arxiv:math/ v3 [math.nt] 16 Sep 2007

Size: px
Start display at page:

Download "arxiv:math/ v3 [math.nt] 16 Sep 2007"

Transcription

1 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A01 AFFINE INVARIANTS, RELATIVELY PRIME SETS, AND A PHI FUNCTION FOR SUBSETS OF {1,2,,N} arxiv:math/ v3 [mathnt] 16 Sep 2007 Melvyn B Nathanson 1 Lehman College (CUNY), Bronx, New Yor melvynnathanson@lehmancunyedu Received: 8/15/06, Accepted: 12/29/06, Published: 1/3/07 Abstract A nonempty subset A of {1,2,,n} is relatively prime if gcd(a) = 1 Let f(n) f (n) denote, respectively, the number of relatively prime subsets the number of relatively prime subsets of cardinality of {1,2,,n} Let Φ(n) Φ (n) denote, respectively, the number of nonempty subsets the number of subsets of cardinality of {1,2,,n} such that gcd(a) is relatively prime to n Exact formulas asymptotic estimates are obtained for these functions Subject class: Primary 11A25, 11B05, 11B13, 11B75 Keywords: Relatively prime sets, Euler phi function, combinatorial 1 Affine Invariants Let A be a set of integers, let x y be rational numbers We define the dilation x A = {xa : a A} the translation A+y = {a+y : a A} Sets of integers A B areaffinely equivalentifthereexist rationalnumbers x 0 y such thatb = x A+y For example, the sets A = {2,8,11,20} B = {4,10,17,38} are affinely equivalent, since B = (7/3) A26/3, A B are both affinely equivalent to the sets C = {0,2,3,6} D = {0,3,4,6} Every set with one element is affinely equivalent to {0} Every finite set A of integers with more than one element is affinely equivalent to unique sets C D of nonnegative integers such that min(c) = min(d) = 0, gcd(c) = gcd(d) = 1, D = (1) C +max(c) A function f(a) whose domain is the set F(Z) of nonempty finite sets of integers is called an affine invariant of F(Z) if f(a) = f(b) for all affinely equivalent sets A B 1 This wor was supported in part by grants from the NSA Mathematical Sciences Program the PSC-CUNY Research Award Program

2 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A01 2 For example, if A+A = {a+a : a,a A} is the sumset of a finite set A of integers, if AA = {aa : a,a A} is the difference set of the finite set A, then s(a) = card(a+a) d(a) = card(aa) are affine invariants More generally, let u 0,u 1,,u n be integers F(x 1,,x n ) = u 1 x u n x n + u 0 Define F(A) = {u 1 a u n a n + u 0 : a 1,,a n A for i = 1,,n} Then f(a) = card(f(a)) is an affine invariant Let f(a) be a function with domain F(Z) A frequent problem in combinatorial number theory isto determine thedistribution of values ofthe functionf(a) forsets A intheinterval of integers {0,1,,n} For example, if A {0,1,2,,n}, then 1 card(a+a) 2n+1 For l = 1,,2n + 1, we can as for the number of nonempty sets A {0,1,2,,n} such that card(a + A) = l Similarly, if A {0,1,2,,n} card(a) =, then 2 1 card(a + A) ( + 1)/2,, for l = 2 1,,( + 1)/2, we can as for the number of such sets A with card(a+a) = l In both cases, there is a redundancy in considering sets that are affinely equivalent, we might want to count only sets that are pairwise affinely inequivalent 2 Relatively Prime Sets A nonempty subset A of {1,2,,n} will be called relatively prime if the elements of A are relatively prime, that is, if gcd(a) = 1 Let f(n) denote the number of relatively prime subsets of {1,2,,n} The first 10 values of f(n) are 1, 2, 5, 11, 26, 53, 116, 236, 488, 983 (This is sequence A in Sloane s On-Line Encyclopedia of Integer Sequences) Let f (n) denote the number of relatively prime subsets of {1,2,,n} of cardinality We present exact formulas asymptotic estimates for f(n) f (n) These estimates imply that almost all finite sets of integers are relatively prime No set of even integers is relatively prime Since there are 2 [n/2] 1 nonempty subsets of {2,4,6,,2[n/2]} 2 n 1 nonempty subsets of {1,2,,n}, we have the upper bound f(n) 2 n 2 [n/2] (1) Similarly, f (n) ( [n/2] ) (2) If 1 A, then A is relatively prime Since there are 2 n1 sets A {1,2,,n} with 1 A, we have f(n) 2 n1 Let n 3 If 1 / A but 2 A 3 A, then A is relatively prime so f(n) 2 n1 +2 n3

