Overview. and data transformations of gene expression data. Toy 2-d Clustering Example. K-Means. Motivation. Model-based clustering

Size: px
Start display at page:

Download "Overview. and data transformations of gene expression data. Toy 2-d Clustering Example. K-Means. Motivation. Model-based clustering"

Transcription

1 Model-based clustering and data transformations of gene expression data Walter L. Ruzzo University of Washington UW CSE Computational Biology Group 2 Toy 2-d Clustering Example K-Means? 3 4

2 Hierarchical Average Lin Model-Based (If You Want) 5 6 Model-based clustering Gaussian mixture model: Assume each cluster is generated by a multivariate normal distribution Cluster has parameters : Mean vector: µ Covariance matrix: Σ 7 8 2

3 Model-based clustering Gaussian mixture model: Assume each cluster is generated by a multivariate normal distribution Cluster has parameters : Mean vector: µ Covariance matrix: Σ µ µ2 σ σ 2 Variance & Covariance Variance Covariance Correlation var(x) = E((x " x) 2 ) cov(x, y) = E((x " x)(y " y)) cor(x, y) = cov(x, y) " x " y 9 0 Gaussian Distributions Variance/Covariance Univariate 2"# 2 e$ 2(x$x) 2 /# 2 Multivariate (2") n # e$ 2 (x$x ) T (# $ )(x$x) where Σ is the variance/covariance matrix: " i, j = E((x i # x i)(x j # x j)) 2 3

4 Covariance models (Banfield & Raftery 993) Equal volume spherical model (): ~ means Σ = λ I Σ =λ D A D T volume shape orientation Covariance models (Banfield & Raftery 993) Equal volume spherical model (): ~ means Σ = λ I Unequal volume spherical (): Σ = λ I Σ =λ D A D T volume shape orientation 3 4 More flexible Covariance models (Banfield & Raftery 993) But more parameters Σ =λ D A D T volume Equal volume spherical model (): ~ means Σ = λ I Unequal volume spherical (): Σ = λ I Diagonal model: Σ = λ B, where B is, B = elliptical model: Σ = λdad T Unconstrained model (VVV): Σ = λ D A D T shape orientation 5 EM algorithm General approach to maximum lielihood Iterate between E and M steps: E step: compute the probability of each observation belonging to each cluster using the current parameter estimates M-step: estimate model parameters using the current group membership probabilities 6 4

5 Advantages of model-based clustering Higher quality clusters Flexible models Model selection A principled way to choose right model and right # of clusters Bayesian Information Criterion (BIC): Approximate Bayes factor: posterior odds for one model against another model Roughly: data lielihood, penalized for number of parameters A large BIC score indicates strong evidence for the corresponding model. 7 Definition of the BIC score 2 log p ( D M ) " 2log p( D $ ˆ, M )!# log( n) = BIC The integrated lielihood p(d M ) is hard to evaluate, where D is the data, M is the model. BIC is an approximation to log p(d M ) υ : number of parameters to be estimated in model M 8 Methodology Data Sets Results Validation Methodology Compare on data sets with external criteria (BIC scores do not require the external criteria) To compare clusters with external criterion: Adjusted Rand index (Hubert and Arabie 985) Adjusted Rand index = perfect agreement 2 random partitions have an expected index of 0 Compare quality of clusters to those from: a leading heuristic-based algorithm: CAST (Ben-Dor & Yahini 999) -Means ()

6 Gene expression data sets Ovarian cancer data set (Michel Schummer, Institute of Systems Biology) Subset of data: 235 clones 24 experiments (cancer/normal tissue samples) 235 clones correspond to 4 genes Yeast cell cycle data (Cho et al 998) 7 time points Subset of 384 genes associated with 5 phases of cell cycle Synthetic data sets Both based on ovary data Randomly resampled ovary data For each class, randomly sample the expression levels in each experiment, independently Near covariance matrix Gaussian mixture Generate multivariate normal distributions with the sample covariance matrix and mean vector of each class in the ovary data 2 22 BIC Adjusted Rand VVV CAST Results: randomly resampled ovary data Diagonal model achieves max BIC score (~expected) max BIC at 4 clusters (~expected) max adjusted Rand beats CAST Adjusted Rand BIC Results: square root ovary data VVV CAST Adjusted Rand: max at 4 clusters (> CAST) BIC analysis: and models local max at 4 clusters Global max at 8 clusters (8 split of 4)

