBSEQUENCE SUMS WITH WEIGHTS IN {1, 1} Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, India adhikari@mri.ernet.in Mohan

More information

Stability of the path-path Ramsey number

Stability of the path-path Ramsey number Worcester Polytechnic Institute Digital WPI Computer Science Faculty Publications Department of Computer Science 9-12-2008 Stability of the path-path Ramsey number András Gyárfás Computer and Automation

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

A PROBABILISTIC THRESHOLD FOR MONOCHROMATIC ARITHMETIC PROGRESSIONS

A PROBABILISTIC THRESHOLD FOR MONOCHROMATIC ARITHMETIC PROGRESSIONS A PROBABILISTIC THRESHOLD FOR MONOCHROMATIC ARITHMETIC PROGRESSIONS Aaron Robertson Department of Mathematics, Colgate University, Hamilton, New York arobertson@colgate.edu Abstract Let f r (k) = p k r

More information

Research Statement Michael Tait

Research Statement Michael Tait Research Statement Michael Tait My research lies in the intersection of extremal graph theory, combinatorial number theory, and finite geometry. Broadly speaking, I work in extremal combinatorics, where

More information

arxiv: v2 [math.nt] 26 Dec 2012

arxiv: v2 [math.nt] 26 Dec 2012 ON CONSTANT-MULTIPLE-FREE SETS CONTAINED IN A RANDOM SET OF INTEGERS arxiv:1212.5063v2 [math.nt] 26 Dec 2012 SANG JUNE LEE Astract. For a rational numer r > 1, a set A of ositive integers is called an

More information

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES Y. O. HAMIDOUNE AND J. RUÉ Abstract. Let A be a finite nonempty set of integers. An asymptotic estimate of several dilates sum size was obtained

More information

DAVID ELLIS AND BHARGAV NARAYANAN

DAVID ELLIS AND BHARGAV NARAYANAN ON SYMMETRIC 3-WISE INTERSECTING FAMILIES DAVID ELLIS AND BHARGAV NARAYANAN Abstract. A family of sets is said to be symmetric if its automorphism group is transitive, and 3-wise intersecting if any three

More information

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS JEREMY LOVEJOY Abstract. We study the generating function for (n), the number of partitions of a natural number n into distinct parts. Using

More information

Van der Corput sets with respect to compact groups

Van der Corput sets with respect to compact groups Van der Corput sets with respect to compact groups Michael Kelly and Thái Hoàng Lê Abstract. We study the notion of van der Corput sets with respect to general compact groups. Mathematics Subject Classification

More information

Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields arxiv: v2 [math.

Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields arxiv: v2 [math. Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields arxiv:0801.0728v2 [math.co] 31 Mar 2008 David Covert, Derrick Hart, Alex Iosevich, Doowon Koh, and Misha Rudnev

More information

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE J. Combin. Theory Ser. A 116(2009), no. 8, 1374 1381. A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE Hao Pan and Zhi-Wei Sun Department of Mathematics, Naning University Naning 210093, People s Republic

More information

Testing the Expansion of a Graph

Testing the Expansion of a Graph Testing the Expansion of a Graph Asaf Nachmias Asaf Shapira Abstract We study the problem of testing the expansion of graphs with bounded degree d in sublinear time. A graph is said to be an α- expander

More information

All Ramsey numbers for brooms in graphs

All Ramsey numbers for brooms in graphs All Ramsey numbers for brooms in graphs Pei Yu Department of Mathematics Tongji University Shanghai, China yupeizjy@16.com Yusheng Li Department of Mathematics Tongji University Shanghai, China li yusheng@tongji.edu.cn

More information

Fuzzy Statistical Limits

Fuzzy Statistical Limits Fuzzy Statistical Limits Mark Burgin a and Oktay Duman b a Department of Mathematics, University of California, Los Angeles, California 90095-1555, USA b TOBB Economics and Technology University, Faculty

More information

Norm-graphs: variations and applications

Norm-graphs: variations and applications Norm-graphs: variations and applications Noga Alon 1 School of Mathematics, Institute for Advanced Study Olden Lane, Princeton, NJ 08540 and Department of Mathematics, Tel Aviv University Tel Aviv, Israel

More information

Multicolour Ramsey Numbers of Odd Cycles

Multicolour Ramsey Numbers of Odd Cycles Multicolour Ramsey Numbers of Odd Cycles JOHNSON, JR; Day, A 2017 Elsevier Inc This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Combinatorial Theory, Series

More information

On Systems of Diagonal Forms II

On Systems of Diagonal Forms II On Systems of Diagonal Forms II Michael P Knapp 1 Introduction In a recent paper [8], we considered the system F of homogeneous additive forms F 1 (x) = a 11 x k 1 1 + + a 1s x k 1 s F R (x) = a R1 x k

More information

SQUARES AND DIFFERENCE SETS IN FINITE FIELDS

SQUARES AND DIFFERENCE SETS IN FINITE FIELDS SQUARES AND DIFFERENCE SETS IN FINITE FIELDS C. Bachoc 1 Univ Bordeaux, Institut de Mathématiques de Bordeaux, 351, cours de la Libération 33405, Talence cedex, France bachoc@math.u-bordeaux1.fr M. Matolcsi

More information