3 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A01 3 Let n 5 If 1 / A 3 / A, but 2 A 5 A, then A is relatively prime If 1 / A 2 / A, but 3 A 5 A, then A is relatively prime Therefore, f(n) 2 n1 +2 n n4 = 2 n1 +2 n2 Similarly, f (n) Exact Formulas Asymptotic Estimates Let [x] denote the greatest integer less than or equal to x If x 1 n = [x], then [ [ ] x [x] [ n = = d] d d] for all positive integers d Let F(x) be a function defined for x 1, define the function G(x) = ( x F In the proof of Theorem 1 we use the following version of the Möbius inversion formula (Nathanson [1, Exercise 5 on p 222]): F(x) = ( x µ(g Theorem 1 For all positive integers n, For all positive integers n, ([ n f = 2 n 1 (3) f(n) = µ( ( 2 [n/d] 1 ) (4) ([ n ]) f = d f (n) = (5) ( ) [n/d] µ( (6)

4 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A01 4 Proof Let A be a nonempty subset of {1,2,,n} If gcd(a) = d, then A = (1/ A = {a/d : a A} is a relatively prime subset of {1,2,,[n/d]} Conversely, if A is a relatively prime subset of {1,2,,[n/d]}, then A = d A = {da : a A } is a nonempty subset of {1,2,,n} with gcd(a) = d It follows that there are exactly f([n/ subsets A of {1,2,,n} with gcd(a) = d, so ([ n f = 2 n 1 We apply Möbius inversion to the function F(x) = f([x]) For all x 1 we define so For n 1 we have G(x) = ( x F = f([x]) = F(x) = f(n) = ([ [x] x f = f ( x µ(g = [x] µ( ( 2 [n/d] 1 ) ([ ]) [x] = 2 [x] 1 d µ( ( 2 [x/d] 1 ) The proofs of (5) (6) are similar Theorem 2 For all positive integers n, 2 n 2 [n/2] n2 [n/3] f(n) 2 n 2 [n/2] ( ) ( ) [n/2] [n/3] n f (n) ( [n/2] ) Proof For n 2 we have 2 n = f(n)+f([n/2])+ Combining this with (1), we obtain ([ n f +1 f(n)+2 [n/2] +n2 [n/3] 2 n 2 [n/2] n2 [n/3] f(n) 2 n 2 [n/2] This also holds for n = 1 d=3 The inequality for f (n) follows similarly from (2) (5) Theorem 2 implies that f(n) 2 n as n, so almost all finite sets of integers are relatively prime

5 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A A phi Function for Sets The Euler phi function ϕ(n) counts the number of positive integers a n such that a is relatively prime to n We define the function Φ(n) to be the number of nonempty subsets A of {1,2,,n} such that gcd(a) is relatively prime to n For example, for distinct primes p q we have Φ(p) = 2 p 2 Φ(p 2 ) = 2 p2 2 p Φ(pq) = 2 pq 2 q 2 p +2 Define the function Φ (n) to be the number of subsets A of {1,2,,n} such that card(a) = gcd(a) is relatively prime to n Note that Φ 1 (n) = ϕ(n) for all n 1 Theorem 3 For all positive integers n, Φ( = 2 n 1 (7) Moreover, Φ(1) = 1, for n 2, d n Φ(n) = d n µ(2 n/d (8) where µ(n) is the Möbius function Similarly, for all positive integers n, Φ ( = d n (9) Φ (n) = d n /d µ( (10) Proof For every divisor d of n, we define the function Ψ(n, to be the number of nonempty subsets A of {1,2,,n} such that the greatest common divisor of gcd(a) n is d Thus, Ψ(n, = card({a {1,2,,n} : A gcd(a {n}) = d}) Then ( n Ψ(n, = Φ 2 n 1 = d n Ψ(n, = d n ( n Φ = d n Φ(

6 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A01 6 We have Φ(1) = 1 For n 2 we apply the usual Möbius inversion obtain Φ(n) = d n µ( ( 2 n/d 1 ) = d n µ(2 n/d d n µ( = d n µ(2 n/d since d n µ(n/ = 0 for n 2 The proofs of (9) (10) are similar Theorem 4 If n is odd, then Φ(n) = 2 n +O ( n2 n/3) If n is even, then Φ (n) = Φ (n) = ( ) ( n +O n ( [n/3] )) Φ(n) = 2 n 2 n/2 +O ( n2 n/3) /2 ( +O n ( [n/3] )) Proof We have Φ(n) = = card({a {1,2,,n} : A gcd(a) = d}) f([n/ Applying Theorem 2, we see that if n is odd, then Φ(n) = f(n)+f([n/2])+ d=3 f([n/ = ( 2 n 2 [n/2] +O ( n2 n/3)) + ( 2 [n/2] +O ( 2 n/4)) +O ( n2 n/3) = 2 n +O ( n2 n/3)