7 Results: standardized yeast cell cycle data BIC Adjusted Rand VVV CAST Adjusted Rand: slightly > CAST at 5 clusters. BIC: selects at 5 clusters Importance of Data Transformation

8 log yeast cell cycle data Standardized yeast cell cycle data Summary and Conclusions Synthetic data sets: With the correct model, model-based clustering better than a leading heuristic clustering algorithm BIC selects the right model & right Real expression data sets: Comparable adjusted Rand indices to CAST BIC gives a good hint as to the Appropriate data transformations increase normality & cluster quality (See paper & web.)

9 Acnowledgements Ka Yee Yeung, Chris Fraley 2,4, Alejandro Murua 4, Adrian E. Raftery 2 Michèl Schummer 5 the ovary data Jeremy Tantrum 2 help with MBC software ( model) Chris Saunders 3 CRE & noise model Computer Science & Engineering 4 Insightful Corporation 2 Statistics 5 Institute of Systems Biology 3 Genome Sciences More Info Adjusted Rand Example c#(4) c#2(5) c#3(7) c#4(4) class#(2) class#2(3) class#3(5) class#4(0) 7 ' 2$ ' 3$ ' 4$ ' 7$ a = % " + % " + % " + % " = 3 ' 4$ ' 5$ ' 7$ ' 4$ b = % " + % " + % " + % "! a = 43! 3 = 2 ' 2$ ' 3$ ' 5$ ' 0$ c = % " + % " + % " + % "! a = 59! 3 = 28 & 2 # ' 20$ d = % "! a! b! c = 9 & 2 # a + d Rand, R = = a + d + c + d R! E( R) Adjusted Rand = = 0.469! E( R) UW CSE Computational Biology Group

Principal component analysis (PCA) for clustering gene expression data

Principal component analysis (PCA) for clustering gene expression data Principal component analysis (PCA) for clustering gene expression data Ka Yee Yeung Walter L. Ruzzo Bioinformatics, v17 #9 (2001) pp 763-774 1 Outline of talk Background and motivation Design of our empirical

More information

Model-based clustering and validation techniques for gene expression data

Model-based clustering and validation techniques for gene expression data Moel-base clustering an valiation techniques for gene expression ata Ka Yee Yeung Department of Microbiology University of Washington, Seattle WA Overview Introuction to microarrays Clustering 11 Valiating

More information

Unsupervised machine learning

Unsupervised machine learning Chapter 9 Unsupervised machine learning Unsupervised machine learning (a.k.a. cluster analysis) is a set of methods to assign objects into clusters under a predefined distance measure when class labels

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

Gaussian Mixture Models, Expectation Maximization

Gaussian Mixture Models, Expectation Maximization Gaussian Mixture Models, Expectation Maximization Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Andrew Moore (CMU), Eric Eaton (UPenn), David Kauchak

More information

Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models

Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models LETTER Communicated by Clifford Lam Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models Lingyan Ruan lruan@gatech.edu Ming Yuan ming.yuan@isye.gatech.edu School of Industrial and

More information

Extended Bayesian Information Criteria for Model Selection with Large Model Spaces

Extended Bayesian Information Criteria for Model Selection with Large Model Spaces Extended Bayesian Information Criteria for Model Selection with Large Model Spaces Jiahua Chen, University of British Columbia Zehua Chen, National University of Singapore (Biometrika, 2008) 1 / 18 Variable

More information

arxiv: v1 [stat.me] 7 Aug 2015

arxiv: v1 [stat.me] 7 Aug 2015 Dimension reduction for model-based clustering Luca Scrucca Università degli Studi di Perugia August 0, 05 arxiv:508.07v [stat.me] 7 Aug 05 Abstract We introduce a dimension reduction method for visualizing

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 6: Cluster Analysis Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2017/2018 Master in Mathematical Engineering

More information

Model-based cluster analysis: a Defence. Gilles Celeux Inria Futurs

Model-based cluster analysis: a Defence. Gilles Celeux Inria Futurs Model-based cluster analysis: a Defence Gilles Celeux Inria Futurs Model-based cluster analysis Model-based clustering (MBC) consists of assuming that the data come from a source with several subpopulations.