7 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A01 7 If n is even, then Φ(n) = f(n)+ d=3 f([n/ = ( 2 n 2 n/2 +O ( n2 n/3)) +O ( n2 n/3) = 2 n 2 n/2 +O ( n2 n/3) These estimates for Φ(n) also follow from identity (8) The estimates for Φ (n) follow from identity (10) This completes the proof Acnowledgements I than Greg Martin for the observation that (4) (6) follow from (3) (5) by Möbius inversion, Kevin O Bryant for helpful discussions References [1] M B Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, vol 195, Springer-Verlag, New Yor, 2000

ON A PARTITION PROBLEM OF CANFIELD AND WILF. Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia

ON A PARTITION PROBLEM OF CANFIELD AND WILF. Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia #A11 INTEGERS 12A (2012): John Selfridge Memorial Issue ON A PARTITION PROBLEM OF CANFIELD AND WILF Željka Ljujić Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia z.ljujic20@uniandes.edu.co

More information

ON THE NUMBER OF SUBSETS OF [1, M] RELATIVELY PRIME TO N AND ASYMPTOTIC ESTIMATES

ON THE NUMBER OF SUBSETS OF [1, M] RELATIVELY PRIME TO N AND ASYMPTOTIC ESTIMATES INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008, #A41 ON THE NUMBER OF SUBSETS OF [1, M] RELATIVELY PRIME TO N AND ASYMPTOTIC ESTIMATES Mohamed El Bachraoui Department of Mathematical

More information

arxiv:math/ v1 [math.nt] 6 May 2003

arxiv:math/ v1 [math.nt] 6 May 2003 arxiv:math/0305087v1 [math.nt] 6 May 003 The inverse problem for representation functions of additive bases Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx, New York 10468 Email:

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

SETS WITH MORE SUMS THAN DIFFERENCES. Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York

SETS WITH MORE SUMS THAN DIFFERENCES. Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A05 SETS WITH MORE SUMS THAN DIFFERENCES Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York 10468 melvyn.nathanson@lehman.cuny.edu

More information

Problems in additive number theory, V: Affinely inequivalent MSTD sets

Problems in additive number theory, V: Affinely inequivalent MSTD sets W N North-Western European Journal of Mathematics E M J Problems in additive number theory, V: Affinely inequivalent MSTD sets Melvyn B Nathanson 1 Received: November 9, 2016/Accepted: June 26, 2017/Online:

More information

LINEAR QUANTUM ADDITION RULES. Melvyn B. Nathanson 1 Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468, USA

LINEAR QUANTUM ADDITION RULES. Melvyn B. Nathanson 1 Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468, USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A27 LINEAR QUANTUM ADDITION RULES Melvyn B. Nathanson 1 Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468,

More information

MELVYN B. NATHANSON. To Ron Graham on his 70th birthday

MELVYN B. NATHANSON. To Ron Graham on his 70th birthday LINEAR QUANTUM ADDITION RULES arxiv:math/0603623v1 [math.nt] 27 Mar 2006 MELVYN B. NATHANSON To Ron Graham on his 70th birthday Abstract. The quantum integer [n] q is the polynomial 1+q+q 2 + +q n 1. Two

More information

Exercises Exercises. 2. Determine whether each of these integers is prime. a) 21. b) 29. c) 71. d) 97. e) 111. f) 143. a) 19. b) 27. c) 93.

Exercises Exercises. 2. Determine whether each of these integers is prime. a) 21. b) 29. c) 71. d) 97. e) 111. f) 143. a) 19. b) 27. c) 93. Exercises Exercises 1. Determine whether each of these integers is prime. a) 21 b) 29 c) 71 d) 97 e) 111 f) 143 2. Determine whether each of these integers is prime. a) 19 b) 27 c) 93 d) 101 e) 107 f)

More information

arxiv:math/ v1 [math.gr] 24 Oct 2006

arxiv:math/ v1 [math.gr] 24 Oct 2006 arxiv:math/0610708v1 [math.gr] 24 Oct 2006 FAMILIES OF LINEAR SEMIGROUPS WITH INTERMEDIATE GROWTH MELVYN B. NATHANSON Abstract. Methods from additive number theory are applied to construct families of

More information

Quantum integers and cyclotomy

Quantum integers and cyclotomy Journal of Number Theory 109 (2004) 120 135 www.elsevier.com/locate/jnt Quantum integers and cyclotomy Alexander Borisov a, Melvyn B. Nathanson b,, Yang Wang c a Department of Mathematics, Pennsylvania

More information

Series of Integers in Arithmetic Progression with a Common Property of Two Parts of Equal Sums

Series of Integers in Arithmetic Progression with a Common Property of Two Parts of Equal Sums IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume, Issue Ver. III (Mar. - Apr. 06), PP 37-4 www.iosrjournals.org Series of Integers in Arithmetic Progression with a Common Property

More information

Do not open this exam until you are told to begin. You will have 75 minutes for the exam.

Do not open this exam until you are told to begin. You will have 75 minutes for the exam. Math 2603 Midterm 1 Spring 2018 Your Name Student ID # Section Do not open this exam until you are told to begin. You will have 75 minutes for the exam. Check that you have a complete exam. There are 5

More information

Elementary Number Theory MARUCO. Summer, 2018

Elementary Number Theory MARUCO. Summer, 2018 Elementary Number Theory MARUCO Summer, 2018 Problem Set #0 axiom, theorem, proof, Z, N. Axioms Make a list of axioms for the integers. Does your list adequately describe them? Can you make this list as

More information

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES Y. O. HAMIDOUNE AND J. RUÉ Abstract. Let A be a finite nonempty set of integers. An asymptotic estimate of several dilates sum size was obtained

More information

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE J. Combin. Theory Ser. A 116(2009), no. 8, 1374 1381. A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE Hao Pan and Zhi-Wei Sun Department of Mathematics, Naning University Naning 210093, People s Republic

More information

The number of ways to choose r elements (without replacement) from an n-element set is. = r r!(n r)!.

The number of ways to choose r elements (without replacement) from an n-element set is. = r r!(n r)!. The first exam will be on Friday, September 23, 2011. The syllabus will be sections 0.1 through 0.4 and 0.6 in Nagpaul and Jain, and the corresponding parts of the number theory handout found on the class

More information

Theory of Numbers Problems

Theory of Numbers Problems Theory of Numbers Problems Antonios-Alexandros Robotis Robotis October 2018 1 First Set 1. Find values of x and y so that 71x 50y = 1. 2. Prove that if n is odd, then n 2 1 is divisible by 8. 3. Define

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

A NEW UPPER BOUND FOR FINITE ADDITIVE BASES

A NEW UPPER BOUND FOR FINITE ADDITIVE BASES A NEW UPPER BOUND FOR FINITE ADDITIVE BASES C SİNAN GÜNTÜRK AND MELVYN B NATHANSON Abstract Let n, k denote the largest integer n for which there exists a set A of k nonnegative integers such that the

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Chapter-2 Relations and Functions. Miscellaneous

Chapter-2 Relations and Functions. Miscellaneous 1 Chapter-2 Relations and Functions Miscellaneous Question 1: The relation f is defined by The relation g is defined by Show that f is a function and g is not a function. The relation f is defined as It

More information

Elementary Properties of the Integers

Elementary Properties of the Integers Elementary Properties of the Integers 1 1. Basis Representation Theorem (Thm 1-3) 2. Euclid s Division Lemma (Thm 2-1) 3. Greatest Common Divisor 4. Properties of Prime Numbers 5. Fundamental Theorem of

More information

Introduction to Number Theory 1. c Eli Biham - December 13, Introduction to Number Theory 1

Introduction to Number Theory 1. c Eli Biham - December 13, Introduction to Number Theory 1 Introduction to Number Theory 1 c Eli Biham - December 13, 2012 206 Introduction to Number Theory 1 Division Definition: Let a and b be integers. We say that a divides b, or a b if d s.t. b = ad. If b

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Monday, June 8, 202. The syllabus will be sections. and.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive squaring

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 1. Arithmetic, Zorn s Lemma.

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 1. Arithmetic, Zorn s Lemma. D-MATH Algebra I HS18 Prof. Rahul Pandharipande Solution 1 Arithmetic, Zorn s Lemma. 1. (a) Using the Euclidean division, determine gcd(160, 399). (b) Find m 0, n 0 Z such that gcd(160, 399) = 160m 0 +

More information

Elementary Properties of Cyclotomic Polynomials

Elementary Properties of Cyclotomic Polynomials Elementary Properties of Cyclotomic Polynomials Yimin Ge Abstract Elementary properties of cyclotomic polynomials is a topic that has become very popular in Olympiad mathematics. The purpose of this article

More information

A SURVEY OF PRIMALITY TESTS

A SURVEY OF PRIMALITY TESTS A SURVEY OF PRIMALITY TESTS STEFAN LANCE Abstract. In this paper, we show how modular arithmetic and Euler s totient function are applied to elementary number theory. In particular, we use only arithmetic

More information

Math1a Set 1 Solutions

Math1a Set 1 Solutions Math1a Set 1 Solutions October 15, 2018 Problem 1. (a) For all x, y, z Z we have (i) x x since x x = 0 is a multiple of 7. (ii) If x y then there is a k Z such that x y = 7k. So, y x = (x y) = 7k is also