More information

Gaussian Mixtures and the EM algorithm

Gaussian Mixtures and the EM algorithm Gaussian Mixtures and the EM algorithm 1 sigma=1.0 sigma=1.0 Responsibilities 0.0 0.2 0.4 0.6 0.8 1.0 sigma=0.2 sigma=0.2 Responsibilities 0.0 0.2 0.4 0.6 0.8 1.0 2 Details of figure Left panels: two Gaussian

More information

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM.

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM. Université du Sud Toulon - Var Master Informatique Probabilistic Learning and Data Analysis TD: Model-based clustering by Faicel CHAMROUKHI Solution The aim of this practical wor is to show how the Classification

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

An Introduction to Expectation-Maximization

An Introduction to Expectation-Maximization An Introduction to Expectation-Maximization Dahua Lin Abstract This notes reviews the basics about the Expectation-Maximization EM) algorithm, a popular approach to perform model estimation of the generative

More information

Regression Clustering

Regression Clustering Regression Clustering In regression clustering, we assume a model of the form y = f g (x, θ g ) + ɛ g for observations y and x in the g th group. Usually, of course, we assume linear models of the form

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Dec 1, 2015 Lecture 11: Mixed Models (HLMs)

36-309/749 Experimental Design for Behavioral and Social Sciences. Dec 1, 2015 Lecture 11: Mixed Models (HLMs) 36-309/749 Experimental Design for Behavioral and Social Sciences Dec 1, 2015 Lecture 11: Mixed Models (HLMs) Independent Errors Assumption An error is the deviation of an individual observed outcome (DV)

More information

Simultaneous inference for multiple testing and clustering via a Dirichlet process mixture model

Simultaneous inference for multiple testing and clustering via a Dirichlet process mixture model Simultaneous inference for multiple testing and clustering via a Dirichlet process mixture model David B Dahl 1, Qianxing Mo 2 and Marina Vannucci 3 1 Texas A&M University, US 2 Memorial Sloan-Kettering

More information

Penalized Loss functions for Bayesian Model Choice

Penalized Loss functions for Bayesian Model Choice Penalized Loss functions for Bayesian Model Choice Martyn International Agency for Research on Cancer Lyon, France 13 November 2009 The pure approach For a Bayesian purist, all uncertainty is represented

More information

THE EMMIX SOFTWARE FOR THE FITTING OF MIXTURES OF NORMAL AND t-components

THE EMMIX SOFTWARE FOR THE FITTING OF MIXTURES OF NORMAL AND t-components THE EMMIX SOFTWARE FOR THE FITTING OF MIXTURES OF NORMAL AND t-components G.J. McLachlan, D. Peel, K.E. Basford*, and P. Adams Department of Mathematics, University of Queensland, St. Lucia, Queensland

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

MODEL BASED CLUSTERING FOR COUNT DATA

MODEL BASED CLUSTERING FOR COUNT DATA MODEL BASED CLUSTERING FOR COUNT DATA Dimitris Karlis Department of Statistics Athens University of Economics and Business, Athens April OUTLINE Clustering methods Model based clustering!"the general model!"algorithmic

More information

Variable selection for model-based clustering

Variable selection for model-based clustering Variable selection for model-based clustering Matthieu Marbac (Ensai - Crest) Joint works with: M. Sedki (Univ. Paris-sud) and V. Vandewalle (Univ. Lille 2) The problem Objective: Estimation of a partition

More information

Clustering and Gaussian Mixture Models

Clustering and Gaussian Mixture Models Clustering and Gaussian Mixture Models Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 25, 2016 Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models 1 Recap

More information

Gaussian Mixture Model

Gaussian Mixture Model Case Study : Document Retrieval MAP EM, Latent Dirichlet Allocation, Gibbs Sampling Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 5 th,

More information

Families of Parsimonious Finite Mixtures of Regression Models arxiv: v1 [stat.me] 2 Dec 2013