More information

f(n) = f(p e 1 1 )...f(p e k k ).

f(n) = f(p e 1 1 )...f(p e k k ). 3. Arithmetic functions 3.. Arithmetic functions. These are functions f : N N or Z or maybe C, usually having some arithmetic significance. An important subclass of such functions are the multiplicative

More information

arxiv: v1 [math.co] 18 Dec 2018

arxiv: v1 [math.co] 18 Dec 2018 A Construction for Difference Sets with Local Properties Sara Fish Ben Lund Adam Sheffer arxiv:181.07651v1 [math.co] 18 Dec 018 Abstract We construct finite sets of real numbers that have a small difference

More information

Isoperimetric Sets of Integers

Isoperimetric Sets of Integers Isoperimetric Sets of Integers Steven J. Miller (Steven.J.Miller@williams.edu) Frank Morgan (Frank.Morgan@williams.edu) Edward Newkirk (Edward.S.Newkirk@williams.edu) Lori Pedersen (lap811@aol.com) Deividas

More information

COMBINATORIAL COUNTING

COMBINATORIAL COUNTING COMBINATORIAL COUNTING Our main reference is [1, Section 3] 1 Basic counting: functions and subsets Theorem 11 (Arbitrary mapping Let N be an n-element set (it may also be empty and let M be an m-element

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory.

Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory. CSS322: Security and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 29 December 2011 CSS322Y11S2L06, Steve/Courses/2011/S2/CSS322/Lectures/number.tex,

More information

The Greatest Common Divisor of k Positive Integers

The Greatest Common Divisor of k Positive Integers International Mathematical Forum, Vol. 3, 208, no. 5, 25-223 HIKARI Ltd, www.m-hiari.com https://doi.org/0.2988/imf.208.822 The Greatest Common Divisor of Positive Integers Rafael Jaimczu División Matemática,

More information

Number Theory and Group Theoryfor Public-Key Cryptography

Number Theory and Group Theoryfor Public-Key Cryptography Number Theory and Group Theory for Public-Key Cryptography TDA352, DIT250 Wissam Aoudi Chalmers University of Technology November 21, 2017 Wissam Aoudi Number Theory and Group Theoryfor Public-Key Cryptography

More information

The primitive root theorem

The primitive root theorem The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

More information

Axioms for the Real Number System

Axioms for the Real Number System Axioms for the Real Number System Math 361 Fall 2003 Page 1 of 9 The Real Number System The real number system consists of four parts: 1. A set (R). We will call the elements of this set real numbers,

More information

Trifectas in geometric progression

Trifectas in geometric progression 189 Trifectas in geometric progression Gerry Myerson Abstract The trifecta in the 2007 Melbourne Cup was the numbers 6 12 24, a geometric progression. How many trifectas in geometric progression are there

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1 . Let U = { A M (R) A = and b 6 }. CHAPTER 3 REVIEW QUESTIONS MATH 334 Spring 7 a b a and b are integers and a 6 (a) Let S = { A U det A = }. List the elements of S; that is S = {... }. (b) Let T = { A

More information

Modular Arithmetic. Examples: 17 mod 5 = 2. 5 mod 17 = 5. 8 mod 3 = 1. Some interesting properties of modular arithmetic:

Modular Arithmetic. Examples: 17 mod 5 = 2. 5 mod 17 = 5. 8 mod 3 = 1. Some interesting properties of modular arithmetic: Modular Arithmetic If a mod n = b, then a = c n + b. When you reduce a number a modulo n you usually want 0 b < n. Division Principle [Bar02, pg. 61]: Let n be a positive integer and let a be any integer.

More information

Elementary Number Theory Review. Franz Luef

Elementary Number Theory Review. Franz Luef Elementary Number Theory Review Principle of Induction Principle of Induction Suppose we have a sequence of mathematical statements P(1), P(2),... such that (a) P(1) is true. (b) If P(k) is true, then

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

Direct Proof Divisibility

Direct Proof Divisibility Direct Proof Divisibility Lecture 15 Section 4.3 Robb T. Koether Hampden-Sydney College Fri, Feb 8, 2013 Robb T. Koether (Hampden-Sydney College) Direct Proof Divisibility Fri, Feb 8, 2013 1 / 20 1 Divisibility

More information

Direct Proof Divisibility

Direct Proof Divisibility Direct Proof Divisibility Lecture 15 Section 4.3 Robb T. Koether Hampden-Sydney College Fri, Feb 7, 2014 Robb T. Koether (Hampden-Sydney College) Direct Proof Divisibility Fri, Feb 7, 2014 1 / 23 1 Divisibility

More information

MATH 55 - HOMEWORK 6 SOLUTIONS. 1. Section = 1 = (n + 1) 3 = 2. + (n + 1) 3. + (n + 1) 3 = n2 (n + 1) 2.

MATH 55 - HOMEWORK 6 SOLUTIONS. 1. Section = 1 = (n + 1) 3 = 2. + (n + 1) 3. + (n + 1) 3 = n2 (n + 1) 2. MATH 55 - HOMEWORK 6 SOLUTIONS Exercise Section 5 Proof (a) P () is the statement ( ) 3 (b) P () is true since ( ) 3 (c) The inductive hypothesis is P (n): ( ) n(n + ) 3 + 3 + + n 3 (d) Assuming the inductive

More information

Unique Difference Bases of Z

Unique Difference Bases of Z 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 14 (011), Article 11.1.8 Unique Difference Bases of Z Chi-Wu Tang, Min Tang, 1 and Lei Wu Department of Mathematics Anhui Normal University Wuhu 41000 P.

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

2.3 In modular arithmetic, all arithmetic operations are performed modulo some integer.

2.3 In modular arithmetic, all arithmetic operations are performed modulo some integer. CHAPTER 2 INTRODUCTION TO NUMBER THEORY ANSWERS TO QUESTIONS 2.1 A nonzero b is a divisor of a if a = mb for some m, where a, b, and m are integers. That is, b is a divisor of a if there is no remainder

More information

INVERSE THEOREMS FOR SUBSET SUMS MELVYN. B. NATHANSON

INVERSE THEOREMS FOR SUBSET SUMS MELVYN. B. NATHANSON transactions of the american mathematical society Volume 347, Number 4, April 1995 INVERSE THEOREMS FOR SUBSET SUMS MELVYN. B. NATHANSON Abstract. Let A be a finite set of integers. For h > 1, let S^ (A)

More information

arxiv: v2 [math.nt] 2 Aug 2017

arxiv: v2 [math.nt] 2 Aug 2017 TRAPEZOIDAL NUMBERS, DIVISOR FUNCTIONS, AND A PARTITION THEOREM OF SYLVESTER arxiv:1601.07058v [math.nt] Aug 017 MELVYN B. NATHANSON To Krishnaswami Alladi on his 60th birthday Abstract. A partition of

More information

Advanced Number Theory Note #6: Reformulation of the prime number theorem using the Möbius function 7 August 2012 at 00:43

Advanced Number Theory Note #6: Reformulation of the prime number theorem using the Möbius function 7 August 2012 at 00:43 Advanced Number Theory Note #6: Reformulation of the prime number theorem using the Möbius function 7 August 2012 at 00:43 Public One of the more intricate and tricky proofs concerning reformulations of

More information

Ch 4.2 Divisibility Properties

Ch 4.2 Divisibility Properties Ch 4.2 Divisibility Properties - Prime numbers and composite numbers - Procedure for determining whether or not a positive integer is a prime - GCF: procedure for finding gcf (Euclidean Algorithm) - Definition:

More information

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a "

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a Math 4161 Dr. Franz Rothe December 9, 2013 13FALL\4161_fall13f.tex Name: Use the back pages for extra space Final 70 70 Problem 1. The following assertions may be true or false, depending on the choice

More information

Summary Slides for MATH 342 June 25, 2018

Summary Slides for MATH 342 June 25, 2018 Summary Slides for MATH 342 June 25, 2018 Summary slides based on Elementary Number Theory and its applications by Kenneth Rosen and The Theory of Numbers by Ivan Niven, Herbert Zuckerman, and Hugh Montgomery.

More information

Finite and Infinite Sets

Finite and Infinite Sets Chapter 9 Finite and Infinite Sets 9. Finite Sets Preview Activity (Equivalent Sets, Part ). Let A and B be sets and let f be a function from A to B..f W A! B/. Carefully complete each of the following

More information

n = p 1 p 2 p r = q 1 q 2 q m, then r = m (i.e. the number of primes in any prime decomposition

n = p 1 p 2 p r = q 1 q 2 q m, then r = m (i.e. the number of primes in any prime decomposition Department of Mathematical Sciences Instructor: Daiva Pucinskaite Discrete Mathematics Factoring Recall. Fundamental Theorem of Arithmetic. Let n be a positive integer n > 1. Then n can be represented

More information

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) 1 Euclid s Algorithm Euclid s Algorithm for computing the greatest common divisor belongs to the oldest known computing procedures

More information

Math 324, Fall 2011 Assignment 7 Solutions. 1 (ab) γ = a γ b γ mod n.