Families of Parsimonious Finite Mixtures of Regression Models arxiv: v1 [stat.me] 2 Dec 2013 Families of Parsimonious Finite Mixtures of Regression Models arxiv:1312.0518v1 [stat.me] 2 Dec 2013 Utkarsh J. Dang and Paul D. McNicholas Department of Mathematics & Statistics, University of Guelph

More information

Chapter 10. Semi-Supervised Learning

Chapter 10. Semi-Supervised Learning Chapter 10. Semi-Supervised Learning Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Outline

More information

On Potts Model Clustering, Kernel K-means, and Density Estimation

On Potts Model Clustering, Kernel K-means, and Density Estimation On Potts Model Clustering, Kernel K-means, and Density Estimation Alejandro Murua, Larissa Stanberry 2, and Werner Stuetzle 2 Département de mathématiques et de statistique, Université de Montréal, Canada

More information

The Expectation Maximization Algorithm & RNA-Sequencing

The Expectation Maximization Algorithm & RNA-Sequencing Senior Thesis in Mathematics The Expectation Maximization Algorithm & RNA-Sequencing Author: Maria Martinez Advisor: Dr. Johanna S. Hardin Submitted to Pomona College in Partial Fulfillment of the Degree

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

Model-based mixture discriminant analysis an experimental study

Model-based mixture discriminant analysis an experimental study Model-based mixture disriminant analysis an experimental study Zohar Halbe and Mayer Aladjem Department of Eletrial and Computer Engineering, Ben-Gurion University of the Negev P.O.Box 653, Beer-Sheva,

More information

On Potts Model Clustering, Kernel K-Means, and Density Estimation

On Potts Model Clustering, Kernel K-Means, and Density Estimation On Potts Model Clustering, Kernel K-Means, and Density Estimation Alejandro MURUA, Larissa STANBERRY, and Werner STUETZLE Many clustering methods, such as K -means, kernel K -means, and MNcut clustering,

More information

More on Unsupervised Learning

More on Unsupervised Learning More on Unsupervised Learning Two types of problems are to find association rules for occurrences in common in observations (market basket analysis), and finding the groups of values of observational data

More information

Inferring Transcriptional Regulatory Networks from High-throughput Data

Inferring Transcriptional Regulatory Networks from High-throughput Data Inferring Transcriptional Regulatory Networks from High-throughput Data Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20

More information

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory Statistical Inference Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory IP, José Bioucas Dias, IST, 2007

More information

Gaussian Mixtures. ## Type 'citation("mclust")' for citing this R package in publications.

Gaussian Mixtures. ## Type 'citation(mclust)' for citing this R package in publications. Gaussian Mixtures The galaxies data in the MASS package (Venables and Ripley, 2002) is a frequently used example for Gaussian mixture models. It contains the velocities of 82 galaxies from a redshift survey

More information

MIXTURE MODELS AND EM

MIXTURE MODELS AND EM Last updated: November 6, 212 MIXTURE MODELS AND EM Credits 2 Some of these slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Simon Prince, University College London Sergios Theodoridis,

More information

Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations

Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut BYU Statistics Department

More information

Fuzzy Clustering of Gene Expression Data

Fuzzy Clustering of Gene Expression Data Fuzzy Clustering of Gene Data Matthias E. Futschik and Nikola K. Kasabov Department of Information Science, University of Otago P.O. Box 56, Dunedin, New Zealand email: mfutschik@infoscience.otago.ac.nz,

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Package EMMIXmcfa. October 18, 2017

Package EMMIXmcfa. October 18, 2017 Package EMMIXmcfa October 18, 2017 Type Package Title Mixture of Factor Analyzers with Common Factor Loadings Version 2.0.8 Date 2017-10-18 Author Suren Rathnayake, Geoff McLachlan, Jungsun Baek Maintainer

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Package EMMIXmfa. October 18, Index 15

Package EMMIXmfa. October 18, Index 15 Type Package Package EMMIXmfa October 18, 2017 Title Mixture models with component-wise factor analyzers Version 1.3.9 Date 2017-10-18 Author Suren Rathnayake, Geoff McLachlan, Jungsun Baek Maintainer