Math 324, Fall 2011 Assignment 7 Solutions. 1 (ab) γ = a γ b γ mod n. Math 324, Fall 2011 Assignment 7 Solutions Exercise 1. (a) Suppose a and b are both relatively prime to the positive integer n. If gcd(ord n a, ord n b) = 1, show ord n (ab) = ord n a ord n b. (b) Let

More information

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV. Glossary 1 Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.23 Abelian Group. A group G, (or just G for short) is

More information

Math 314 Course Notes: Brief description

Math 314 Course Notes: Brief description Brief description These are notes for Math 34, an introductory course in elementary number theory Students are advised to go through all sections in detail and attempt all problems These notes will be

More information

Maximum exponent of boolean circulant matrices with constant number of nonzero entries in its generating vector

Maximum exponent of boolean circulant matrices with constant number of nonzero entries in its generating vector Maximum exponent of boolean circulant matrices with constant number of nonzero entries in its generating vector MI Bueno, Department of Mathematics and The College of Creative Studies University of California,

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

Objective Type Questions

Objective Type Questions DISTANCE EDUCATION, UNIVERSITY OF CALICUT NUMBER THEORY AND LINEARALGEBRA Objective Type Questions Shyama M.P. Assistant Professor Department of Mathematics Malabar Christian College, Calicut 7/3/2014

More information

MT804 Analysis Homework II

MT804 Analysis Homework II MT804 Analysis Homework II Eudoxus October 6, 2008 p. 135 4.5.1, 4.5.2 p. 136 4.5.3 part a only) p. 140 4.6.1 Exercise 4.5.1 Use the Intermediate Value Theorem to prove that every polynomial of with real

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

LECTURE NOTES IN CRYPTOGRAPHY

LECTURE NOTES IN CRYPTOGRAPHY 1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic

More information

THE STRUCTURE OF RAINBOW-FREE COLORINGS FOR LINEAR EQUATIONS ON THREE VARIABLES IN Z p. Mario Huicochea CINNMA, Querétaro, México

THE STRUCTURE OF RAINBOW-FREE COLORINGS FOR LINEAR EQUATIONS ON THREE VARIABLES IN Z p. Mario Huicochea CINNMA, Querétaro, México #A8 INTEGERS 15A (2015) THE STRUCTURE OF RAINBOW-FREE COLORINGS FOR LINEAR EQUATIONS ON THREE VARIABLES IN Z p Mario Huicochea CINNMA, Querétaro, México dym@cimat.mx Amanda Montejano UNAM Facultad de Ciencias

More information

Mathematical Structures Combinations and Permutations

Mathematical Structures Combinations and Permutations Definitions: Suppose S is a (finite) set and n, k 0 are integers The set C(S, k) of k - combinations consists of all subsets of S that have exactly k elements The set P (S, k) of k - permutations consists

More information

A. Algebra and Number Theory

A. Algebra and Number Theory A. Algebra and Number Theory Public-key cryptosystems are based on modular arithmetic. In this section, we summarize the concepts and results from algebra and number theory which are necessary for an understanding

More information

Introduction to Public-Key Cryptosystems:

Introduction to Public-Key Cryptosystems: Introduction to Public-Key Cryptosystems: Technical Underpinnings: RSA and Primality Testing Modes of Encryption for RSA Digital Signatures for RSA 1 RSA Block Encryption / Decryption and Signing Each

More information

Mathematics for Cryptography

Mathematics for Cryptography Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

More information

Some zero-sum constants with weights

Some zero-sum constants with weights Proc. Indian Acad. Sci. (Math. Sci.) Vol. 118, No. 2, May 2008, pp. 183 188. Printed in India Some zero-sum constants with weights S D ADHIKARI 1, R BALASUBRAMANIAN 2, F PAPPALARDI 3 andprath 2 1 Harish-Chandra

More information

Number Theory A focused introduction

Number Theory A focused introduction Number Theory A focused introduction This is an explanation of RSA public key cryptography. We will start from first principles, but only the results that are needed to understand RSA are given. We begin

More information

GENERALIZATIONS OF SOME ZERO-SUM THEOREMS. Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad , INDIA

GENERALIZATIONS OF SOME ZERO-SUM THEOREMS. Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad , INDIA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A52 GENERALIZATIONS OF SOME ZERO-SUM THEOREMS Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad

More information

Introduction to Abstract Mathematics

Introduction to Abstract Mathematics Introduction to Abstract Mathematics Notation: Z + or Z >0 denotes the set {1, 2, 3,...} of positive integers, Z 0 is the set {0, 1, 2,...} of nonnegative integers, Z is the set {..., 1, 0, 1, 2,...} of

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Proofs of the infinitude of primes

Proofs of the infinitude of primes Proofs of the infinitude of primes Tomohiro Yamada Abstract In this document, I would like to give several proofs that there exist infinitely many primes. 0 Introduction It is well known that the number

More information

Chapter 5: The Integers

Chapter 5: The Integers c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

More information

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Problem 1. [5pts] Consider our definitions of Z, Q, R, and C. Recall that A B means A is a subset

More information

Mathematics 4: Number Theory Problem Sheet 3. Workshop 26 Oct 2012

Mathematics 4: Number Theory Problem Sheet 3. Workshop 26 Oct 2012 Mathematics 4: Number Theory Problem Sheet 3 Workshop 26 Oct 2012 The aim of this workshop is to show that Carmichael numbers are squarefree and have at least 3 distinct prime factors (1) (Warm-up question)

More information

2 ERDOS AND NATHANSON k > 2. Then there is a partition of the set of positive kth powers In k I n > } = A, u A Z such that Waring's problem holds inde

2 ERDOS AND NATHANSON k > 2. Then there is a partition of the set of positive kth powers In k I n > } = A, u A Z such that Waring's problem holds inde JOURNAL OF NUMBER THEORY 2, - ( 88) Partitions of Bases into Disjoint Unions of Bases* PAUL ERDÓS Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary AND MELVYN B. NATHANSON

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem Chapter 5 The Chinese Remainder Theorem 5.1 Coprime moduli Theorem 5.1. Suppose m, n N, and gcd(m, n) = 1. Given any remainders r mod m and s mod n we can find N such that N r mod m and N s mod n. Moreover,

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 9 September 30, 2015 CPSC 467, Lecture 9 1/47 Fast Exponentiation Algorithms Number Theory Needed for RSA Elementary Number Theory

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Spotlight on Science J. Robert Buchanan Department of Mathematics 2011 What is Cryptography? cryptography: study of methods for sending messages in a form that only be understood

More information

Necklaces, periodic points and permutation representations

Necklaces, periodic points and permutation representations Necklaces, periodic points and permutation representations Fermat s little theorem Somnath Basu, Anindita Bose, Sumit Sinha & Pankaj Vishe Published in Resonance, November 2001, P.18-26. One of the most

More information

Part IA. Numbers and Sets. Year

Part IA. Numbers and Sets. Year Part IA Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2017 19 Paper 4, Section I 1D (a) Show that for all positive integers z and n, either z 2n 0 (mod 3) or

More information

Number Theory and Algebra: A Brief Introduction

Number Theory and Algebra: A Brief Introduction Number Theory and Algebra: A Brief Introduction Indian Statistical Institute Kolkata May 15, 2017 Elementary Number Theory: Modular Arithmetic Definition Let n be a positive integer and a and b two integers.

More information

Applied Cryptography and Computer Security CSE 664 Spring 2018

Applied Cryptography and Computer Security CSE 664 Spring 2018 Applied Cryptography and Computer Security Lecture 12: Introduction to Number Theory II Department of Computer Science and Engineering University at Buffalo 1 Lecture Outline This time we ll finish the

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

EXPLICIT CONSTRUCTIONS OF LARGE FAMILIES OF GENERALIZED MORE SUMS THAN DIFFERENCES SETS

EXPLICIT CONSTRUCTIONS OF LARGE FAMILIES OF GENERALIZED MORE SUMS THAN DIFFERENCES SETS EXPLICIT CONSTRUCTIONS OF LARGE FAMILIES OF GENERALIZED MORE SUMS THAN DIFFERENCES SETS STEVEN J. MILLER, LUC ROBINSON AND SEAN PEGADO ABSTRACT. A More Sums Than Differences (MSTD) set is a set of integers

More information

THE RELATION AMONG EULER S PHI FUNCTION, TAU FUNCTION, AND SIGMA FUNCTION

THE RELATION AMONG EULER S PHI FUNCTION, TAU FUNCTION, AND SIGMA FUNCTION International Journal of Pure and Applied Mathematics Volume 118 No. 3 018, 675-684 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.173/ijpam.v118i3.15

More information

Polynomial Functions. Linear Graphs and Linear Functions 1.3

Polynomial Functions. Linear Graphs and Linear Functions 1.3 Polynomial Functions Linear Graphs and Linear Functions 1.3 Forms for equations of lines (linear functions) Ax + By = C Standard Form y = mx +b Slope-Intercept (y y 1 ) = m(x x 1 ) Point-Slope x = a Vertical

More information

MATH 201 Solutions: TEST 3-A (in class)

MATH 201 Solutions: TEST 3-A (in class) MATH 201 Solutions: TEST 3-A (in class) (revised) God created infinity, and man, unable to understand infinity, had to invent finite sets. - Gian Carlo Rota Part I [5 pts each] 1. Let X be a set. Define

More information