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 2 2 MACHINE LEARNING Overview Definition pdf Definition joint, condition, marginal,

More information

MSA220 Statistical Learning for Big Data

MSA220 Statistical Learning for Big Data MSA220 Statistical Learning for Big Data Lecture 4 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology More on Discriminant analysis More on Discriminant

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences Biostatistics-Lecture 16 Model Selection Ruibin Xi Peking University School of Mathematical Sciences Motivating example1 Interested in factors related to the life expectancy (50 US states,1969-71 ) Per

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

Probabilistic clustering

Probabilistic clustering Aprendizagem Automática Probabilistic clustering Ludwig Krippahl Probabilistic clustering Summary Fuzzy sets and clustering Fuzzy c-means Probabilistic Clustering: mixture models Expectation-Maximization,

More information

Clustering Analysis of SAGE Transcription Profiles Using a Poisson Approach

Clustering Analysis of SAGE Transcription Profiles Using a Poisson Approach Boo_Nielsen_886768_Proof1_February 6, Clustering Analysis of SAGE Transcription Profiles Using a Poisson Approach Haiyan Huang, Li Cai, and Wing H. Wong Summary To gain insights into the biological function

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

ntopic Organic Traffic Study

ntopic Organic Traffic Study ntopic Organic Traffic Study 1 Abstract The objective of this study is to determine whether content optimization solely driven by ntopic recommendations impacts organic search traffic from Google. The

More information

Minimum Error Rate Classification

Minimum Error Rate Classification Minimum Error Rate Classification Dr. K.Vijayarekha Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur-613 401 Table of Contents 1.Minimum Error Rate Classification...

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Bayesian Networks Structure Learning (cont.)

Bayesian Networks Structure Learning (cont.) Koller & Friedman Chapters (handed out): Chapter 11 (short) Chapter 1: 1.1, 1., 1.3 (covered in the beginning of semester) 1.4 (Learning parameters for BNs) Chapter 13: 13.1, 13.3.1, 13.4.1, 13.4.3 (basic

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Random Vectors, Random Matrices, and Matrix Expected Value

Random Vectors, Random Matrices, and Matrix Expected Value Random Vectors, Random Matrices, and Matrix Expected Value James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 16 Random Vectors,

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation Clustering by Mixture Models General bacground on clustering Example method: -means Mixture model based clustering Model estimation 1 Clustering A basic tool in data mining/pattern recognition: Divide

More information

Machine Learning for Data Science (CS4786) Lecture 12

Machine Learning for Data Science (CS4786) Lecture 12 Machine Learning for Data Science (CS4786) Lecture 12 Gaussian Mixture Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Back to K-means Single link is sensitive to outliners We

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

BAYESIAN DECISION THEORY

BAYESIAN DECISION THEORY Last updated: September 17, 2012 BAYESIAN DECISION THEORY Problems 2 The following problems from the textbook are relevant: 2.1 2.9, 2.11, 2.17 For this week, please at least solve Problem 2.3. We will

More information

A Bayesian Criterion for Clustering Stability

A Bayesian Criterion for Clustering Stability A Bayesian Criterion for Clustering Stability B. Clarke 1 1 Dept of Medicine, CCS, DEPH University of Miami Joint with H. Koepke, Stat. Dept., U Washington 26 June 2012 ISBA Kyoto Outline 1 Assessing Stability

More information

Mixtures of Gaussians with Sparse Regression Matrices. Constantinos Boulis, Jeffrey Bilmes

Mixtures of Gaussians with Sparse Regression Matrices. Constantinos Boulis, Jeffrey Bilmes Mixtures of Gaussians with Sparse Regression Matrices Constantinos Boulis, Jeffrey Bilmes {boulis,bilmes}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UW Electrical Engineering

More information

Filter Methods. Part I : Basic Principles and Methods

Filter Methods. Part I : Basic Principles and Methods Filter Methods Part I : Basic Principles and Methods Feature Selection: Wrappers Input: large feature set Ω 10 Identify candidate subset S Ω 20 While!stop criterion() Evaluate error of a classifier using

More information

arxiv: v1 [stat.me] 27 Nov 2012

arxiv: v1 [stat.me] 27 Nov 2012 A LASSO-Penalized BIC for Mixture Model Selection Sakyajit Bhattacharya and Paul D. McNicholas arxiv:1211.6451v1 [stat.me] 27 Nov 2012 Department of Mathematics & Statistics, University of Guelph. Abstract

More information

Convexification and Multimodality of Random Probability Measures

Convexification and Multimodality of Random Probability Measures Convexification and Multimodality of Random Probability Measures George Kokolakis & George Kouvaras Department of Applied Mathematics National Technical University of Athens, Greece Isaac Newton Institute,

More information

Probability Theory Review Reading Assignments

Probability Theory Review Reading Assignments Probability Theory Review Reading Assignments R. Duda, P. Hart, and D. Stork, Pattern Classification, John-Wiley, 2nd edition, 2001 (appendix A.4, hard-copy). "Everything I need to know about Probability"

More information

Introduction to clustering methods for gene expression data analysis

Introduction to clustering methods for gene expression data analysis Introduction to clustering methods for gene expression data analysis Giorgio Valentini e-mail: valentini@dsi.unimi.it Outline Levels of analysis of DNA microarray data Clustering methods for functional

More information

Multivariate Analysis

Multivariate Analysis Multivariate Analysis Chapter 5: Cluster analysis Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2015/2016 Master in Business Administration and

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software January 2012, Volume 46, Issue 6. http://www.jstatsoft.org/ HDclassif: An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data Laurent

More information

The mclust Package. January 18, Author C. Fraley and A.E. Raftery, Dept. of Statistics, University of Washington.

The mclust Package. January 18, Author C. Fraley and A.E. Raftery, Dept. of Statistics, University of Washington. The mclust Package January 18, 2005 Version 2.1-8 Author C. Fraley and A.E. Raftery, Dept. of Statistics, University of Washington. Title Model-based cluster analysis Model-based cluster analysis: the

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu November 3, 2015 Methods to Learn Matrix Data Text Data Set Data Sequence Data Time Series Graph

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Mixtures of Gaussians continued

Mixtures of Gaussians continued Mixtures of Gaussians continued Machine Learning CSE446 Carlos Guestrin University of Washington May 17, 2013 1 One) bad case for k-means n Clusters may overlap n Some clusters may be wider than others

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010 Model-Averaged l 1 Regularization using Markov Chain Monte Carlo Model Composition Technical Report No. 541 Department of Statistics, University of Washington Chris Fraley and Daniel Percival August 22,

More information

Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions.

Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions. BAYESIAN STATISTICS 7, pp. 000 000 J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.) c Oxford University Press, 2003 Modelling Data over Time: Curve

More information

Machine Learning, Midterm Exam: Spring 2009 SOLUTION

Machine Learning, Midterm Exam: Spring 2009 SOLUTION 10-601 Machine Learning, Midterm Exam: Spring 2009 SOLUTION March 4, 2009 Please put your name at the top of the table below. If you need more room to work out your answer to a question, use the back of

More information

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21 CS 70 Discrete Mathematics and Probability Theory Fall 205 Lecture 2 Inference In this note we revisit the problem of inference: Given some data or observations from the world, what can we infer about

More information

Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS

Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Outline Maximum likelihood (ML) Priors, and

More information

How To Use CORREP to Estimate Multivariate Correlation and Statistical Inference Procedures

How To Use CORREP to Estimate Multivariate Correlation and Statistical Inference Procedures How To Use CORREP to Estimate Multivariate Correlation and Statistical Inference Procedures Dongxiao Zhu June 13, 2018 1 Introduction OMICS data are increasingly available to biomedical researchers, and

More information

Determining the number of components in mixture models for hierarchical data

Determining the number of components in mixture models for hierarchical data Determining the number of components in mixture models for hierarchical data Olga Lukočienė 1 and Jeroen K. Vermunt 2 1 Department of Methodology and Statistics, Tilburg University, P.O. Box 90153, 5000

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Different points of view for selecting a latent structure model

Different points of view for selecting a latent structure model Different points of view for selecting a latent structure model Gilles Celeux Inria Saclay-Île-de-France, Université Paris-Sud Latent structure models: two different point of views Density estimation LSM

More information